604 Commits

Author SHA1 Message Date
3b13102abb ci: ensure that submodules are updated recursively 2023-02-23 17:26:59 -06:00
7234ecab37 Merge pull request 'Implement a GDBSTUB Server' (#6) from gdbstub into main
Reviewed-on: #6
2023-02-23 22:18:26 +00:00
ddf4599162 chore: update dependencies 2023-02-23 02:45:59 -06:00
01f5410180 feat: allow gui and gdbstub to run in parallel 2023-02-23 02:40:24 -06:00
49706842af fix: run more than just the CPU when stepping via gdb 2023-02-23 02:40:24 -06:00
2798a90d83 chore: update zba-gdbstub to zig master 2023-02-23 02:40:24 -06:00
518b868249 feat: respond to API changes for software bkpts 2023-02-23 02:40:24 -06:00
755115660b feat: allow gdb writes to certain mem regions 2023-02-23 02:40:24 -06:00
6709f8c551 chore: update gdbstub lib 2023-02-23 02:40:24 -06:00
1f3cdd9513 feat: add gdb support to zba 2023-02-23 02:40:24 -06:00
65af6aa499 feat: add gdbstub library 2023-02-23 02:40:23 -06:00
024151a5c1 chore: update to latest zig master 2023-02-22 14:46:46 -06:00
e380af7056 chore: use a more efficient decimal->bcd algorithm
This will not improve perf in any way because this code only gets run
one time a second orz
2023-02-21 23:22:42 -06:00
e654abfd1d ci: don't assume any cpu features 2023-02-18 23:52:51 -06:00
3510a6cff8 chore: drop macOS support
CI is currently broken and I don't have the $$$ for macOS
2023-02-18 23:34:59 -06:00
3fb351e762 chore: update SDL.zig 2023-02-17 00:05:42 -06:00
a11b96b84e chore: update minimum zig version 2023-02-07 17:52:16 -06:00
c3be1c0a67 chore: update to latest zig build system
I feel like I'm misusing addAnonymousModule
2023-02-07 16:00:06 -06:00
fdf7399e52 chore: update README.md 2023-02-04 19:30:05 -06:00
ed8155139a chore: update CI 2023-02-04 18:22:50 -06:00
8112b1aab2 chore: update zig to latest master 2023-02-04 18:15:10 -06:00
c0e583d20d fix: resolve off-by-one error in str addr when r15 is involved
I seem to have made up this rule (I was thinking about when r15 was
a source register). `rn` is the destination register.... whoops
2023-01-29 08:58:41 -06:00
3f72367aaf chore: remove .vscode folder 2023-01-21 19:01:44 -06:00
c27f487bf0 chore: update dependencies 2023-01-16 02:57:50 -06:00
ae3bb94036 fix(ppu): draw file select sprites in amazing mirror 2023-01-08 01:36:58 -06:00
ddc54e2977 fix: ignore missing opengl proc addresses
is this really a fix? the error never happens with mach-glfw
2023-01-01 15:56:18 -06:00
ed49d7c460 chore: update lib/gl.zig 2023-01-01 13:41:53 -06:00
59baa14bde Merge branch 'main' of ssh://musuka.dev:2222/paoda/zba 2022-12-30 19:47:24 -06:00
6bf1c44961 chore: refactor sprite rendering code 2022-12-30 19:47:01 -06:00
94702b9b51 chore: update min zig version 2022-12-28 16:26:51 -06:00
0f148507e4 fix: respond to @addWithOverflow changes in latest zig 2022-12-28 15:20:44 -06:00
0cec779545 chore: misc style changes 2022-12-28 07:29:07 -06:00
1ecbbc7d29 chore: cleanup BIOS struct init code 2022-12-27 06:42:06 -06:00
caaa60d1a8 fix: rotate unaligned reads on BIOS open-bus 2022-12-27 06:25:12 -06:00
39d50466c9 chore: update min zig version 2022-12-22 13:21:59 -06:00
5a452d85c1 feat: update dependencies 2022-12-21 00:24:55 -06:00
4326ae7a0a fix: resolve broken affine bg in mario kart 2022-12-18 08:59:19 -04:00
905c4448d0 feat: kind-of account for 1/4th of obj mode 2022-12-18 08:35:14 -04:00
0de44835e5 fix: properly implement black/white blending for sprites
There's unique rules to handle for BLDY w/r/t sprites, I didn't know
about them (shown in bld_demo.gba). I'm sure I haven't ironed out every
rule but bld_demo.gba now *actually* passes
2022-12-18 07:44:01 -04:00
5aac04faf5 tmp: disable buggy window emulation
I'd like to merge my affine sprite impl into main, which will require
merging a lot of the rewrites I did in this branch. My plan is to
merge the buggy ppu window impl to main, but keep it disabled.

This is technically a regression but the current impl barely worked
anyways so....
2022-12-17 09:58:15 -04:00
f98a1700e0 feat: implement affine sprites 2022-12-17 09:47:10 -04:00
acdb270793 chore: reimplement alpha blending 2022-12-16 22:16:37 -04:00
4ceed382ed chore(ppu): use @ptrCast in drawTextMode 2022-12-16 22:16:37 -04:00
52ce4f3d20 chore(ppu): reimplement modes 3, 4, and 5 2022-12-16 22:16:37 -04:00
c1c8cac6e4 style(ppu): move text mode drawing to unique fn 2022-12-16 22:16:37 -04:00
be7a34f719 fix(window): proper inRange impl for window
window wrap now works (it's pretty slow though?)
2022-12-16 22:16:37 -04:00
f7a94634f9 chore: improve readability of sprite drawing code a bit 2022-12-16 22:16:37 -04:00
7d4ab6db2c style: remove unused imports 2022-12-16 22:16:37 -04:00
0a78587d8e chore: dont allocate not-small ?Sprite array on stack
use memset like most other allocations in this emu
2022-12-16 22:16:37 -04:00
b753ceef8e chore: move FrameBuffer struct to util.zig 2022-12-16 22:16:37 -04:00
8963fe205b chore: move OAM, PALRAM and VRAM structs to separate files 2022-12-16 22:16:37 -04:00
e906506e16 fix: 8-bit writes to WIN PPU registers
Advance Wars depends on these registers similar to Mario Kart's 8-bit
writes to Affine Background registers:
2022-12-16 22:16:37 -04:00
3195a45e3d chore: refactor window 2022-12-16 22:16:37 -04:00
6aad911985 chore: crude background window impl (no affine) 2022-12-16 22:16:37 -04:00
e3b45ef794 chore: rename function (misspelt until now somehow) 2022-12-16 22:16:37 -04:00
8e1a539e70 chore: debug read takes advantage of fastmem
deduplicate slowmem backup read handler
2022-12-15 23:18:54 -04:00
63fa972afa chore: update dependencies
in response to zig master deprecations
2022-12-14 22:57:51 -04:00
bf95eee3f1 fix(apu): resolve bug in NR10 obscure behaviour 2022-12-05 11:08:04 -04:00
240fbcb1df chore: update dependencies 2022-12-01 13:23:09 -04:00
26db340077 fix(input): implement atomic for KeyInput 2022-11-30 00:42:20 -04:00
20f611b7b5 chore: be more intentional in atomic ordering use 2022-11-30 00:21:02 -04:00
f9aefedf60 chore: cal glDeleteTextures on program exit 2022-11-29 23:35:13 -04:00
d7e3d34726 fix(platform): ensure that title char* is null terminated 2022-11-29 23:21:57 -04:00
2294dc8832 chore: add minimum zig version 2022-11-29 23:10:29 -04:00
4af86e1cb3 style: replace meta.Tuple calls with new tuple syntax 2022-11-29 23:01:06 -04:00
9fcbbe7d57 chore: cleanup OpenGL vertex array + buffers 2022-11-29 22:53:37 -04:00
c3f67e38a1 chore: exit early on shader compile failure 2022-11-29 22:25:04 -04:00
46e29245b7 fix(apu): disable APU writes when APU is disabled 2022-11-26 12:20:42 -04:00
002e33b48b fix: properly render table in README 2022-11-24 08:22:58 -04:00
5bb25fe214 chore: update dependencies 2022-11-23 21:57:53 -04:00
66db2e6049 Revert "chore: refactor flash impl"
This reverts commit 96a9ae2ca5.
2022-11-20 21:46:40 -04:00
c5cf471912 fix(timer): removing cascade when TIM aleady enabled shouldn't reset counter 2022-11-20 19:13:49 -04:00
4ed4f8e143 fix(dma): implement obscure behaviour for DMAs from ROM 2022-11-20 17:49:26 -04:00
f31699d921 fix(log): logged improper second opcode for THUMB BL 2022-11-20 15:36:40 -04:00
96a9ae2ca5 chore: refactor flash impl 2022-11-17 10:47:19 -04:00
ee1c0bb313 chore: update README 2022-11-16 10:55:33 -04:00
558c03b12b style: changes to cpu.zig 2022-11-16 10:21:40 -04:00
7d8fbbb086 fix(bus): resolve off-by-one error 2022-11-14 01:59:43 -04:00
9fd405a896 chore(ci): update CI dependency 2022-11-11 13:25:56 -04:00
5d7cf3a8a2 chore: remove util fn for stdlib equivalent 2022-11-11 13:02:51 -04:00
1230aa1e91 fix(cpu): remove miscompilation workaround 2022-11-11 03:56:49 -04:00
accecb3350 chore(ci): rename CI workflow 2022-11-10 11:58:47 -04:00
1e0ade8f55 chore: update depdendencies 2022-11-07 00:54:35 -04:00
429676ad43 feat(config): write config.toml to config dir, not data dir 2022-11-03 09:45:57 -03:00
ef39d9a7b8 chore(ci): only run for .zig files, name workflow
Also enabled workflow dispatch
2022-11-03 08:56:14 -03:00
986bc9448e fix(bus): account for read_table being the first table when freeing 2022-11-03 07:50:12 -03:00
d34893ba72 fix(bus): fix confusion about which fastmem write table is for which write type 2022-11-02 08:21:59 -03:00
b8a5fb95c1 fix(io): account for read-only bit in WAITCNT 2022-11-02 08:06:19 -03:00
102b2c946b fix(io): respect read-only bits in DISPSTAT
Superstar Saga now renders correctly
2022-11-02 07:54:06 -03:00
505b1b9608 fix(bus): resolve simple oversights 2022-11-01 09:00:25 -03:00
2851c140ea fix(cpu): use LUT for ARM condition codes 2022-11-01 08:29:42 -03:00
637d81ce44 chore(bus): only perform one allocation for fastmem tables 2022-11-01 07:04:42 -03:00
bc52461f0f fix(bus): replace write table with two tables for u32/u8 and u8 writes 2022-11-01 07:00:07 -03:00
c395c04a6e feat(bus): implement fastmem
+100 fps in Pokemon Emerald lol
2022-11-01 06:18:12 -03:00
9eb4f8f191 chore: reccomend stable Zig v0.10.0 2022-11-01 01:01:48 -03:00
f774256c42 chore: update README.md 2022-10-31 09:14:42 -03:00
5c15d039e1 chore(ci): update actions/checkout to v3
supresses deprecation warning for node12
2022-10-31 08:16:45 -03:00
28e9342c25 ci: add github actions config file 2022-10-31 08:04:21 -03:00
af8ec4db5b chore: go through TODOs and FIXMEs
mainly deleting / rewording those that no longer apply
2022-10-31 06:17:09 -03:00
5d47e5d167 fix(io): force-align all i/o reads
Of course, backups being the exception due to flash or sram quirks,
I don't remember lol
2022-10-31 05:50:27 -03:00
5101fbd809 feat(io): pass all suite.gba i/o read tests 2022-10-31 05:22:11 -03:00
472457b9f3 chore: make use of comptime control flow when working with tuples 2022-10-31 05:14:20 -03:00
2ef4bb7dcc revert(apu): switch from f32 44.1kHz to u16 32.768kHz 2022-10-31 05:14:20 -03:00
9a732ea6f8 chore(i/o): ensure interrupt i/o exists 2022-10-31 05:14:20 -03:00
f80799a593 fix(util): resolve bug in setHalf function
introduced in 472215b4c2
2022-10-30 04:12:58 -03:00
ca67ca3183 fix(apu): only enable dma sound fifo after manual write 2022-10-30 03:48:12 -03:00
47fc49deb6 fix(audio): add asserts where I assume audio format 2022-10-30 03:25:49 -03:00
472215b4c2 feat(ppu): implement all i/o writes 2022-10-30 03:11:04 -03:00
c9a423d094 fix(ppu): resolve mistakes in ppu i/o reads 2022-10-30 02:15:26 -03:00
1d163fa56f feat(apu): implement all apu i/o writes 2022-10-30 02:02:23 -03:00
13710a3236 feat(timer): implement all timer i/o writes 2022-10-30 01:18:46 -03:00
6154585e77 feat(dma): implement all dma i/o writes 2022-10-30 01:04:22 -03:00
7debdc490d fix(io): resovle off-by-one errors in i/o register ranges 2022-10-29 05:23:05 -03:00
58375795bf fix(ppu): apply proper masks to ppu i/o
Refactor Window, and bldcnt, bldalpha, bldy
2022-10-29 05:18:53 -03:00
f0dca29836 fix(dma): apply proper masks to dma i/o 2022-10-29 04:53:21 -03:00
c75682dbd4 fix(apu): some invalid i/o registers should read 0x0000 2022-10-29 04:29:44 -03:00
36832ba1fb feat(apu): impelement all apu i/o reads 2022-10-29 04:24:06 -03:00
647bd83224 chore(io): rewrite certain error messages
We can do this now that we know that it won't be because of any
unimplemented feature in some circumstances
2022-10-29 02:37:54 -03:00
c831f67d1a feat(timer): implemeant all timer i/o reads 2022-10-29 01:37:28 -03:00
268961262d feat(dma): implement all dma i/o reads 2022-10-29 01:30:12 -03:00
3e62feacba feat(ppu): implement all ppu i/o reads 2022-10-29 01:29:27 -03:00
d859cee365 style: get rid of unnecessary type coersion 2022-10-29 00:06:08 -03:00
371cf4cc12 style(i/o, ppu): refactor ppu i/o 2022-10-28 23:45:54 -03:00
10aec67ee0 emu: implement thread sleep in granular steps 2022-10-28 21:58:55 -03:00
4eb715a138 doc(emu): properly document + simply constants 2022-10-28 21:57:30 -03:00
14b24787ab style: remove unnecessary imports 2022-10-28 21:56:55 -03:00
eb7ffa29f4 fix(apu): pause device on mute instead of writing silence 2022-10-27 09:11:08 -03:00
4b8ed3cebb fix(io): resolve embarrasingly simple regression
introduced in 21eddac31e
2022-10-23 04:39:31 -03:00
928ce674d9 fix(cpu): fix obscure LDRSH behaviour 2022-10-22 22:12:41 -03:00
945dbec013 fix(open-bus): don't rotate result
Rotating misaligned reads is the responsibility of the CPU
2022-10-22 21:32:36 -03:00
dd98066a34 Merge pull request 'feat(dma): Implement DMA Latch' (#5) from dma-latch into main
Reviewed-on: #5
2022-10-22 23:53:21 +00:00
a2868dfe9e feat(dma): Implement DMA Latch 2022-10-22 20:52:02 -03:00
22979d9450 fix(bios): fix regression
was reading addr_latch + 8, which is a remnant from when I was faking
the pipeline
2022-10-22 15:33:36 -03:00
712c58391d chore(config): change defaults in config.toml 2022-10-21 06:01:22 -03:00
407774d798 chore(gitignore): update .gitignore 2022-10-21 04:40:55 -03:00
16f8f4c953 feat: write default config.toml if it doesn't exist
also resolves panic on missing /zba or /zba/save directory by ensuring
those directories exist as soon as we know the data directory
2022-10-21 04:39:16 -03:00
143ffd95f7 chore: update README 2022-10-21 02:59:43 -03:00
250ff25ed7 Merge pull request 'Configure SDL2 to use OpenGL' (#4) from opengl into main
Reviewed-on: #4
2022-10-20 01:41:50 +00:00
eff52ac1bb fix(opengl): properly control whether vsync is enabled 2022-10-17 20:31:42 -03:00
e60b556f72 chore(ppu): remove BGR555 -> RGBA888 LUT
LUT probably couldn't fit in CPU cache anyways.

TODO: Consider whether LUTs for separate channels (size 32 * 3 * 3
instead of std.math.maxInt(u15))
2022-10-17 20:31:42 -03:00
3a3e6acc6a chore: replace OpenGL 4.5 bindings with OpenGL 3.3 2022-10-17 20:31:42 -03:00
4b4bc7f894 chore: remove unnecessary ptr cast 2022-10-17 20:31:42 -03:00
325208d460 feat: implement better Colour Emulation 2022-10-17 20:31:42 -03:00
f44a1a49fd fix: lower required OpenGL version + resolve offset bug 2022-10-17 20:31:42 -03:00
1575f517a9 feat: use opengl
TODO:
- Texture isn't scaling properly
- I need to reverse the colours in the frag shader
2022-10-17 20:31:42 -03:00
26dba16789 chore(gpio): add missing errdefer 2022-10-17 20:01:50 -03:00
b133880064 chore(main): report errors slightly better 2022-10-17 18:30:40 -03:00
2474daa3ae chore(config): add log message 2022-10-17 17:39:02 -03:00
fc53a40b3c feat(config): add option to skip BIOS 2022-10-17 17:31:07 -03:00
7097e21361 feat(cli): Add option to skip BIOS 2022-10-17 17:25:04 -03:00
a9fe24b1b4 chore: Update README.md 2022-10-17 17:00:54 -03:00
f38c840d32 Merge pull request 'Draft: Implement Instruction Pipeline' (#3) from pipeline into main
Reviewed-on: #3
2022-10-17 19:42:42 +00:00
19e70c39d1 feat(config): add config option to mute ZBA 2022-10-13 00:54:15 -03:00
5a72a8e7f3 chore(config): add example config file 2022-10-13 00:46:18 -03:00
7b146ad7ca fix(bios): set addr_latch even if bios is skipped 2022-10-13 00:35:22 -03:00
822eed1f3a fix(bus): make open bus impl aware of CPU pipeline 2022-10-13 00:35:22 -03:00
b37a14900c style(bus): cpu ptr doesn't need to be optional 2022-10-13 00:35:22 -03:00
f5bd20bc2a style: code cleanup 2022-10-13 00:35:22 -03:00
d3514b14f3 fix: resolve timing regressions
make sure to use fetch timings when fetching instructions
2022-10-13 00:35:20 -03:00
06c60dad74 fix: rename Pipline to Pipeline 2022-10-13 00:34:18 -03:00
870e991862 feat: working pipeline implementation 2022-10-13 00:34:18 -03:00
5bb5bdf389 chore: refactor ARM/THUMB data processing instructions 2022-10-13 00:34:18 -03:00
a3996cbc58 fix: don't flush pipeline when reloading CPSR in ARM Data Processing 2022-10-13 00:34:18 -03:00
a948c6f900 chore: don't write to CPSR + swap with SPSR at the same time 2022-10-13 00:34:18 -03:00
014180cbd0 chore: update README.md 2022-10-13 00:33:13 -03:00
e4451738b5 fix: advance r15, even when the pipeline is reloaded from the scheduler
The PC would fall behind whenever an IRQ was called because the pipeline
was reloaded (+8 to PC), however that was never actually done by any code

Now, the PC is always incremented when the pipeline is reloaded
2022-10-13 00:33:13 -03:00
48b81c8e7a chore: dump pipeline state on cpu panic 2022-10-13 00:33:13 -03:00
3cf1bf54e9 fix: reimpl THUMB.5 instructions
pipeline branch now passes arm.gba and thumb.gba again

(TODO: Stop rewriting my commits away)
2022-10-13 00:33:13 -03:00
1f9eeedfe8 fix: impl workaround for stage2 miscompilation 2022-10-13 00:33:13 -03:00
72a63eeb98 chore: instantly refill the pipeline on flush
I believe this to be necessary in order to get hardware interrupts
working.

thumb.gba test 108 fails but I'm committing anyways (despite the
regression) because this is kind of rebase/merge hell and I have
something that at least sort of works rn
2022-10-13 00:33:13 -03:00
2799c3f202 fix: reimpl handleInterrupt code 2022-10-13 00:33:13 -03:00
b3ada64e64 feat: implement basic pipeline
passes arm.gba, thumb.gb and armwrestler, fails in actual games
TODO: run FuzzARM debug specific titles
2022-10-13 00:33:11 -03:00
62162ba492 feat: resolve off-by-{word, halfword} errors when printing debug info 2022-10-13 00:31:47 -03:00
aa100de581 feat: reimplement cpu logging 2022-10-13 00:31:47 -03:00
7142831284 Merge pull request 'Add TOML Support' (#2) from toml into main
Reviewed-on: #2
2022-10-13 03:30:26 +00:00
97f48c730e chore(emu): refactor code 2022-10-13 00:29:51 -03:00
293fbd9f55 feat(config): add support for (and read from) TOML config file 2022-10-13 00:29:48 -03:00
622f479e07 feat: parse config.toml in data folder
Also took the chance to rework parts of the logic that determines
ZBA's save path
2022-10-13 00:27:18 -03:00
0204eb6f94 chore: add zig-toml dependency 2022-10-13 00:27:18 -03:00
86d2224cfc chore: update dependencies 2022-10-13 00:23:58 -03:00
21eddac31e style: improve code quality 2022-10-13 00:23:58 -03:00
785135a074 feat: rewrite device ticks 2022-10-13 00:23:58 -03:00
fd38fd6506 style(scheduler): rename scheduler event handlers 2022-10-13 00:23:58 -03:00
bcacac64df style: code refactoring 2022-10-13 00:23:58 -03:00
dc7cad9691 style(apu): split apu.zig into multiple files + refactor 2022-10-13 00:23:58 -03:00
b5d8a65e69 style(backup): refactor code 2022-10-10 12:01:49 -03:00
8028394105 style(flash): move flash code into it's own file 2022-10-10 12:01:49 -03:00
cb0eb67e4b style(eeprom): move eeprom code to it's own file 2022-10-10 12:00:45 -03:00
13f6ee8ec4 style(bus): refactor several hardware abstractions 2022-10-10 11:57:57 -03:00
c71e954748 chore: SDL2.zig expects target to be set before link() is called 2022-09-25 18:59:55 -03:00
c697dec716 chore: update dependencies 2022-09-23 07:21:46 -03:00
92cfc763c0 chore: move util.zig 2022-09-19 16:07:19 -03:00
e192c6712f chore: disable audio sync by default
forgot SDL2 AudioStream doesn't work well for my use-case
2022-09-18 09:20:01 -03:00
3466bf6c0a chore: change default settings 2022-09-18 06:30:39 -03:00
fbe3de0eb3 chore: reimpl util.escape
should make use of stdlib when I can
2022-09-18 06:23:30 -03:00
4af144fca2 fix: Detect FRAM ROMs 2022-09-18 06:19:05 -03:00
9a8aaba1ab chore: improve util and Gui API 2022-09-18 05:55:15 -03:00
fa3b9c21b9 chore: move Gpio and Clock structs to separate file 2022-09-18 00:37:45 -03:00
d3efa432fa Merge pull request 'Implement RTC' (#1) from rtc into main
Reviewed-on: #1
2022-09-17 23:36:34 +00:00
50adb5fbac feat: add option to force-enable RTC 2022-09-17 20:27:17 -03:00
19d78b9292 feat: auto-detect RTC in commercial ROMS 2022-09-17 20:23:49 -03:00
a2e702c366 fix: account for lateness in RTC scheduler event 2022-09-17 09:07:31 -03:00
12c138364d fix: RTC day is 6 bits wide, not 3 2022-09-16 10:59:41 -03:00
7783c11fac feat: put RTC Sync on Scheduler
TODO: Database to see what games have what GPIO devices
2022-09-16 10:39:02 -03:00
3fc3366c8a chore: import datetime library + default time for RTC 2022-09-16 10:39:02 -03:00
d6b182f245 fix: ignore RTC Time/DateTime writes
this falls in-line with better emulators
2022-09-16 10:39:02 -03:00
3857c44e68 chore: use Clock.Writer for Command parsing, delete Clock.Command 2022-09-16 10:39:02 -03:00
089c5fa025 feat: implement RTC Read/Writes 2022-09-16 10:39:02 -03:00
c977f3f965 feat: implement force irqs for GPIO/RTC 2022-09-16 10:38:51 -03:00
92417025e9 fix: properly resovle stack UAF 2022-09-16 02:10:41 -03:00
1c52c0bf91 chore: shorten orelse @panic to .? 2022-09-16 02:10:41 -03:00
617f7f4690 fix: update GpioData extern union
u4's are no longer supported in extern unions :\
2022-09-16 02:10:41 -03:00
434a0dfac9 tmp: incomplete impl of GPIO + RTC 2022-09-16 02:10:41 -03:00
4ec8dab460 chore: Guilty Gear X expects these I/O Registers 2022-09-14 11:38:26 -03:00
59c9ff910e feat: implement open bus for unmapped i/o 2022-09-12 23:18:29 -03:00
0027d3f8a3 chore: comment open bus impl 2022-09-11 07:38:55 -03:00
9f45888910 chore: update dependencies 2022-09-11 06:59:10 -03:00
bf442d5a40 chore: Update README.md 2022-09-10 07:34:52 -03:00
65cfc97f28 feat: reimplement audio sync
APU will now drop samples if the Audio Queue is already full, therefore
creating a "sped-up" effect when the emulator runs faster than 100%
2022-09-08 20:38:42 -03:00
fa862f095a chore: move arm/thumb lut idx functions 2022-09-06 23:58:24 -03:00
f3c05b6fe6 chore: update dependencies 2022-09-05 22:52:07 -03:00
3fb7f2f814 chore: better conform to zig idioms 2022-09-03 18:30:48 -03:00
59669ba3a5 chore: rename arm7tdmi variables to just cpu
Less verbose, specifying arm7tdmi doesn't really do much when there's
no other CPU in the system
2022-09-03 17:56:37 -03:00
6a798d2c9d chore: allocate sprite array on heap
Each Sprite optional is 10 bytes meaning I'm allocating 1.28Kb on the
stack which isn't necessary.
2022-08-29 01:07:25 -05:00
5f8c6833f4 chore: improve init/deinit methods 2022-08-29 01:07:25 -05:00
aa52bb5917 chore: reorganize some code 2022-08-26 14:13:49 -05:00
e57f918856 chore: pass the allocator as an argument more often
As of right now, I think the only cases where I shouldn't explicitly pass an allocator
are in read/write functions and deinits
2022-08-26 13:54:38 -05:00
e5b7441740 fix: resolve use-afer-free in backup.zig
This worked fine on stage1, and works fine in debug in stage3.
However, stage3 ReleaseSafe would panic due to what I assume must
have been an undefined behaviour optimization.

While I'm happy that I was quickly made aware of the issue thanks to
the safety checks in ReleaseSafe I do wish that this issue showed itself
in Debug, since I *am* using the GPA
2022-08-26 13:04:09 -05:00
2ab8769b7a feat: Get ZBA working on Zig's new stage2/stage3 compiler 2022-08-21 12:28:31 -05:00
3c3c0d32dd chore: move window scale const to emu.zig 2022-08-08 11:03:23 +02:00
739db99c83 fix: reimpl debug reads w/out throwing away *const Self 2022-08-07 05:11:29 -05:00
5a18b1dcc7 chore: update dependencies: 2022-08-06 08:28:30 -05:00
2c8616f610 feat: reimplement cpu logging 2022-07-27 14:50:28 -03:00
53eec5c3ff chore: don't init bus in Arm7tdmi init 2022-07-27 13:44:24 -03:00
c397b7069d feat: move arm instr decoding to module 2022-07-27 13:23:29 -03:00
9d037fdc3e feat: move thumb instr decoding to module 2022-07-27 13:10:58 -03:00
53191b0eeb chore: change directory structure 2022-07-22 21:11:19 -03:00
c7c4a90948 fix: reimplement halt fast-forwarding 2022-07-21 11:25:49 -03:00
03ded099d2 chore: move audio sync, video sync variables 2022-07-21 11:05:49 -03:00
5d9a57c7eb chore: update README.md 2022-07-12 18:28:11 -03:00
769fad8996 chore: update SDL.zig 2022-07-12 18:11:32 -03:00
3b3eb52c48 feat: impl WININ, WINOUT, WIN{N}H and WIN{N}V 2022-06-29 14:56:48 -03:00
d798aea6ea fix: force align DMA transfers 2022-06-29 04:31:02 -03:00
5d37c212e2 fix: resolve bugs in VRAM unpredictable read/writes 2022-06-29 03:59:14 -03:00
887bd89668 fix: don't start HDMA in vblank 2022-06-23 05:45:52 -03:00
81c669fe64 feat: implement brightness increase/decrease 2022-06-23 04:50:04 -03:00
265234ee97 feat: implement object blending 2022-06-23 02:49:56 -03:00
02534c5c19 feat: implement background alpha blending 2022-06-19 22:10:56 -03:00
5e4fb7b952 feat: implement BLDCNT, BLDALPHA, BLDY 2022-06-19 01:27:14 -03:00
7e15e83d38 chore: update README 2022-06-19 00:02:33 -03:00
c9ea80e03b chore: rename + remove some code 2022-06-18 22:01:17 -03:00
4cd722e447 fix: properly fire DMA IRQs
This resolves Sound DMA Timing issues present in DOOM
2022-06-18 21:13:12 -03:00
adfb23fab4 chore: rename Dma.active to Dma.in_progress 2022-06-18 19:15:34 -03:00
5bbbdc3469 chore: rewrite info log message 2022-06-18 18:46:40 -03:00
47adc0c5ae feat: implement NR10 obscure behaviour 2022-06-18 18:16:29 -03:00
601b0b2aae feat: handle all I/O when using Cult-Of-GBA BIOS 2022-06-18 17:50:11 -03:00
3becd790cf chore: 32-bit reads for PSG audio 2022-06-18 17:35:52 -03:00
460f8308a7 chore: implement more than just 1 cycle per mem access 2022-06-16 22:35:42 -03:00
cc8c1c1e21 fix: implement register reads for Yoshi's Island 2022-06-16 02:32:31 -03:00
f5e401a4ee fix: reimplement DMA ticking 2022-06-16 01:46:37 -03:00
dba8873f76 chore(cpu): add inline fn isHalted() 2022-06-16 00:49:37 -03:00
db08edbdb9 chore: attempt to debug Rhythm Heaven 2022-06-16 00:03:51 -03:00
35dba63b94 fix: impl BG?{X,Y} RefPoint write behaviour outside of Vblank
With this fix Mode 7-like games now properly render their backgrounds
2022-06-15 01:34:34 -03:00
a753912cb5 chore: change priority of some logs 2022-06-15 01:18:45 -03:00
7441af9582 chore: mess with debug statements + mask APU I/O reads 2022-06-15 01:08:43 -03:00
708f64035f chore: move timer, apu and dma i/o addr matching outside of io.zig 2022-06-15 00:05:36 -03:00
e4bbd33a49 chore: separate render code for affine sprites 2022-06-04 20:07:20 -03:00
25d13722f7 chore: reimplement object rendering
TODO: implement affine sprites
2022-06-04 13:55:31 -03:00
4eb0d469b3 chore: small changes to normal background drawing code 2022-06-04 10:21:03 -03:00
ce2271100b feat: implement affine backgrounds 2022-06-04 09:49:34 -03:00
e226a59a2f chore: stub 8-bit window registers 2022-06-04 09:48:59 -03:00
7ff5f3b8e7 chore: remove code that pretends to remove DC offset 2022-06-04 09:47:58 -03:00
b6f5517c89 fix: replace affine bg register bitfields with signed integers 2022-06-03 19:26:52 -03:00
2dc3864dca chore: use stdlib endian-aware integer read/write functions 2022-06-03 13:26:55 -03:00
deff74d804 chore: update zig version in README.md 2022-05-28 15:28:52 -03:00
4f93f3e454 chore: update SDL.zig 2022-05-28 15:25:37 -03:00
38afb567b9 chore: misc style improvements 2022-05-27 22:09:15 -03:00
4006888629 chore: rename method in FpsTracker 2022-05-27 21:50:16 -03:00
e7faa9713b chore: update README.md 2022-05-27 21:27:19 -03:00
413ff02ad9 fix(backup): resolve banking issue in flash impl 2022-05-27 21:17:50 -03:00
517ed7a835 chore: remove awful ptr casts in backup.zig and bios.zig 2022-05-27 20:24:09 -03:00
d4bc1f2cd0 feat: pass jsmolka's bios.gba 2022-05-27 20:08:09 -03:00
c6ce810afe fix: play right samples in right channel 2022-05-27 18:47:34 -03:00
1170673447 fix: resolve issue when handling event sooner than expected 2022-05-26 17:11:02 -03:00
c007bf4d8e fix: remove DC offset from audio output 2022-05-26 17:10:10 -03:00
697ec46cf1 chore: add debug keybinds for scheduler capacity + event count 2022-05-25 15:13:57 -03:00
41ee32b118 perf: don't check scheduler every iteration of runFrame loop
~20fps gain in Pokemon Emerald, nice
2022-05-25 14:17:44 -03:00
8f5d054195 chore: simplify 4bpp palette code 2022-05-25 10:10:57 -03:00
c907552864 perf: convert BGR555 to RGBA8888 at compile-time, access w/ lookup table
Compile speed isn't slowed down by that much + there's a ~20fps gain in
Pokemon emerald, though this isn't anything exact
2022-05-24 13:55:50 -03:00
ff3f79801c chore: modify type signature of util.sext 2022-05-23 14:48:52 -03:00
f130d1991c chore: cleanup main 2022-05-23 12:50:01 -03:00
24a8905c29 chore: emu audio sync code to emu.zig 2022-05-23 12:05:57 -03:00
e70fe73899 chore: redo apu sampling 2022-05-23 11:25:28 -03:00
a2d2a84850 chore: implement apu u16 reads 2022-05-21 15:09:32 -03:00
109561310e fix: clean up frequency timer implementations 2022-05-21 14:21:50 -03:00
5164aa961d Revert "fix: resolve off-by-one errors when scheduling freq timer expirations"
This reverts commit c9b0030b4b.
2022-05-21 13:46:46 -03:00
c9b0030b4b fix: resolve off-by-one errors when scheduling freq timer expirations 2022-05-21 13:34:14 -03:00
af2ad6c924 chore: improve APU accuracy + scheduler refactoring 2022-05-20 16:01:12 -03:00
e7777737b3 chore: update SDL.zig 2022-05-20 12:34:22 -03:00
c40cc2ba30 feat: stub Affine BG registers 2022-05-18 15:50:40 -03:00
8dddb865cc fix: resolve out-of-bounds error with 8bpp tall / horizontal sprites
Boot ROM is now enabled by default as well
2022-05-17 12:16:30 -03:00
2e821ab79c chore: improve audio accuracy 2022-05-17 11:28:05 -03:00
a667269d26 chore: reintroduce thread sleeping + simplify fps counter 2022-05-17 08:55:23 -03:00
daf977ef06 feat: implement double buffering 2022-05-17 06:53:37 -03:00
660c8a2d62 chore: clean up DMA code 2022-05-05 22:36:11 -03:00
9d590b099a feat: handle DMA IRQs (maybe?) 2022-05-05 22:04:59 -03:00
d5443d9c2f chore: contain Timers in a tuple rather than a struct 2022-05-05 20:09:00 -03:00
f0ce39230b chore: contain DMA Controllers in a tuple rather than a struct 2022-05-05 19:53:12 -03:00
c0e026b9a8 chore: update git submodules 2022-05-05 18:21:59 -03:00
208e88e869 chore: resolve incorrect memory mirror in VRAM
+ stub GPIO registers on ROM Write
2022-05-05 16:44:48 -03:00
5df023fb41 chore: stub a few I/O registers 2022-05-03 22:41:05 -03:00
46ac1542a6 chore: allow 8-bit IO to BG0CNT and BG1CNT
BG0CNT and and BG1CNT now work properly in mario kart
2022-05-01 20:41:00 -03:00
c2f55e0bfb chore: define affine sprite attributes 2022-05-01 19:15:56 -03:00
12f9bb51c1 feat: stub mode 1 and 2 2022-05-01 18:53:11 -03:00
41558c9103 feat: implement mode 5
I wonder which obscure game makes heavy use of this mode
2022-05-01 18:10:52 -03:00
68012f84d3 chore: comment ARM MSR code + Audio issues 2022-04-30 22:17:34 -05:00
640b1f7c5d chore: pass destoer's cond_invalid test 2022-04-30 20:42:47 -05:00
f2f4bb205a chore: misc print message improvements 2022-04-29 12:41:05 -05:00
6c88a0aec2 chore: improvements to APU accuracy 2022-04-29 12:19:31 -05:00
002287ecfe fix: incorrect order-of-operations in ARM BL impl 2022-04-27 23:15:39 -05:00
a87b46898b chore: special case saving for ROMS without titles 2022-04-27 18:08:44 -05:00
417810581b chore: update README 2022-04-26 10:52:56 -05:00
bc2950916f chore: update most recent zig version 2022-04-26 09:57:26 -05:00
d9c9105449 feat: pass DenSinH's eeprom-test 2022-04-25 17:20:43 -05:00
05a432f1c1 feat: implement EEPROM 2022-04-25 16:23:24 -05:00
f4a48d536c chore: implement I/O regsister for Minish Cap 2022-04-25 08:01:34 -05:00
81db06d2fc chore: change default window scale to 4x 2022-04-24 08:33:28 -04:00
1812fb8008 chore: write more debug log messages for unimplemented registers 2022-04-22 22:19:26 -03:00
762494453f chore: only sync to audio for now 2022-04-22 20:56:52 -03:00
e3553bcbd6 feat: panic on unimplemented I/O in ReleaseSafe/Debug but not ReleaseFast 2022-04-22 20:56:52 -03:00
9cce4d9859 chore: misc improvements 2022-04-21 10:15:52 -03:00
75ba9a4bf9 fix: improper lifetime for *Arm7tdmi ptr in Bus
*Arm7tdmi ptr is now assigned one scope up so that it lives as least
as long as Bus does
2022-04-21 07:56:17 -03:00
85e8ca9146 feat: implement Noise
Kirby & The Amazing Mirror crashes only in ReleaseSafe / ReleaseBug.

TODO: Figure out why
2022-04-21 02:40:02 -03:00
2f07c18f0b feat: implement ch3 2022-04-21 00:21:55 -03:00
ed3d275974 feat: implement ch2 2022-04-20 21:33:46 -03:00
0184ec3e5e feat: implement ch1
TODO: It's really loud
2022-04-20 20:52:50 -03:00
97a689ab55 chore: broken impl of ch1 2022-04-20 09:39:12 -03:00
c3611a0f00 feat: add audio resampler
Also implement extremely naive audio sync
2022-04-20 06:27:06 -03:00
d270ec711f chore: calculate apu sample rate a bit better 2022-04-20 02:36:32 -03:00
172a59aefb feat: schedule audio sampling on scheduler
DMA sound in games like Pokemon Emerald, Chobits, Love Hina, and Kirby:
Nightmare in Dream Land sound great save for conerns about resampling
2022-04-14 05:58:32 -03:00
92cabd248b chore: improve timer behaviour 2022-04-14 01:58:40 -03:00
6b09250a56 chore: move some init code to functions 2022-04-14 00:52:21 -03:00
f6d746e810 feat: impelemt THUMB open bus 2022-04-14 00:21:49 -03:00
9b9b6c0d6f feat: implement ARM read open bus 2022-04-13 23:28:14 -03:00
6d5c30ac25 fix: remove accidental rotation in ldrsh instructions 2022-04-13 22:59:32 -03:00
c1b74d556a chore: move log statement 2022-04-13 21:45:15 -03:00
dfe94fb931 chore: remove magic numbers 2022-04-13 21:39:35 -03:00
ffbb31c767 chore: remove unnecessary 32MB allocation 2022-04-13 21:25:41 -03:00
714209565b chore: define more I/O read/writes 2022-04-12 00:50:44 -03:00
643cd13952 chore: update README 2022-04-11 23:14:44 -03:00
2c763e9772 feat: pass jsmolka memory.gba 2022-04-11 22:52:17 -03:00
ad1f5ea8b8 chore: ignore instead of logging errors for perf reasons 2022-04-10 23:10:06 -03:00
76b4d56ca6 feat: Initial Implementation of DMA Audio 2022-04-10 04:50:09 -03:00
c100d64fcb chore: tick scheduler on memory access 2022-04-09 19:43:27 -03:00
5da84aff36 chore: log error on open bus in page 0x00 and 0x01 2022-04-09 18:01:17 -03:00
76789aa8bc chore: rewrite I/O read/writes 2022-04-08 17:07:36 -03:00
80e714e2eb chore: reimplement bus read/writes 2022-04-08 16:48:43 -03:00
37a360ec07 fix: force align reads/writes in memory bus rather than in CPU 2022-04-08 15:17:31 -03:00
a976a5769e fix: pass none.gba and kind of sram.gba from jsmolka test suite 2022-04-08 14:38:35 -03:00
6df55c2d86 feat: implement GamePak out-of-bounds reads 2022-04-08 02:34:08 -03:00
a1008738d2 chore: run zigfmt 2022-04-08 02:13:58 -03:00
11a034658a chore: change implementation of rotr 2022-04-08 02:13:41 -03:00
aac01b0bfe chore: rewrite read/write methods for remainig Bus devices 2022-04-08 02:08:26 -03:00
5310c12669 chore: mirror VRAM 2022-04-08 01:10:12 -03:00
9b9de11e0c chore: write generic read/write for VRAM 2022-04-08 00:44:52 -03:00
f8018854be Merge branch 'main' of ssh://musuka.dev:2222/paoda/zba 2022-04-07 17:23:22 -03:00
fae4b430ab chore: update dependencies 2022-04-07 17:23:07 -03:00
1bb3659df6 chore: update README 2022-03-29 18:52:09 -03:00
3046e6243a chore: don't assume 1cpi when stepping by a frame 2022-03-29 09:06:26 -03:00
e127669549 Revert "chore: tick on memory access instead of 1cpi"
This reverts commit 7f555095f2.
2022-03-29 08:58:57 -03:00
7f555095f2 chore: tick on memory access instead of 1cpi 2022-03-29 08:50:12 -03:00
29da7b294e feat: implement Flash backup cartrige kinds 2022-03-28 19:41:22 -03:00
bf7b533b3c chore: stub more apu I/O addresses 2022-03-28 19:40:47 -03:00
37c039fb92 fix: don't create un-needed save file
If we don't know if we support a game's save type yet, avoid
creating a file for it.
2022-03-22 15:03:05 -03:00
4c172cff70 fix: account for subset of disallowed chars in save file names 2022-03-22 14:55:08 -03:00
bd54cba8a0 feat: implement SRAM saving and loading 2022-03-22 14:41:18 -03:00
da4bb17782 chore: properly deallocate OAM buffer 2022-03-22 11:41:17 -03:00
5dd69500ca fix: speed percentage in title is now accurate
We now properly account for full speed being 59.97Hz not, 59Hz or 60Hz
2022-03-22 10:39:42 -03:00
eff25a0ab2 chore: make some variables const 2022-03-19 02:00:53 -03:00
1901a471e4 feat: minor performance improvements 2022-03-18 09:49:49 -03:00
3d61c0dba4 feat: switch from BGR555 to RGBA8888 2022-03-18 07:52:54 -03:00
39ab363afa fix: improve perf of instructions w/ rotr 2022-03-16 22:56:37 -03:00
1921218c7b fix: improve frame limiting and fps counting 2022-03-16 21:25:32 -03:00
40968f0990 fix: implement proper SRAM mirroring and stub Flash 2022-03-15 21:54:55 -03:00
04d54ec97a chore: move DMA and Timers from io to bus 2022-03-15 08:25:26 -03:00
1fd80c1c23 feat: define APU registers 2022-03-15 08:09:07 -03:00
48679fa4ca fix: move code in scheduler to ppu 2022-03-15 08:09:07 -03:00
bdea19f280 chore: create different types of emuloops 2022-03-15 03:46:33 -03:00
5579643d65 fix: resolve relative sprite priority issues 2022-03-15 00:37:29 -03:00
c6e6b42869 chore: improve accuracy of frame limiter 2022-03-14 20:38:29 -03:00
3623362f72 chore: improve accuracy of thread sleep in emu thread 2022-03-14 08:54:48 -03:00
c538079ad4 feat: implement video sync 2022-03-14 05:16:02 -03:00
8e3f48837d chore: organize io switch statements 2022-03-13 07:50:19 -03:00
025f295c08 fix: mirror SRAM
SRAM is mirrored in 64K chunks
TODO: According to GBATEK SRAM chips are 32K and mirrored
2022-03-13 05:53:32 -03:00
017ec407f5 chore: don't panic on unknown bus and io writes/reads
This will lead to emulation bugs due to devices I've yet to implement but by
doing this a lot of games become playable "by default" such as Doom or
Kirby: Nightmare in Dream Land.

When implementing feature and/or debuggin make sure to set:
panic_on_und_bus and panic_on_und_io to true so that the emu crashes
on unknown reads/writes
2022-03-13 05:39:09 -03:00
4a76611fca feat: implement Timers 2022-03-13 05:35:01 -03:00
cb10dfbdfd fix: implement sprite coord overflow behaviour 2022-03-12 03:46:41 -04:00
0c50ef1e6d fix: resolve issues with sprite mirroring 2022-03-11 23:52:56 -04:00
05e67da181 feat: Implement MVP of Mode 0 Sprites 2022-03-11 01:43:47 -04:00
f1df3d6615 chore: clean up io 2022-03-04 22:55:04 -04:00
c5b4b51ae0 feat: fix tile flipping issue 2022-03-03 03:08:35 -04:00
2e4854c2ff chore: add some type definitions for sprites 2022-03-03 02:10:33 -04:00
85f0b13f4a feat: improve DMA Transfer support 2022-03-03 02:10:29 -04:00
dccd00782b chore(ppu): resolve integer overflow regression 2022-03-02 23:15:10 -04:00
3d8c944bcc feat(ppu): implement bg priority and transparency 2022-03-02 01:39:05 -04:00
90302d1c52 chore: update README.md 2022-03-01 21:30:29 -04:00
cb4d3a9a51 chore: replace unnecessarily complex sign extension implementation 2022-02-28 20:38:50 -04:00
ddb68a7952 feat: pass beeg yoshi 2022-02-28 18:24:24 -04:00
97de5d1a96 fix: palette id is a u16 not a u8 2022-02-28 17:32:10 -04:00
d6ef53fd67 feat: DMA Transfer MVP 2022-02-28 12:34:00 -06:00
b65f833b28 feat(ppu): implement transparency + backdrop in mode 0 2022-02-26 18:33:16 -06:00
ac0486be1b chore(io): replace some bitfields with enums 2022-02-24 17:20:23 -06:00
441ebc38c7 fix: better emulate behaviour of IO reads 2022-02-24 17:20:20 -06:00
be2dfb379a chore: document select unimplmented I/O registers
These registers are written to / read from Kirby: Nightmare in Dream Land
2022-02-22 17:14:30 -06:00
bc66be6c06 feat: impelement a barebones SRAM 2022-02-22 17:14:26 -06:00
5368ff912d feat: pass retAddr.gba 2022-02-21 15:34:46 -06:00
c2cf2d2965 feat: implement Hblank and Vcount Interrupts
Also implemented unique behaviour when writing to IF
2022-02-21 14:45:47 -06:00
e5ab8b51a9 chore: improve Bus log + panic messages 2022-02-19 11:48:43 -05:00
c767e88e8d chore: improve io.zig 2022-02-19 11:48:17 -05:00
9e2e8c3d1a feat: implement mirroring for IWRAM EWRAM, OAM and PALRAM
Also realized I confused IWRAM and EWRAM. This is also fixed
TODO: Implemnt Mirroring for VRRAM
2022-02-19 10:08:31 -05:00
e426f2459e fix: resolve integer overflow in BG0 Drawing 2022-02-19 06:55:30 -04:00
3746cf6025 chore: don't panic on 32-bit I/O 2022-02-19 06:45:39 -04:00
f6c8d7ca07 chore: stub CPU HALTing 2022-02-17 00:27:34 -04:00
07343efdf3 chore: correct logic errors in map size 1 and 3 2022-02-16 23:49:08 -04:00
4018f3875b chore: properly write to VOFS and HOFS in 32-bit bus 2022-02-16 23:23:41 -04:00
034f2e8d1d feat: implement hofs and vofs on io bus 2022-02-16 04:29:04 -04:00
d275a4890f feat: implement scrolling 2022-02-16 03:37:25 -04:00
ce97a52868 feat: add support for multiple BGs in Mode 0 2022-02-16 03:27:06 -04:00
d2d4667f7b feat: document mode 0 2022-02-16 03:05:19 -04:00
5835b509e4 feat: Mode 0 MVP 2022-02-16 02:27:15 -04:00
338122ed43 chore: use zig slices for fun 2022-02-13 05:28:56 -04:00
e5a76a3c02 chore: give DISPCNT DISPSTAT and VCOUNT to PPU struct 2022-02-13 04:28:15 -04:00
31fa06ac4a chore: give io read/write functions access to the entire Bus 2022-02-13 04:13:06 -04:00
ec25a9aae4 feat: implement BG Scrolling Registers 2022-02-13 04:04:10 -04:00
b238a3e8f3 feat: impelemnt BG0,1,2CNT and IF 2022-02-13 03:23:09 -04:00
aca7fc9a60 feat: implement OAM 2022-02-13 02:30:02 -04:00
d2740e30d9 chore: squash bugs preventing swi_demo.gba from working 2022-02-13 02:29:53 -04:00
8ab7a178c1 chore(cpu): reimplement bank switching logic 2022-02-12 04:33:32 -04:00
d897c2fdcc fix: don't mask away MSB in THUMB.5 add 2022-02-12 03:23:55 -04:00
783706193b fix: properly decode format 11 instructions 2022-02-12 03:13:38 -04:00
b93bd53529 chore: make use of scoped logging 2022-02-11 01:33:33 -04:00
f9013cf9db Merge branch 'main' of ssh://musuka.dev:2222/paoda/zba 2022-02-10 23:02:35 -04:00
eaac49cebb chore: update README 2022-02-10 21:21:34 -04:00
ee27053db3 chore: remove TODOs and some useless imports 2022-02-06 19:07:23 -04:00
7441dd151c fix: improper condition check and initialization of register 2022-02-06 18:41:16 -04:00
bbd4447734 fix(cpu): force align thumb and arm block data transfers 2022-02-06 17:08:12 -04:00
225c0f7d55 feat: pass arm.gba 2022-02-06 05:06:25 -04:00
fcde905ae1 chore: reimplement ARM LDM/STM 2022-02-06 04:34:45 -04:00
798987eba0 chore: improve arm ldm/stm 2022-02-05 23:29:34 -04:00
adfd501fc4 fix(cpu): force-align SWP reads and writes 2022-02-05 23:18:23 -04:00
9581e3b3cb fix: force-align ARM STRH reads 2022-02-05 23:09:13 -04:00
1b9ab1f1d7 fix: implement the same LDRSH logic as THUMB LDRSH 2022-02-05 23:09:02 -04:00
c52dc5adb1 fix: PC is 12 ahead when it is rd in str and strb 2022-02-05 21:42:04 -04:00
7bfb87a859 fix: listen to my past self
By deleting this line I go from test 234 to test 355 in arm.gba
2022-02-05 21:35:26 -04:00
aec189ac6a chore: update SDL.zig 2022-02-05 21:07:15 -04:00
0aece06107 chore: dont use std.mem.bytesToValue
the stdlib accounts for endianness, which isn't something we want.
2022-02-05 21:05:08 -04:00
2842345111 chore: remove unnecessary @as calls 2022-02-05 21:01:39 -04:00
aa6f3c7a92 feat: pass thumb.gba 2022-02-05 20:39:15 -04:00
3ae24d6977 chore: account for empty rlist in THUMB LDM/STM 2022-02-05 18:03:39 -04:00
0a22730479 fix(cpu): handle edge case in LDRSH 2022-02-05 17:12:25 -04:00
166bc6fc6d chore: specify which compiler this project is built with 2022-02-05 16:28:06 -04:00
bf4207ba8c chore: reorganize util.zig 2022-02-05 15:55:12 -04:00
78080b4682 fix: zero initialize all allocated memory 2022-02-05 15:54:53 -04:00
9159270e87 chore: don't commit *.sh files 2022-02-05 15:53:30 -04:00
428eff1468 Revert "fix: allow for 32-bit reads to KEYINPUT"
This reverts commit 3a51707280.
2022-02-05 14:52:49 -04:00
5ec8d4b0a5 fix: resolve decoding mixup in THUMB format 8 instructions 2022-02-05 14:50:34 -04:00
3a51707280 fix: allow for 32-bit reads to KEYINPUT 2022-02-05 13:47:05 -04:00
b4d20fb264 chore: refactor ARMv4 decoding 2022-02-05 13:46:55 -04:00
746158043d chore: add more debug information to CPU panic method 2022-02-05 13:46:24 -04:00
25300c8a9f chore: give more descriptive panic messages when changing mode fails 2022-02-04 16:54:57 -04:00
27d0ba8c7e chore: clean up THUMB instruction decoding 2022-02-04 15:57:46 -04:00
2f74b61f2e feat: parse cartridge header 2022-02-04 05:54:06 -04:00
b233981a34 feat: rename ARM and THUMB SWI functions 2022-02-04 04:34:47 -04:00
1b8db0c427 chore: group THUMB and select ARM instructions together (same file) 2022-02-04 04:18:20 -04:00
3e4f9eddb2 feat: integrate zig-clap with ZBA 2022-02-04 03:12:35 -04:00
6ab4610a81 fix(cpu): properly decode format 7 and 8 2022-02-03 01:29:18 -04:00
91384a7c68 fix(cpu): resolve edge cases in THUMB Format 5 2022-02-03 00:55:57 -04:00
c6bb4bf8e1 fix(cpu): allow for select values to overflow
FuzzARM found these operations which panicked, when they should
have overflowed. These are now fixed

n = 8000
2022-02-02 22:49:33 -04:00
800ed6f1a7 feat(cpu): implement format 13
While bugs do exist, at this point all THUMB and ARMv4 instructions
have been implemented! Yay!
2022-02-02 22:31:21 -04:00
027e4fb57b feat(cpu): implement THUMB format 17 2022-02-02 22:31:08 -04:00
1378c809e6 feat(cpu): implement THUMB format11 2022-02-02 22:30:46 -04:00
33399e9517 chore: update to latest zig nightly 2022-02-02 21:26:12 -04:00
99492a6782 chore: progress towards passing ldr/str thumb in armwrestler 2022-02-02 21:14:46 -04:00
8b574efe85 fix(cpu): properly negate in NEG 2022-02-02 20:12:20 -04:00
9fd03d2a92 fix(cpu): reimplement THUMB offset shifts 2022-02-02 20:12:07 -04:00
9affe01da8 fix(cpu): op == 0b00 decodes to add in format 5 2022-02-02 18:58:06 -04:00
784bc81a4a fix(cpu): account for overflow in THUMB alu MUL 2022-02-02 18:57:33 -04:00
045c98de1f chore: use if-else when decoding THUMB instructions 2022-02-02 18:48:47 -04:00
c2901ee0d8 fix(cpu): account for rn in rlist in block data transfer 2022-02-02 17:35:33 -04:00
d95efa5b12 feat: implement LDM/STM behaviour when S is set 2022-02-02 16:12:47 -04:00
237beb9caa feat(cpu): Pass all LDR/STR ARMwrestler tests 2022-02-02 14:07:18 -04:00
30bad76e44 feat(cpu): decode and implement all necessary ARM CPU instructions 2022-02-02 12:06:41 -04:00
c34c2ee6eb feat(cpu): implement ARM SWP and SWPB 2022-02-02 08:44:33 -04:00
6c7934be70 fix: resolve off by n * 2 when accessing Palette during BG Mode 4 2022-02-01 22:56:53 -04:00
48017b45f5 feat(cpu): Implement Multiply Long ARM instructions 2022-02-01 22:09:38 -04:00
28c81f79ae fix: no buttons are pressed by default 2022-02-01 20:52:01 -04:00
a80600156d feat(cpu): implement format 18 THUMB instructions 2022-02-01 19:12:01 -04:00
0d7600ed7a chore: more detailed panic message 2022-02-01 19:11:56 -04:00
ca41f6a85c feat(cpu): implement format 10 THUMB instructions 2022-02-01 17:56:11 -04:00
85927a943f feat(cpu): implement SWP 2022-02-01 16:30:55 -04:00
b27bf4a85c fix(cpu): perform MUL with u64s, throw away upper 32 bits 2022-02-01 16:15:08 -04:00
b07eb22b86 feat: implement keyboard input 2022-02-01 16:11:59 -04:00
f6e4b4931f chore: don't panic on unsupported BG mode 2022-01-30 02:43:11 -04:00
e35d81eeb8 chore: tempoarily disable fps counter 2022-01-30 02:42:01 -04:00
8c248ffb11 chore: zero-initialize VRAM 2022-01-30 02:39:16 -04:00
b0332e6eb8 chore: stub KeyInput I/O register 2022-01-30 02:38:29 -04:00
dd632975f8 fix(cpu): properly decode multiply instructions 2022-01-30 02:16:12 -04:00
a459d4b433 feat(cpu): implement ARM multiply instructions 2022-01-30 02:04:24 -04:00
6c008ce950 fix: allow 32-bit writes to DISPCNT 2022-01-30 01:42:54 -04:00
8d1df7ae43 fix(cpu): properly decode ldm stm thumb instructions 2022-01-30 01:12:34 -04:00
6ffaf12804 fix(cpu): properly decode THUMB PUSH and POP at comptime 2022-01-30 00:16:13 -04:00
dc6931639f fix(cpu): don't ignore 11th bit of THUMB BL offset 2022-01-29 23:53:40 -04:00
e18f10126e feat(cpu): implement thumb push / pop and stub format 13 thumb instrs 2022-01-29 23:22:10 -04:00
0598ba402d feat(cpu): implement THUMB format 9 loads / stores 2022-01-29 22:34:40 -04:00
b8a9aaee86 fix(cpu): resolve issues with unexpected PC value in THUMB 2022-01-29 22:07:36 -04:00
00058f6094 feat(cpu): implement THUMB ldmia stmia 2022-01-29 21:10:14 -04:00
2dde47318c chore: implement THUMB format 4 instructions 2022-01-29 20:42:13 -04:00
ae4023e51c chore: dedup code in THUMB instructions 2022-01-29 20:05:27 -04:00
bce067557f chore: refactor and genericize ARM data processing calculations 2022-01-29 19:40:58 -04:00
e0acabf050 chore: relocate barrel_shifter zig file 2022-01-29 18:52:16 -04:00
599e068c7e feat(cpu): implement format2 THUMB instructions 2022-01-29 18:46:27 -04:00
4ca65caef0 feat(cpu): implement format19 THUMB instructions 2022-01-29 18:25:50 -04:00
0c49bf2288 chore: account for THUMB BL instruction when mimicking mGBA logs 2022-01-29 18:14:00 -04:00
44dbdba48c feat(cpu): implement format16 THUMB instructions 2022-01-29 17:44:04 -04:00
d85e0c8d05 feat(cpu): implement format 1 THUMB instructions 2022-01-29 17:29:30 -04:00
995633e9e8 fix: dont close file handle early 2022-01-29 01:18:45 -04:00
cfbd292edc feat(cpu): implement format 6 THUMB instructions 2022-01-29 01:18:41 -04:00
95efb3f35d chore: rename title 2022-01-28 23:27:03 -04:00
6a6dccf4d8 chore: refactor GBA Display Timings
This change should reflect that the Hblank bit of DISPSTAT is toggled on all scanlines
while also ensuring that the Vblank bit is set on all Vblank scanlines
2022-01-28 22:58:19 -04:00
ad1db4dc2e chore: move a single statement lol 2022-01-28 22:57:48 -04:00
19359f7ee4 chore: mark indexing methods as inline 2022-01-28 17:11:29 -04:00
24f0922f86 feat: create emulator thread 2022-01-28 16:33:38 -04:00
b1cc985230 chore: disable logging by default 2022-01-25 18:20:30 -04:00
e5c8f0ce07 chore: revert fastboot changes 2022-01-25 18:20:01 -04:00
fbc5b309b0 chore: binary logging + file logging + DP chanes + fastBoot changes 2022-01-25 18:18:52 -04:00
899a9ead76 chore: ignore .bin files 2022-01-25 12:58:25 -04:00
540fbf739a chore: rename skipBios to fastBoot 2022-01-25 11:15:17 -04:00
0546b1c308 chore: set correct values for select banked registers on fast boot 2022-01-25 11:14:15 -04:00
997dc1314c feat(cpu): implement SWI 2022-01-25 10:34:21 -04:00
1456d0f317 chore(bios): allow reading from BIOS 2022-01-25 10:32:28 -04:00
6257418405 fix(cpu): interim solution to weird program counter behaviour on illegal tst instruction 2022-01-25 09:23:32 -04:00
985fefb9f6 chore(cpu): implement behaviour for undefined test instruction 2022-01-25 08:05:42 -04:00
95dd3e3df8 fix(cpu): fix PC offset when barrel shifter and bit 4 of DP is set 2022-01-24 17:52:01 -04:00
038c0a9283 chore: remove reccomended extension 2022-01-23 23:13:16 -04:00
702ff288d8 fix(cpu): implement S set + rd == 15 case for data processing 2022-01-19 07:46:49 -04:00
bf36a23722 feat(cpu): implement banked registers 2022-01-19 07:29:49 -04:00
fc5a3460dd fix(cpu): improve MRS and MSR instructions 2022-01-18 20:17:00 -04:00
6177927049 feat(cpu): implement CMN 2022-01-18 15:09:25 -04:00
903b75c7c4 fix(barrel_shifter): fix PC being 1 word ahead in barrel shifter 2022-01-18 15:08:29 -04:00
8d786cbe25 feat(cpu): Implement RSC 2022-01-18 14:46:57 -04:00
212bc9e11d feat(cpu): implement RSB 2022-01-18 14:36:03 -04:00
63a57ac954 feat(cpu): implement BIC 2022-01-18 14:28:47 -04:00
85dae5e1d7 feat(cpu): implement EOR 2022-01-18 14:27:07 -04:00
6189bf0315 feat(cpu): implement ADD 2022-01-18 14:25:29 -04:00
2f3213f693 feat(cpu): implement fix for ADC and implement SBC 2022-01-18 14:20:01 -04:00
a62cd9aa40 chore(barrel_shifter): remove panic from ASR 2022-01-18 14:19:58 -04:00
25c57a4cc7 fix(barrel_shifter): should not modify cpsr when amount == 0 2022-01-18 13:30:41 -04:00
a7a44c4463 chore(cpu): refactor the barrel shifter once again 2022-01-17 15:55:55 -04:00
d4d2fedfbe feat(cpu): implement ADC
ADC interacting w/ the Barrel Shifter is not working though
2022-01-17 14:29:34 -04:00
483e149b32 feat(cpu): implement RRX for Barrel Shifter 2022-01-17 14:19:40 -04:00
85ffdf44f5 feat(cpu): implement SUB in THUMB format 3 2022-01-17 11:36:02 -04:00
9098a55ae3 feat(cpu): implement ARM SUB in data processing 2022-01-17 11:35:41 -04:00
c0d956ea95 feat(cpu): implement MVN 2022-01-17 11:30:59 -04:00
1025500407 chore(cpu): refactor barrel shifter 2022-01-17 11:17:04 -04:00
d05a924420 fix(cpu): use barrel shifter in data processing immediates 2022-01-17 11:02:34 -04:00
2a416fb2c6 feat(cpu): implement format 12 thumb instructions 2022-01-17 10:07:50 -04:00
ea5f0ce552 feat(cpu): implement some already decoded format 3 instructions 2022-01-17 09:29:11 -04:00
e55d2dc323 feat(cpu): implement THUMB format 5 instructions 2022-01-17 09:28:46 -04:00
3037407ebe chore: mgba log now supports printing THUMB instructions 2022-01-17 07:18:44 -04:00
1915d98bdd feat(cpu): implement like 1 THUMB instruction 2022-01-16 12:46:59 -04:00
4606a1ab25 chore: distinguish between undefined ARM and THUMB instr 2022-01-14 05:30:32 -04:00
0cf052838d chore(cpu): lay groundwork for THUMB instruction decoding and execution 2022-01-14 05:23:16 -04:00
ae37b1218b chore(cpu): refactor ARM functions to make room for THUMB 2022-01-14 04:26:09 -04:00
070322064d fix(cpu): fix conditions for GT cond 2022-01-14 04:19:54 -04:00
37bd6758fb fix(cpu): fix imm value calculation in MSR 2022-01-14 04:08:04 -04:00
7f6ab626d9 fix(cpu): resolve off-by-one error when executing LDM 2022-01-14 03:43:03 -04:00
77dba68a0b feat(cpu): implement branch and exchange
If I want to continue with armwrestler, I'll have to implement
THUMB instructions now
2022-01-12 07:20:24 -04:00
7adc7c8802 fix(cpu): make Data Processing instructions r15-aware 2022-01-12 07:20:24 -04:00
229f7c3388 fix(cpu): make LDRH and STRH aware of r15 2022-01-12 07:20:21 -04:00
5812b9713c fix(cpu): account for r15 in LDR and STR instructions 2022-01-12 06:16:59 -04:00
98c5803208 fix(cpu): flip two branches in PSR Transfer execution 2022-01-12 06:16:34 -04:00
74abd3df4d feat(cpu): implement MSR and MRS 2022-01-12 04:48:57 -04:00
7531af7f2b feat(cpu): stub PSR Transfer instructions 2022-01-12 03:40:51 -04:00
1c173eb4b8 chore(io): implement IE and IME 2022-01-12 02:19:26 -04:00
769c67b9d4 chore: remove some magic constants 2022-01-12 00:46:20 -04:00
3596caf106 Merge branch 'main' of ssh://musuka.dev:2222/paoda/zba 2022-01-11 02:36:37 -04:00
3be084cb82 chore: ignores for building on windows 2022-01-11 01:42:26 -04:00
c1be53bcb2 fix(bus): remove accidental recursion 2022-01-10 21:25:45 -04:00
072a66cfdb fix(cpu): write results of ORR to destination register 2022-01-10 10:56:41 -04:00
ed3bdd90fb feat(cpu): implement TEQ 2022-01-10 08:09:02 -04:00
e9c1c94cae feat(cpu): Implement ORR 2022-01-10 08:06:00 -04:00
0f08ad05be feat(bus): implement IWRAM and EWRAM 2022-01-10 07:59:21 -04:00
fd5006b29d fix(ppu): properly access Mode 4 palette 2022-01-10 07:23:54 -04:00
22b95b2a74 feat(cpu): refactor LDM/STM 2022-01-10 06:51:32 -04:00
7d79a0bee2 feat(cpu): implement LDM/STM 2022-01-10 06:27:36 -04:00
6c0651ca08 chore(io): DISPSTAT bits 3 and 4 better match GBATEK documentation 2022-01-10 06:26:42 -04:00
0d8c5e6882 fix(cpu): fix off-by-word bug in BL 2022-01-10 06:26:02 -04:00
89a8fe403b feat(bus): have VCOUNT be addressable on the bus 2022-01-10 03:35:28 -04:00
7c5d2d2389 feat(ppu): implement Mode 4
Implementation is not tested. Pending on LDM and STM so that I can
run beeg.gba
2022-01-10 03:35:24 -04:00
2467b94dbd chore(io): rename some io bitfield fields 2022-01-10 02:13:25 -04:00
0d4c850218 chore: remove premature inlines 2022-01-10 01:24:14 -04:00
bbe2ecfa53 chore: add FPS counter 2022-01-10 01:22:55 -04:00
c54145ce3c chore: improve code clarity 2022-01-09 23:34:33 -04:00
ead6d1ce49 feat(ppu): improve timings + implement BG mode 3 bitmap 2022-01-09 22:16:34 -04:00
80 changed files with 15110 additions and 1168 deletions

59
.github/workflows/main.yml vendored Normal file
View File

@@ -0,0 +1,59 @@
name: Nightly
on:
push:
paths:
- "**.zig"
branches:
- main
schedule:
- cron: '0 0 * * *'
workflow_dispatch:
jobs:
build:
strategy:
matrix:
# os: [ubuntu-latest, windows-latest, macos-latest]
os: [ubuntu-latest, windows-latest]
runs-on: ${{matrix.os}}
steps:
- uses: goto-bus-stop/setup-zig@v2
with:
version: master
- name: prepare-linux
if: runner.os == 'Linux'
run: |
sudo apt-get update
sudo apt-get install libsdl2-dev
- name: prepare-windows
if: runner.os == 'Windows'
run: |
vcpkg integrate install
vcpkg install sdl2:x64-windows
git config --global core.autocrlf false
- name: prepare-macos
if: runner.os == 'macOS'
run: |
brew install sdl2
- uses: actions/checkout@v3
with:
submodules: recursive
- name: build
run: zig build -Doptimize=ReleaseSafe -Dcpu=baseline
- name: upload
uses: actions/upload-artifact@v3
with:
name: zba-${{matrix.os}}
path: zig-out/bin
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with:
submodules: recursive
- uses: goto-bus-stop/setup-zig@v2
with:
version: master
- run: zig fmt src/**/*.zig

14
.gitignore vendored
View File

@@ -1,6 +1,14 @@
/.vscode
/bin
/zig-cache
/zig-out
**/zig-cache
**/zig-out
/docs
**/*.log
**/*.log
**/*.bin
# Build on Windows
/.build_config
/lib/SDL2
# Any Custom Scripts for Debugging purposes
*.sh

15
.gitmodules vendored
View File

@@ -1,3 +1,18 @@
[submodule "lib/SDL.zig"]
path = lib/SDL.zig
url = https://github.com/MasterQ32/SDL.zig
[submodule "lib/zig-clap"]
path = lib/zig-clap
url = https://github.com/Hejsil/zig-clap
[submodule "lib/known-folders"]
path = lib/known-folders
url = https://github.com/ziglibs/known-folders
[submodule "lib/zig-datetime"]
path = lib/zig-datetime
url = https://github.com/frmdstryr/zig-datetime
[submodule "lib/zig-toml"]
path = lib/zig-toml
url = https://github.com/aeronavery/zig-toml
[submodule "lib/zba-gdbstub"]
path = lib/zba-gdbstub
url = https://git.musuka.dev/paoda/zba-gdbstub

View File

@@ -1,9 +0,0 @@
{
"recommendations": [
"augusterame.zls-vscode",
"tiehuis.zig",
"usernamehw.errorlens",
"vadimcn.vscode-lldb",
"dan-c-underwood.arm"
]
}

116
README.md Normal file
View File

@@ -0,0 +1,116 @@
# ZBA (working title)
A Game Boy Advance Emulator written in Zig ⚡!
## Scope
I'm hardly the first to write a Game Boy Advance Emulator nor will I be the last. This project isn't going to compete with the GOATs like [mGBA](https://github.com/mgba-emu) or [NanoBoyAdvance](https://github.com/nba-emu/NanoBoyAdvance). There aren't any interesting ideas either like in [DSHBA](https://github.com/DenSinH/DSHBA).
This is a simple (read: incomplete) for-fun long-term project. I hope to get "mostly there", which to me means that I'm not missing any major hardware features and the set of possible improvements would be in memory timing or in UI/UX. With respect to that goal, here's what's outstanding:
### TODO
- [x] Affine Sprites
- [ ] Windowing (see [this branch](https://git.musuka.dev/paoda/zba/src/branch/window))
- [ ] Audio Resampler (Having issues with SDL2's)
- [x] Immediate Mode GUI (see [this branch](https://git.musuka.dev/paoda/zba/src/branch/imgui))
- [ ] Refactoring for easy-ish perf boosts
## Usage
As it currently exists, ZBA is run from the terminal. In your console of choice, type `./zba --help` to see what you can do.
I typically find myself typing `./zba -b ./bin/bios.bin ./bin/test/suite.gba` to see how badly my "cool new feature" broke everything else.
Need a BIOS? Why not try using the open-source [Cult-Of-GBA BIOS](https://github.com/Cult-of-GBA/BIOS) written by [fleroviux](https://github.com/fleroviux) and [DenSinH](https://github.com/DenSinH)?
Finally it's worth noting that ZBA uses a TOML config file it'll store in your OS's data directory. See `example.toml` to learn about the defaults and what exactly you can mess around with.
## Tests
GBA Tests | [jsmolka](https://github.com/jsmolka/)
--- | ---
`arm.gba`, `thumb.gba` | PASS
`memory.gba`, `bios.gba` | PASS
`flash64.gba`, `flash128.gba` | PASS
`sram.gba` | PASS
`none.gba` | PASS
`hello.gba`, `shades.gba`, `stripes.gba` | PASS
`nes.gba` | PASS
GBARoms | [DenSinH](https://github.com/DenSinH/)
--- | ---
`eeprom-test`, `flash-test` | PASS
`midikey2freq` | PASS
`swi-tests-random` | FAIL
gba_tests | [destoer](https://github.com/destoer/)
--- | ---
`cond_invalid.gba` | PASS
`dma_priority.gba` | PASS
`hello_world.gba` | PASS
`if_ack.gba` | PASS
`line_timing.gba` | FAIL
`lyc_midline.gba` | FAIL
`window_midframe.gba` | FAIL
GBA Test Collection | [ladystarbreeze](https://github.com/ladystarbreeze)
--- | ---
`retAddr.gba` | PASS
`helloWorld.gba` | PASS
`helloAudio.gba` | PASS
FuzzARM | [DenSinH](https://github.com/DenSinH/)
--- | ---
`main.gba` | PASS
arm7wrestler GBA Fixed | [destoer](https://github.com/destoer)
--- | ---
`armwrestler-gba-fixed.gba` | PASS
## Resources
- [GBATEK](https://problemkaputt.de/gbatek.htm)
- [TONC](https://coranac.com/tonc/text/toc.htm)
- [ARM Architecture Reference Manual](https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/third-party/ddi0100e_arm_arm.pdf)
- [ARM7TDMI Data Sheet](https://www.dca.fee.unicamp.br/cursos/EA871/references/ARM/ARM7TDMIDataSheet.pdf)
## Compiling
Most recently built on Zig [v0.11.0-dev.1580+a5b34a61a](https://github.com/ziglang/zig/tree/a5b34a61a)
### Dependencies
Dependency | Source
--- | ---
SDL.zig | <https://github.com/MasterQ32/SDL.zig>
zig-clap | <https://github.com/Hejsil/zig-clap>
known-folders | <https://github.com/ziglibs/known-folders>
zig-toml | <https://github.com/aeronavery/zig-toml>
zig-datetime | <https://github.com/frmdstryr/zig-datetime>
`bitfields.zig` | [https://github.com/FlorenceOS/Florence](https://github.com/FlorenceOS/Florence/blob/aaa5a9e568/lib/util/bitfields.zig)
`gl.zig` | <https://github.com/MasterQ32/zig-opengl>
Use `git submodule update --init` from the project root to pull the git relevant git submodules
Be sure to provide SDL2 using:
- Linux: Your distro's package manager
- macOS: ¯\\\_(ツ)_/¯ (try [this formula](https://formulae.brew.sh/formula/sdl2)?)
- Windows: [`vcpkg`](https://github.com/Microsoft/vcpkg) (install `sdl2:x64-windows`)
`SDL.zig` will provide a helpful compile error if the zig compiler is unable to find SDL2.
Once you've got all the dependencies, execute `zig build -Doptimize=ReleaseSafe`. The executable is located at `zig-out/bin/`.
## Controls
Key | Button
--- | ---
<kbd>X</kbd> | A
<kbd>Z</kbd> | B
<kbd>A</kbd> | L
<kbd>S</kbd> | R
<kbd>Return</kbd> | Start
<kbd>RShift</kbd> | Select
Arrow Keys | D-Pad

View File

@@ -1,30 +1,55 @@
const std = @import("std");
const builtin = @import("builtin");
const Sdk = @import("lib/SDL.zig/Sdk.zig");
const Gdbstub = @import("lib/zba-gdbstub/build.zig");
pub fn build(b: *std.build.Builder) void {
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
// Minimum Zig Version
const min_ver = std.SemanticVersion.parse("0.11.0-dev.1580+a5b34a61a") catch return; // https://github.com/ziglang/zig/commit/a5b34a61a
if (builtin.zig_version.order(min_ver).compare(.lt)) {
std.log.err("{s}", .{b.fmt("Zig v{} does not meet the minimum version requirement. (Zig v{})", .{ builtin.zig_version, min_ver })});
std.os.exit(1);
}
const target = b.standardTargetOptions(.{});
const optimize = b.standardOptimizeOption(.{});
// Standard release options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall.
const mode = b.standardReleaseOptions();
const exe = b.addExecutable(.{
.name = "zba",
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
const exe = b.addExecutable("zba", "src/main.zig");
exe.setMainPkgPath("."); // Necessary so that src/main.zig can embed example.toml
// Known Folders (%APPDATA%, XDG, etc.)
exe.addAnonymousModule("known_folders", .{ .source_file = .{ .path = "lib/known-folders/known-folders.zig" } });
// DateTime Library
exe.addAnonymousModule("datetime", .{ .source_file = .{ .path = "lib/zig-datetime/src/main.zig" } });
// Bitfield type from FlorenceOS: https://github.com/FlorenceOS/
exe.addPackage(.{ .name = "bitfield", .path = .{ .path = "lib/util/bitfield.zig" } });
exe.addAnonymousModule("bitfield", .{ .source_file = .{ .path = "lib/util/bitfield.zig" } });
// Argument Parsing Library
exe.addAnonymousModule("clap", .{ .source_file = .{ .path = "lib/zig-clap/clap.zig" } });
// TOML Library
exe.addAnonymousModule("toml", .{ .source_file = .{ .path = "lib/zig-toml/src/toml.zig" } });
// OpenGL 3.3 Bindings
exe.addAnonymousModule("gl", .{ .source_file = .{ .path = "lib/gl.zig" } });
// gdbstub
Gdbstub.link(exe);
// Zig SDL Bindings: https://github.com/MasterQ32/SDL.zig
const sdk = Sdk.init(b);
const sdk = Sdk.init(b, null);
sdk.link(exe, .dynamic);
exe.addModule("sdl2", sdk.getNativeModule());
exe.addPackage(sdk.getNativePackage("sdl2"));
exe.setTarget(target);
exe.setBuildMode(mode);
exe.install();
const run_cmd = exe.run();
@@ -36,9 +61,11 @@ pub fn build(b: *std.build.Builder) void {
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
const exe_tests = b.addTest("src/main.zig");
exe_tests.setTarget(target);
exe_tests.setBuildMode(mode);
const exe_tests = b.addTest(.{
.root_source_file = .{ .path = "src/main.zig" },
.target = target,
.optimize = optimize,
});
const test_step = b.step("test", "Run unit tests");
test_step.dependOn(&exe_tests.step);

25
example.toml Normal file
View File

@@ -0,0 +1,25 @@
[Host]
# Using nearest-neighbour scaling, how many times the native resolution
# of the game bow should the screen be?
win_scale = 3
# Enable VSYNC on the UI thread
vsync = true
# Mute ZBA
mute = false
[Guest]
# Sync Emulation to Audio
audio_sync = true
# Sync Emulation to Video
video_sync = true
# Force RTC support
force_rtc = false
# Skip BIOS
skip_bios = false
[Debug]
# Enable detailed CPU logs
cpu_trace = false
# When false and builtin.mode == .Debug, ZBA will panic
# on unknown I/O reads
unhandled_io = true

5053
lib/gl.zig Normal file

File diff suppressed because it is too large Load Diff

1
lib/known-folders Submodule

Submodule lib/known-folders added at 53fe3b676f

View File

@@ -14,7 +14,7 @@ fn PtrCastPreserveCV(comptime T: type, comptime PtrToT: type, comptime NewT: typ
fn BitType(comptime FieldType: type, comptime ValueType: type, comptime shamt: usize) type {
const self_bit: FieldType = (1 << shamt);
return struct {
return extern struct {
bits: Bitfield(FieldType, shamt, 1),
pub fn set(self: anytype) void {
@@ -63,7 +63,7 @@ pub fn Bitfield(comptime FieldType: type, comptime shamt: usize, comptime num_bi
const ValueType = std.meta.Int(.unsigned, num_bits);
return struct {
return extern struct {
dummy: FieldType,
fn field(self: anytype) PtrCastPreserveCV(@This(), @TypeOf(self), FieldType) {

1
lib/zba-gdbstub Submodule

Submodule lib/zba-gdbstub added at acb59994fc

1
lib/zig-clap Submodule

Submodule lib/zig-clap added at 861de651f3

1
lib/zig-datetime Submodule

Submodule lib/zig-datetime added at bf0ae0c27c

1
lib/zig-toml Submodule

Submodule lib/zig-toml added at 016b8bcf98

View File

@@ -1,153 +0,0 @@
const std = @import("std");
const Bios = @import("bus/Bios.zig");
const GamePak = @import("bus/GamePak.zig");
const Io = @import("bus/io.zig").Io;
const Ppu = @import("ppu.zig").Ppu;
const Scheduler = @import("scheduler.zig").Scheduler;
const Allocator = std.mem.Allocator;
pak: GamePak,
bios: Bios,
ppu: Ppu,
io: Io,
pub fn init(alloc: Allocator, sched: *Scheduler, path: []const u8) !@This() {
return @This(){
.pak = try GamePak.init(alloc, path),
.bios = try Bios.init(alloc, "./bin/gba_bios.bin"), // TODO: don't hardcode this + bundle open-sorce Boot ROM
.ppu = try Ppu.init(alloc, sched),
.io = Io.init(),
};
}
pub fn deinit(self: @This()) void {
self.pak.deinit();
self.bios.deinit();
self.ppu.deinit();
}
pub fn read32(self: *const @This(), addr: u32) u32 {
return switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => self.bios.get32(@as(usize, addr)),
0x0200_0000...0x0203_FFFF => std.debug.panic("[Bus:32] read from 0x{X:} in IWRAM", .{addr}),
0x0300_0000...0x0300_7FFF => std.debug.panic("[Bus:32] read from 0x{X:} in EWRAM", .{addr}),
0x0400_0000...0x0400_03FE => self.read32(addr),
// Internal Display Memory
0x0500_0000...0x0500_03FF => self.ppu.palette.get32(@as(usize, addr - 0x0500_0000)),
0x0600_0000...0x0601_7FFF => self.ppu.vram.get32(@as(usize, addr - 0x0600_0000)),
0x0700_0000...0x0700_03FF => std.debug.panic("[Bus:32] read from 0x{X:} in OAM", .{addr}),
// External Memory (Game Pak)
0x0800_0000...0x09FF_FFFF => self.pak.get32(@as(usize, addr - 0x0800_0000)),
0x0A00_0000...0x0BFF_FFFF => self.pak.get32(@as(usize, addr - 0x0A00_0000)),
0x0C00_0000...0x0DFF_FFFF => self.pak.get32(@as(usize, addr - 0x0C00_0000)),
else => {
std.log.warn("[Bus:32] ZBA tried to read from 0x{X:}", .{addr});
return 0x0000_0000;
},
};
}
pub fn write32(self: *@This(), addr: u32, word: u32) void {
// TODO: write32 can write to GamePak Flash
switch (addr) {
// General Internal Memory
0x0200_0000...0x0203_FFFF => std.debug.panic("[Bus:32] wrote 0x{X:} to 0x{X:} in IWRAM", .{ word, addr }),
0x0300_0000...0x0300_7FFF => std.debug.panic("[Bus:32] wrote 0x{X:} to 0x{X:} in EWRAM", .{ word, addr }),
0x0400_0000...0x0400_03FE => std.debug.panic("[Bus:32] wrote 0x{X:} to 0x{X:} in I/O", .{ word, addr }),
// Internal Display Memory
0x0500_0000...0x0500_03FF => self.ppu.palette.set32(@as(usize, addr - 0x0500_0000), word),
0x0600_0000...0x0601_7FFF => self.ppu.vram.set32(@as(usize, addr - 0x0600_0000), word),
0x0700_0000...0x0700_03FF => std.debug.panic("[Bus:32] wrote 0x{X:} to 0x{X:} in OAM", .{ word, addr }),
else => std.log.warn("[Bus:32] ZBA tried to write 0x{X:} to 0x{X:}", .{ word, addr }),
}
}
pub fn read16(self: *const @This(), addr: u32) u16 {
return switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => self.bios.get16(@as(usize, addr)),
0x0200_0000...0x0203_FFFF => std.debug.panic("[Bus:16] read from 0x{X:} in IWRAM", .{addr}),
0x0300_0000...0x0300_7FFF => std.debug.panic("[Bus:16] read from 0x{X:} in EWRAM", .{addr}),
0x0400_0000...0x0400_03FE => self.io.read16(addr),
// Internal Display Memory
0x0500_0000...0x0500_03FF => self.ppu.palette.get16(@as(usize, addr - 0x0500_0000)),
0x0600_0000...0x0601_7FFF => self.ppu.vram.get16(@as(usize, addr - 0x0600_0000)),
0x0700_0000...0x0700_03FF => std.debug.panic("[Bus:16] read from 0x{X:} in OAM", .{addr}),
// External Memory (Game Pak)
0x0800_0000...0x09FF_FFFF => self.pak.get16(@as(usize, addr - 0x0800_0000)),
0x0A00_0000...0x0BFF_FFFF => self.pak.get16(@as(usize, addr - 0x0A00_0000)),
0x0C00_0000...0x0DFF_FFFF => self.pak.get16(@as(usize, addr - 0x0C00_0000)),
else => {
std.log.warn("[Bus:16] ZBA tried to read from 0x{X:}", .{addr});
return 0x0000;
},
};
}
pub fn write16(self: *@This(), addr: u32, halfword: u16) void {
// TODO: write16 can write to GamePak Flash
switch (addr) {
// General Internal Memory
0x0200_0000...0x0203_FFFF => std.debug.panic("[Bus:16] write 0x{X:} to 0x{X:} in IWRAM", .{ halfword, addr }),
0x0300_0000...0x0300_7FFF => std.debug.panic("[Bus:16] write 0x{X:} to 0x{X:} in EWRAM", .{ halfword, addr }),
0x0400_0000...0x0400_03FE => self.io.write16(addr, halfword),
// Internal Display Memory
0x0500_0000...0x0500_03FF => self.ppu.palette.set16(@as(usize, addr - 0x0500_0000), halfword),
0x0600_0000...0x0601_7FFF => self.ppu.vram.set16(@as(usize, addr - 0x0600_0000), halfword),
0x0700_0000...0x0700_03FF => std.debug.panic("[Bus:16] write 0x{X:} to 0x{X:} in OAM", .{ halfword, addr }),
else => std.log.warn("[Bus:16] ZBA tried to write 0x{X:} to 0x{X:}", .{ halfword, addr }),
}
}
pub fn read8(self: *const @This(), addr: u32) u8 {
return switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => self.bios.get8(@as(usize, addr)),
0x0200_0000...0x0203_FFFF => std.debug.panic("[Bus:8] read from 0x{X:} in IWRAM", .{addr}),
0x0300_0000...0x0300_7FFF => std.debug.panic("[Bus:8] read from 0x{X:} in EWRAM", .{addr}),
0x0400_0000...0x0400_03FE => self.io.read8(addr),
// Internal Display Memory
0x0500_0000...0x0500_03FF => self.ppu.palette.get8(@as(usize, addr - 0x0500_0000)),
0x0600_0000...0x0601_7FFF => self.ppu.vram.get8(@as(usize, addr - 0x0600_0000)),
0x0700_0000...0x0700_03FF => std.debug.panic("[Bus:8] read from 0x{X:} in OAM", .{addr}),
// External Memory (Game Pak)
0x0800_0000...0x09FF_FFFF => self.pak.get8(@as(usize, addr - 0x0800_0000)),
0x0A00_0000...0x0BFF_FFFF => self.pak.get8(@as(usize, addr - 0x0A00_0000)),
0x0C00_0000...0x0DFF_FFFF => self.pak.get8(@as(usize, addr - 0x0C00_0000)),
0x0E00_0000...0x0E00_FFFF => std.debug.panic("[Bus:8] read from 0x{X:} in Game Pak SRAM", .{addr}),
else => {
std.log.warn("[Bus:8] ZBA tried to read from 0x{X:}", .{addr});
return 0x00;
},
};
}
pub fn write8(_: *@This(), addr: u32, byte: u8) void {
switch (addr) {
// General Internal Memory
0x0200_0000...0x0203_FFFF => std.debug.panic("[Bus:8] write 0x{X:} to 0x{X:} in IWRAM", .{ byte, addr }),
0x0300_0000...0x0300_7FFF => std.debug.panic("[Bus:8] write 0x{X:} to 0x{X:} in EWRAM", .{ byte, addr }),
0x0400_0000...0x0400_03FE => std.debug.panic("[Bus:8] write 0x{X:} to 0x{X:} in I/O", .{ byte, addr }),
// External Memory (Game Pak)
0x0E00_0000...0x0E00_FFFF => std.debug.panic("[Bus:8] write 0x{X:} to 0x{X:} in Game Pak SRAM", .{ byte, addr }),
else => std.log.warn("[Bus:8] ZBA tried to write 0x{X:} to 0x{X:}", .{ byte, addr }),
}
}

View File

@@ -1,38 +0,0 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const Self = @This();
buf: []u8,
alloc: Allocator,
pub fn init(alloc: Allocator, path: []const u8) !Self {
const file = try std.fs.cwd().openFile(path, .{ .read = true });
defer file.close();
const len = try file.getEndPos();
return Self{
.buf = try file.readToEndAlloc(alloc, len),
.alloc = alloc,
};
}
pub fn deinit(self: Self) void {
self.alloc.free(self.buf);
}
pub inline fn get32(self: *const Self, idx: usize) u32 {
std.debug.panic("[BIOS] TODO: BIOS is not implemented", .{});
return (@as(u32, self.buf[idx + 3]) << 24) | (@as(u32, self.buf[idx + 2]) << 16) | (@as(u32, self.buf[idx + 1]) << 8) | (@as(u32, self.buf[idx]));
}
pub inline fn get16(self: *const Self, idx: usize) u16 {
std.debug.panic("[BIOS] TODO: BIOS is not implemented", .{});
return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]);
}
pub inline fn get8(self: *const Self, idx: usize) u8 {
std.debug.panic("[BIOS] TODO: BIOS is not implemented", .{});
return self.buf[idx];
}

View File

@@ -1,35 +0,0 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const Self = @This();
buf: []u8,
alloc: Allocator,
pub fn init(alloc: Allocator, path: []const u8) !Self {
const file = try std.fs.cwd().openFile(path, .{ .read = true });
defer file.close();
const len = try file.getEndPos();
return Self{
.buf = try file.readToEndAlloc(alloc, len),
.alloc = alloc,
};
}
pub fn deinit(self: Self) void {
self.alloc.free(self.buf);
}
pub inline fn get32(self: *const Self, idx: usize) u32 {
return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx));
}
pub inline fn get16(self: *const Self, idx: usize) u16 {
return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]);
}
pub inline fn get8(self: *const Self, idx: usize) u8 {
return self.buf[idx];
}

View File

@@ -1,81 +0,0 @@
const std = @import("std");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
pub const Io = struct {
const Self = @This();
dispcnt: DispCnt,
dispstat: DispStat,
vcount: VCount,
pub fn init() Self {
return .{
.dispcnt = .{ .raw = 0x0000_0000 },
.dispstat = .{ .raw = 0x0000_0000 },
.vcount = .{ .raw = 0x0000_0000 },
};
}
pub fn read32(self: *const Self, addr: u32) u32 {
return switch (addr) {
0x0400_0000 => @as(u32, self.dispcnt.raw),
0x0400_0004 => @as(u32, self.dispstat.raw),
else => std.debug.panic("[I/O:32] tried to read from {X:}", .{addr}),
};
}
pub fn read16(self: *const Self, addr: u32) u16 {
return switch (addr) {
0x0400_0000 => self.dispcnt.raw,
0x0400_0004 => self.dispstat.raw,
else => std.debug.panic("[I/O:16] tried to read from {X:}", .{addr}),
};
}
pub fn write16(self: *Self, addr: u32, halfword: u16) void {
switch (addr) {
0x0400_0000 => self.dispcnt.raw = halfword,
0x0400_0004 => self.dispstat.raw = halfword,
else => std.debug.panic("[I/O:16] tried to write 0x{X:} to 0x{X:}", .{ halfword, addr }),
}
}
pub fn read8(self: *const Self, addr: u32) u8 {
return switch (addr) {
0x0400_0000 => @truncate(u8, self.dispcnt.raw),
0x0400_0004 => @truncate(u8, self.dispstat.raw),
else => std.debug.panic("[I/O:8] tried to read from {X:}", .{addr}),
};
}
};
const DispCnt = extern union {
bg_mode: Bitfield(u16, 0, 3),
frame_select: Bit(u16, 4),
hblank_interraw_free: Bit(u16, 5),
obj_mapping: Bit(u16, 6),
forced_blank: Bit(u16, 7),
bg_enable: Bitfield(u16, 8, 4),
obj_enable: Bit(u16, 12),
win_enable: Bitfield(u16, 13, 2),
obj_win_enable: Bit(u16, 15),
raw: u16,
};
const DispStat = extern union {
vblank: Bit(u16, 0),
hblank: Bit(u16, 1),
vcount: Bit(u16, 2),
vblank_irq: Bit(u16, 3),
hblank_irq: Bit(u16, 4),
vcount_irq: Bit(u16, 5),
vcount_setting: Bitfield(u16, 8, 7),
raw: u16,
};
const VCount = extern union {
scanline: Bitfield(u16, 0, 8),
raw: u16,
};

86
src/config.zig Normal file
View File

@@ -0,0 +1,86 @@
const std = @import("std");
const toml = @import("toml");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Config);
var state: Config = .{};
const Config = struct {
host: Host = .{},
guest: Guest = .{},
debug: Debug = .{},
/// Settings related to the Computer the Emulator is being run on
const Host = struct {
/// Using Nearest-Neighbor, multiply the resolution of the GBA Window
win_scale: i64 = 3,
/// Enable Vsync
///
/// Note: This does not affect whether Emulation is synced to 59Hz
vsync: bool = true,
/// Mute ZBA
mute: bool = false,
};
// Settings realted to the emulation itself
const Guest = struct {
/// Whether Emulation thread to sync to Audio Callbacks
audio_sync: bool = true,
/// Whether Emulation thread should sync to 59Hz
video_sync: bool = true,
/// Whether RTC I/O should always be enabled
force_rtc: bool = false,
/// Skip BIOS
skip_bios: bool = false,
};
/// Settings related to debugging ZBA
const Debug = struct {
/// Enable CPU Trace logs
cpu_trace: bool = false,
/// If false and ZBA is built in debug mode, ZBA will panic on unhandled I/O
unhandled_io: bool = true,
};
};
pub fn config() *const Config {
return &state;
}
/// Reads a config file and then loads it into the global state
pub fn load(allocator: Allocator, file_path: []const u8) !void {
var config_file = try std.fs.cwd().openFile(file_path, .{});
defer config_file.close();
log.info("loaded from {s}", .{file_path});
const contents = try config_file.readToEndAlloc(allocator, try config_file.getEndPos());
defer allocator.free(contents);
var parser = try toml.parseFile(allocator, file_path);
defer parser.deinit();
const table = try parser.parse();
defer table.deinit();
// TODO: Report unknown config options
if (table.keys.get("Host")) |host| {
if (host.Table.keys.get("win_scale")) |scale| state.host.win_scale = scale.Integer;
if (host.Table.keys.get("vsync")) |vsync| state.host.vsync = vsync.Boolean;
if (host.Table.keys.get("mute")) |mute| state.host.mute = mute.Boolean;
}
if (table.keys.get("Guest")) |guest| {
if (guest.Table.keys.get("audio_sync")) |sync| state.guest.audio_sync = sync.Boolean;
if (guest.Table.keys.get("video_sync")) |sync| state.guest.video_sync = sync.Boolean;
if (guest.Table.keys.get("force_rtc")) |forced| state.guest.force_rtc = forced.Boolean;
if (guest.Table.keys.get("skip_bios")) |skip| state.guest.skip_bios = skip.Boolean;
}
if (table.keys.get("Debug")) |debug| {
if (debug.Table.keys.get("cpu_trace")) |trace| state.debug.cpu_trace = trace.Boolean;
if (debug.Table.keys.get("unhandled_io")) |unhandled| state.debug.unhandled_io = unhandled.Boolean;
}
}

500
src/core/Bus.zig Normal file
View File

@@ -0,0 +1,500 @@
const std = @import("std");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Bios = @import("bus/Bios.zig");
const Ewram = @import("bus/Ewram.zig");
const GamePak = @import("bus/GamePak.zig");
const Io = @import("bus/io.zig").Io;
const Iwram = @import("bus/Iwram.zig");
const Ppu = @import("ppu.zig").Ppu;
const Apu = @import("apu.zig").Apu;
const DmaTuple = @import("bus/dma.zig").DmaTuple;
const TimerTuple = @import("bus/timer.zig").TimerTuple;
const Scheduler = @import("scheduler.zig").Scheduler;
const FilePaths = @import("../util.zig").FilePaths;
const io = @import("bus/io.zig");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Bus);
const createDmaTuple = @import("bus/dma.zig").create;
const createTimerTuple = @import("bus/timer.zig").create;
const rotr = @import("../util.zig").rotr;
const timings: [2][0x10]u8 = [_][0x10]u8{
// BIOS, Unused, EWRAM, IWRAM, I/0, PALRAM, VRAM, OAM, ROM0, ROM0, ROM1, ROM1, ROM2, ROM2, SRAM, Unused
[_]u8{ 1, 1, 3, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5 }, // 8-bit & 16-bit
[_]u8{ 1, 1, 6, 1, 1, 2, 2, 1, 8, 8, 8, 8, 8, 8, 8, 8 }, // 32-bit
};
pub const fetch_timings: [2][0x10]u8 = [_][0x10]u8{
// BIOS, Unused, EWRAM, IWRAM, I/0, PALRAM, VRAM, OAM, ROM0, ROM0, ROM1, ROM1, ROM2, ROM2, SRAM, Unused
[_]u8{ 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 5, 5 }, // 8-bit & 16-bit
[_]u8{ 1, 1, 6, 1, 1, 2, 2, 1, 4, 4, 4, 4, 4, 4, 8, 8 }, // 32-bit
};
// Fastmem Related
const page_size = 1 * 0x400; // 1KiB
const address_space_size = 0x1000_0000;
const table_len = address_space_size / page_size;
const Self = @This();
pak: GamePak,
bios: Bios,
ppu: Ppu,
apu: Apu,
dma: DmaTuple,
tim: TimerTuple,
iwram: Iwram,
ewram: Ewram,
io: Io,
cpu: *Arm7tdmi,
sched: *Scheduler,
read_table: *const [table_len]?*const anyopaque,
write_tables: [2]*const [table_len]?*anyopaque,
allocator: Allocator,
pub fn init(self: *Self, allocator: Allocator, sched: *Scheduler, cpu: *Arm7tdmi, paths: FilePaths) !void {
const tables = try allocator.alloc(?*anyopaque, 3 * table_len); // Allocate all tables
const read_table = tables[0..table_len];
const write_tables = .{ tables[table_len .. 2 * table_len], tables[2 * table_len .. 3 * table_len] };
self.* = .{
.pak = try GamePak.init(allocator, cpu, paths.rom, paths.save),
.bios = try Bios.init(allocator, paths.bios),
.ppu = try Ppu.init(allocator, sched),
.apu = Apu.init(sched),
.iwram = try Iwram.init(allocator),
.ewram = try Ewram.init(allocator),
.dma = createDmaTuple(),
.tim = createTimerTuple(sched),
.io = Io.init(),
.cpu = cpu,
.sched = sched,
.read_table = read_table,
.write_tables = write_tables,
.allocator = allocator,
};
self.fillReadTable(read_table);
// Internal Display Memory behaves differently on 8-bit reads
self.fillWriteTable(u32, write_tables[0]);
self.fillWriteTable(u8, write_tables[1]);
}
pub fn deinit(self: *Self) void {
self.iwram.deinit();
self.ewram.deinit();
self.pak.deinit();
self.bios.deinit();
self.ppu.deinit();
// This is so I can deallocate the original `allocator.alloc`. I have to re-make the type
// since I'm not keeping it around, This is very jank and bad though
// FIXME: please figure out another way
self.allocator.free(@ptrCast([*]const ?*anyopaque, self.read_table[0..])[0 .. 3 * table_len]);
self.* = undefined;
}
fn fillReadTable(self: *Self, table: *[table_len]?*const anyopaque) void {
const vramMirror = @import("ppu/Vram.zig").mirror;
for (table, 0..) |*ptr, i| {
const addr = @intCast(u32, page_size * i);
ptr.* = switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => null, // BIOS has it's own checks
0x0200_0000...0x02FF_FFFF => &self.ewram.buf[addr & 0x3FFFF],
0x0300_0000...0x03FF_FFFF => &self.iwram.buf[addr & 0x7FFF],
0x0400_0000...0x0400_03FF => null, // I/O
// Internal Display Memory
0x0500_0000...0x05FF_FFFF => &self.ppu.palette.buf[addr & 0x3FF],
0x0600_0000...0x06FF_FFFF => &self.ppu.vram.buf[vramMirror(addr)],
0x0700_0000...0x07FF_FFFF => &self.ppu.oam.buf[addr & 0x3FF],
// External Memory (Game Pak)
0x0800_0000...0x0DFF_FFFF => self.fillReadTableExternal(addr),
0x0E00_0000...0x0FFF_FFFF => null, // SRAM
else => null,
};
}
}
fn fillWriteTable(self: *Self, comptime T: type, table: *[table_len]?*const anyopaque) void {
comptime std.debug.assert(T == u32 or T == u16 or T == u8);
const vramMirror = @import("ppu/Vram.zig").mirror;
for (table, 0..) |*ptr, i| {
const addr = @intCast(u32, page_size * i);
ptr.* = switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => null, // BIOS has it's own checks
0x0200_0000...0x02FF_FFFF => &self.ewram.buf[addr & 0x3FFFF],
0x0300_0000...0x03FF_FFFF => &self.iwram.buf[addr & 0x7FFF],
0x0400_0000...0x0400_03FF => null, // I/O
// Internal Display Memory
0x0500_0000...0x05FF_FFFF => if (T != u8) &self.ppu.palette.buf[addr & 0x3FF] else null,
0x0600_0000...0x06FF_FFFF => if (T != u8) &self.ppu.vram.buf[vramMirror(addr)] else null,
0x0700_0000...0x07FF_FFFF => if (T != u8) &self.ppu.oam.buf[addr & 0x3FF] else null,
// External Memory (Game Pak)
0x0800_0000...0x0DFF_FFFF => null, // ROM
0x0E00_0000...0x0FFF_FFFF => null, // SRAM
else => null,
};
}
}
fn fillReadTableExternal(self: *Self, addr: u32) ?*anyopaque {
// see `GamePak.zig` for more information about what conditions need to be true
// so that a simple pointer dereference isn't possible
std.debug.assert(addr & @as(u32, page_size - 1) == 0); // addr is guaranteed to be page-aligned
const start_addr = addr;
const end_addr = start_addr + page_size;
{
const data = start_addr <= 0x0800_00C4 and 0x0800_00C4 < end_addr; // GPIO Data
const direction = start_addr <= 0x0800_00C6 and 0x0800_00C6 < end_addr; // GPIO Direction
const control = start_addr <= 0x0800_00C8 and 0x0800_00C8 < end_addr; // GPIO Control
const has_gpio = data or direction or control;
const gpio_kind = self.pak.gpio.device.kind;
// There is a GPIO Device, and the current page contains at least one memory-mapped GPIO register
if (gpio_kind != .None and has_gpio) return null;
}
if (self.pak.backup.kind == .Eeprom) {
if (self.pak.buf.len > 0x100_000) {
// We are using a "large" EEPROM which means that if the below check is true
// this page has an address that's reserved for the EEPROM and therefore must
// be handled in slowmem
if (addr & 0x1FF_FFFF > 0x1FF_FEFF) return null;
} else {
// We are using a "small" EEPROM which means that if the below check is true
// (that is, we're in the 0xD address page) then we must handle at least one
// address in this page in slowmem
if (@truncate(u4, addr >> 24) == 0xD) return null;
}
}
// Finally, the GamePak has some unique behaviour for reads past the end of the ROM,
// so those will be handled by slowmem as well
const masked_addr = addr & 0x1FF_FFFF;
if (masked_addr >= self.pak.buf.len) return null;
return &self.pak.buf[masked_addr];
}
fn readIo(self: *const Self, comptime T: type, address: u32) T {
return io.read(self, T, address) orelse self.openBus(T, address);
}
fn openBus(self: *const Self, comptime T: type, address: u32) T {
@setCold(true);
const r15 = self.cpu.r[15];
const word = blk: {
// If Arm, get the most recently fetched instruction (PC + 8)
//
// FIXME: This is most likely a faulty assumption.
// I think what *actually* happens is that the Bus has a latch for the most
// recently fetched piece of data, which is then returned during Open Bus (also DMA open bus?)
// I can "get away" with this because it's very statistically likely that the most recently latched value is
// the most recently fetched instruction by the pipeline
if (!self.cpu.cpsr.t.read()) break :blk self.cpu.pipe.stage[1].?;
const page = @truncate(u8, r15 >> 24);
// PC + 2 = stage[0]
// PC + 4 = stage[1]
// PC + 6 = Need a Debug Read for this?
switch (page) {
// EWRAM, PALRAM, VRAM, and Game ROM (16-bit)
0x02, 0x05, 0x06, 0x08...0x0D => {
const halfword: u32 = @truncate(u16, self.cpu.pipe.stage[1].?);
break :blk halfword << 16 | halfword;
},
// BIOS or OAM (32-bit)
0x00, 0x07 => {
// Aligned: (PC + 6) | (PC + 4)
// Unaligned: (PC + 4) | (PC + 2)
const aligned = address & 3 == 0b00;
// TODO: What to do on PC + 6?
const high: u32 = if (aligned) self.dbgRead(u16, r15 + 4) else @truncate(u16, self.cpu.pipe.stage[1].?);
const low: u32 = @truncate(u16, self.cpu.pipe.stage[@boolToInt(aligned)].?);
break :blk high << 16 | low;
},
// IWRAM (16-bit but special)
0x03 => {
// Aligned: (PC + 2) | (PC + 4)
// Unaligned: (PC + 4) | (PC + 2)
const aligned = address & 3 == 0b00;
const high: u32 = @truncate(u16, self.cpu.pipe.stage[1 - @boolToInt(aligned)].?);
const low: u32 = @truncate(u16, self.cpu.pipe.stage[@boolToInt(aligned)].?);
break :blk high << 16 | low;
},
else => {
log.err("THUMB open bus read from 0x{X:0>2} page @0x{X:0>8}", .{ page, address });
@panic("invariant most-likely broken");
},
}
};
return @truncate(T, word);
}
pub fn read(self: *Self, comptime T: type, unaligned_address: u32) T {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).Int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
// whether or not we do this in slowmem or fastmem, we should advance the scheduler
self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, unaligned_address >> 24)];
// We're doing some serious out-of-bounds open-bus reads
if (page >= table_len) return self.openBus(T, unaligned_address);
if (self.read_table[page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const Ptr = [*]const T;
const ptr = @ptrCast(Ptr, @alignCast(@alignOf(std.meta.Child(Ptr)), some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
return ptr[forceAlign(T, offset) / @sizeOf(T)];
}
return self.slowRead(T, unaligned_address);
}
pub fn dbgRead(self: *const Self, comptime T: type, unaligned_address: u32) T {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).Int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
// We're doing some serious out-of-bounds open-bus reads
if (page >= table_len) return self.openBus(T, unaligned_address);
if (self.read_table[page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const Ptr = [*]const T;
const ptr = @ptrCast(Ptr, @alignCast(@alignOf(std.meta.Child(Ptr)), some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
return ptr[forceAlign(T, offset) / @sizeOf(T)];
}
return self.dbgSlowRead(T, unaligned_address);
}
fn slowRead(self: *Self, comptime T: type, unaligned_address: u32) T {
@setCold(true);
const page = @truncate(u8, unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
return switch (page) {
// General Internal Memory
0x00 => blk: {
if (address < Bios.size)
break :blk self.bios.read(T, self.cpu.r[15], unaligned_address);
break :blk self.openBus(T, address);
},
0x02 => unreachable, // completely handled by fastmeme
0x03 => unreachable, // completely handled by fastmeme
0x04 => self.readIo(T, address),
// Internal Display Memory
0x05 => unreachable, // completely handled by fastmeme
0x06 => unreachable, // completely handled by fastmeme
0x07 => unreachable, // completely handled by fastmeme
// External Memory (Game Pak)
0x08...0x0D => self.pak.read(T, address),
0x0E...0x0F => self.readBackup(T, unaligned_address),
else => self.openBus(T, address),
};
}
fn dbgSlowRead(self: *const Self, comptime T: type, unaligned_address: u32) T {
const page = @truncate(u8, unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
return switch (page) {
// General Internal Memory
0x00 => blk: {
if (address < Bios.size)
break :blk self.bios.dbgRead(T, self.cpu.r[15], unaligned_address);
break :blk self.openBus(T, address);
},
0x02 => unreachable, // handled by fastmem
0x03 => unreachable, // handled by fastmem
0x04 => self.readIo(T, address),
// Internal Display Memory
0x05 => unreachable, // handled by fastmem
0x06 => unreachable, // handled by fastmem
0x07 => unreachable, // handled by fastmem
// External Memory (Game Pak)
0x08...0x0D => self.pak.dbgRead(T, address),
0x0E...0x0F => self.readBackup(T, unaligned_address),
else => self.openBus(T, address),
};
}
fn readBackup(self: *const Self, comptime T: type, unaligned_address: u32) T {
const value = self.pak.backup.read(unaligned_address);
const multiplier = switch (T) {
u32 => 0x01010101,
u16 => 0x0101,
u8 => 1,
else => @compileError("Backup: Unsupported read width"),
};
return @as(T, value) * multiplier;
}
pub fn write(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).Int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
// whether or not we do this in slowmem or fastmem, we should advance the scheduler
self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, unaligned_address >> 24)];
// We're doing some serious out-of-bounds open-bus writes, they do nothing though
if (page >= table_len) return;
if (self.write_tables[@boolToInt(T == u8)][page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const Ptr = [*]T;
const ptr = @ptrCast(Ptr, @alignCast(@alignOf(std.meta.Child(Ptr)), some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
ptr[forceAlign(T, offset) / @sizeOf(T)] = value;
} else {
// we can return early if this is an 8-bit OAM write
if (T == u8 and @truncate(u8, unaligned_address >> 24) == 0x07) return;
self.slowWrite(T, unaligned_address, value);
}
}
/// Mostly Identical to `Bus.write`, slowmeme is handled by `Bus.dbgSlowWrite`
pub fn dbgWrite(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).Int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
// We're doing some serious out-of-bounds open-bus writes, they do nothing though
if (page >= table_len) return;
if (self.write_tables[@boolToInt(T == u8)][page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const Ptr = [*]T;
const ptr = @ptrCast(Ptr, @alignCast(@alignOf(std.meta.Child(Ptr)), some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
ptr[forceAlign(T, offset) / @sizeOf(T)] = value;
} else {
// we can return early if this is an 8-bit OAM write
if (T == u8 and @truncate(u8, unaligned_address >> 24) == 0x07) return;
self.dbgSlowWrite(T, unaligned_address, value);
}
}
fn slowWrite(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
@setCold(true);
const page = @truncate(u8, unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
switch (page) {
// General Internal Memory
0x00 => self.bios.write(T, address, value),
0x02 => unreachable, // completely handled by fastmem
0x03 => unreachable, // completely handled by fastmem
0x04 => io.write(self, T, address, value),
// Internal Display Memory
0x05 => self.ppu.palette.write(T, address, value),
0x06 => self.ppu.vram.write(T, self.ppu.dispcnt, address, value),
0x07 => unreachable, // completely handled by fastmem
// External Memory (Game Pak)
0x08...0x0D => self.pak.write(T, self.dma[3].word_count, address, value),
0x0E...0x0F => self.pak.backup.write(unaligned_address, @truncate(u8, rotr(T, value, 8 * rotateBy(T, unaligned_address)))),
else => {},
}
}
fn dbgSlowWrite(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
@setCold(true);
const page = @truncate(u8, unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
switch (page) {
// General Internal Memory
0x00 => self.bios.write(T, address, value),
0x02 => unreachable, // completely handled by fastmem
0x03 => unreachable, // completely handled by fastmem
0x04 => return, // FIXME: Let debug writes mess with I/O
// Internal Display Memory
0x05 => self.ppu.palette.write(T, address, value),
0x06 => self.ppu.vram.write(T, self.ppu.dispcnt, address, value),
0x07 => unreachable, // completely handled by fastmem
// External Memory (Game Pak)
0x08...0x0D => return, // FIXME: Debug Write to Backup/GPIO w/out messing with state
0x0E...0x0F => return, // FIXME: Debug Write to Backup w/out messing with state
else => {},
}
}
inline fn rotateBy(comptime T: type, address: u32) u32 {
return switch (T) {
u32 => address & 3,
u16 => address & 1,
u8 => 0,
else => @compileError("Unsupported write width"),
};
}
pub inline fn forceAlign(comptime T: type, address: u32) u32 {
return switch (T) {
u32 => address & ~@as(u32, 3),
u16 => address & ~@as(u32, 1),
u8 => address,
else => @compileError("Bus: Invalid read/write type"),
};
}

582
src/core/apu.zig Normal file
View File

@@ -0,0 +1,582 @@
const std = @import("std");
const SDL = @import("sdl2");
const io = @import("bus/io.zig");
const util = @import("../util.zig");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Scheduler = @import("scheduler.zig").Scheduler;
const ToneSweep = @import("apu/ToneSweep.zig");
const Tone = @import("apu/Tone.zig");
const Wave = @import("apu/Wave.zig");
const Noise = @import("apu/Noise.zig");
const SoundFifo = std.fifo.LinearFifo(u8, .{ .Static = 0x20 });
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const intToBytes = util.intToBytes;
const log = std.log.scoped(.APU);
pub const host_rate = @import("../platform.zig").sample_rate;
pub const host_format = @import("../platform.zig").sample_format;
pub fn read(comptime T: type, apu: *const Apu, addr: u32) ?T {
const byte_addr = @truncate(u8, addr);
return switch (T) {
u32 => switch (byte_addr) {
0x60 => @as(T, apu.ch1.sound1CntH()) << 16 | apu.ch1.sound1CntL(),
0x64 => apu.ch1.sound1CntX(),
0x68 => apu.ch2.sound2CntL(),
0x6C => apu.ch2.sound2CntH(),
0x70 => @as(T, apu.ch3.sound3CntH()) << 16 | apu.ch3.sound3CntL(),
0x74 => apu.ch3.sound3CntX(),
0x78 => apu.ch4.sound4CntL(),
0x7C => apu.ch4.sound4CntH(),
0x80 => @as(T, apu.dma_cnt.raw) << 16 | apu.psg_cnt.raw, // SOUNDCNT_H, SOUNDCNT_L
0x84 => apu.soundCntX(),
0x88 => apu.bias.raw, // SOUNDBIAS, high is unused
0x8C => null,
0x90, 0x94, 0x98, 0x9C => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
0xA0 => null, // FIFO_A
0xA4 => null, // FIFO_B
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte_addr) {
0x60 => apu.ch1.sound1CntL(),
0x62 => apu.ch1.sound1CntH(),
0x64 => apu.ch1.sound1CntX(),
0x66 => 0x0000, // suite.gba expects 0x0000, not 0xDEAD
0x68 => apu.ch2.sound2CntL(),
0x6A => 0x0000,
0x6C => apu.ch2.sound2CntH(),
0x6E => 0x0000,
0x70 => apu.ch3.sound3CntL(),
0x72 => apu.ch3.sound3CntH(),
0x74 => apu.ch3.sound3CntX(),
0x76 => 0x0000,
0x78 => apu.ch4.sound4CntL(),
0x7A => 0x0000,
0x7C => apu.ch4.sound4CntH(),
0x7E => 0x0000,
0x80 => apu.soundCntL(),
0x82 => apu.soundCntH(),
0x84 => apu.soundCntX(),
0x86 => 0x0000,
0x88 => apu.bias.raw, // SOUNDBIAS
0x8A => 0x0000,
0x8C, 0x8E => null,
0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
0xA0, 0xA2 => null, // FIFO_A
0xA4, 0xA6 => null, // FIFO_B
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0x60, 0x61 => @truncate(T, @as(u16, apu.ch1.sound1CntL()) >> getHalf(byte_addr)),
0x62, 0x63 => @truncate(T, apu.ch1.sound1CntH() >> getHalf(byte_addr)),
0x64, 0x65 => @truncate(T, apu.ch1.sound1CntX() >> getHalf(byte_addr)),
0x66, 0x67 => 0x00, // assuming behaviour is identical to that of 16-bit reads
0x68, 0x69 => @truncate(T, apu.ch2.sound2CntL() >> getHalf(byte_addr)),
0x6A, 0x6B => 0x00,
0x6C, 0x6D => @truncate(T, apu.ch2.sound2CntH() >> getHalf(byte_addr)),
0x6E, 0x6F => 0x00,
0x70, 0x71 => @truncate(T, @as(u16, apu.ch3.sound3CntL()) >> getHalf(byte_addr)), // SOUND3CNT_L
0x72, 0x73 => @truncate(T, apu.ch3.sound3CntH() >> getHalf(byte_addr)),
0x74, 0x75 => @truncate(T, apu.ch3.sound3CntX() >> getHalf(byte_addr)), // SOUND3CNT_L
0x76, 0x77 => 0x00,
0x78, 0x79 => @truncate(T, apu.ch4.sound4CntL() >> getHalf(byte_addr)),
0x7A, 0x7B => 0x00,
0x7C, 0x7D => @truncate(T, apu.ch4.sound4CntH() >> getHalf(byte_addr)),
0x7E, 0x7F => 0x00,
0x80, 0x81 => @truncate(T, apu.soundCntL() >> getHalf(byte_addr)), // SOUNDCNT_L
0x82, 0x83 => @truncate(T, apu.soundCntH() >> getHalf(byte_addr)), // SOUNDCNT_H
0x84, 0x85 => @truncate(T, @as(u16, apu.soundCntX()) >> getHalf(byte_addr)),
0x86, 0x87 => 0x00,
0x88, 0x89 => @truncate(T, apu.bias.raw >> getHalf(byte_addr)), // SOUNDBIAS
0x8A, 0x8B => 0x00,
0x8C...0x8F => null,
0x90...0x9F => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
0xA0, 0xA1, 0xA2, 0xA3 => null, // FIFO_A
0xA4, 0xA5, 0xA6, 0xA7 => null, // FIFO_B
else => util.io.read.err(T, log, "unexpected {} read from 0x{X:0>8}", .{ T, addr }),
},
else => @compileError("APU: Unsupported read width"),
};
}
pub fn write(comptime T: type, apu: *Apu, addr: u32, value: T) void {
const byte_addr = @truncate(u8, addr);
if (byte_addr <= 0x81 and !apu.cnt.apu_enable.read()) return;
switch (T) {
u32 => {
// 0x80 and 0x81 handled in setSoundCnt
if (byte_addr < 0x80 and !apu.cnt.apu_enable.read()) return;
switch (byte_addr) {
0x60 => apu.ch1.setSound1Cnt(value),
0x64 => apu.ch1.setSound1CntX(&apu.fs, @truncate(u16, value)),
0x68 => apu.ch2.setSound2CntL(@truncate(u16, value)),
0x6C => apu.ch2.setSound2CntH(&apu.fs, @truncate(u16, value)),
0x70 => apu.ch3.setSound3Cnt(value),
0x74 => apu.ch3.setSound3CntX(&apu.fs, @truncate(u16, value)),
0x78 => apu.ch4.setSound4CntL(@truncate(u16, value)),
0x7C => apu.ch4.setSound4CntH(&apu.fs, @truncate(u16, value)),
0x80 => apu.setSoundCnt(value),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x88 => apu.bias.raw = @truncate(u16, value),
0x8C => {},
0x90, 0x94, 0x98, 0x9C => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0 => apu.chA.push(value), // FIFO_A
0xA4 => apu.chB.push(value), // FIFO_B
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
}
},
u16 => {
if (byte_addr <= 0x81 and !apu.cnt.apu_enable.read()) return;
switch (byte_addr) {
0x60 => apu.ch1.setSound1CntL(@truncate(u8, value)), // SOUND1CNT_L
0x62 => apu.ch1.setSound1CntH(value),
0x64 => apu.ch1.setSound1CntX(&apu.fs, value),
0x66 => {},
0x68 => apu.ch2.setSound2CntL(value),
0x6A => {},
0x6C => apu.ch2.setSound2CntH(&apu.fs, value),
0x6E => {},
0x70 => apu.ch3.setSound3CntL(@truncate(u8, value)),
0x72 => apu.ch3.setSound3CntH(value),
0x74 => apu.ch3.setSound3CntX(&apu.fs, value),
0x76 => {},
0x78 => apu.ch4.setSound4CntL(value),
0x7A => {},
0x7C => apu.ch4.setSound4CntH(&apu.fs, value),
0x7E => {},
0x80 => apu.setSoundCntL(value),
0x82 => apu.setSoundCntH(value),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x86 => {},
0x88 => apu.bias.raw = value, // SOUNDBIAS
0x8A, 0x8C, 0x8E => {},
0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0, 0xA2 => log.err("Tried to write 0x{X:0>4}{} to FIFO_A", .{ value, T }),
0xA4, 0xA6 => log.err("Tried to write 0x{X:0>4}{} to FIFO_B", .{ value, T }),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
}
},
u8 => {
if (byte_addr <= 0x81 and !apu.cnt.apu_enable.read()) return;
switch (byte_addr) {
0x60 => apu.ch1.setSound1CntL(value),
0x61 => {},
0x62 => apu.ch1.setNr11(value),
0x63 => apu.ch1.setNr12(value),
0x64 => apu.ch1.setNr13(value),
0x65 => apu.ch1.setNr14(&apu.fs, value),
0x66, 0x67 => {},
0x68 => apu.ch2.setNr21(value),
0x69 => apu.ch2.setNr22(value),
0x6A, 0x6B => {},
0x6C => apu.ch2.setNr23(value),
0x6D => apu.ch2.setNr24(&apu.fs, value),
0x6E, 0x6F => {},
0x70 => apu.ch3.setSound3CntL(value), // NR30
0x71 => {},
0x72 => apu.ch3.setNr31(value),
0x73 => apu.ch3.vol.raw = value, // NR32
0x74 => apu.ch3.setNr33(value),
0x75 => apu.ch3.setNr34(&apu.fs, value),
0x76, 0x77 => {},
0x78 => apu.ch4.setNr41(value),
0x79 => apu.ch4.setNr42(value),
0x7A, 0x7B => {},
0x7C => apu.ch4.poly.raw = value, // NR 43
0x7D => apu.ch4.setNr44(&apu.fs, value),
0x7E, 0x7F => {},
0x80, 0x81 => apu.setSoundCntL(setHalf(u16, apu.psg_cnt.raw, byte_addr, value)),
0x82, 0x83 => apu.setSoundCntH(setHalf(u16, apu.dma_cnt.raw, byte_addr, value)),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x85 => {},
0x86, 0x87 => {},
0x88, 0x89 => apu.bias.raw = setHalf(u16, apu.bias.raw, byte_addr, value), // SOUNDBIAS
0x8A...0x8F => {},
0x90...0x9F => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0...0xA3 => log.err("Tried to write 0x{X:0>2}{} to FIFO_A", .{ value, T }),
0xA4...0xA7 => log.err("Tried to write 0x{X:0>2}{} to FIFO_B", .{ value, T }),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
}
},
else => @compileError("APU: Unsupported write width"),
}
}
pub const Apu = struct {
const Self = @This();
ch1: ToneSweep,
ch2: Tone,
ch3: Wave,
ch4: Noise,
chA: DmaSound(.A),
chB: DmaSound(.B),
bias: io.SoundBias,
/// NR50, NR51
psg_cnt: io.ChannelVolumeControl,
dma_cnt: io.DmaSoundControl,
cnt: io.SoundControl,
sampling_cycle: u2,
stream: *SDL.SDL_AudioStream,
sched: *Scheduler,
fs: FrameSequencer,
capacitor: f32,
is_buffer_full: bool,
pub const Tick = enum { Length, Envelope, Sweep };
pub fn init(sched: *Scheduler) Self {
const apu: Self = .{
.ch1 = ToneSweep.init(sched),
.ch2 = Tone.init(sched),
.ch3 = Wave.init(sched),
.ch4 = Noise.init(sched),
.chA = DmaSound(.A).init(),
.chB = DmaSound(.B).init(),
.psg_cnt = .{ .raw = 0 },
.dma_cnt = .{ .raw = 0 },
.cnt = .{ .raw = 0 },
.bias = .{ .raw = 0x0200 },
.sampling_cycle = 0b00,
.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, 1 << 15, host_format, 2, host_rate).?,
.sched = sched,
.capacitor = 0,
.fs = FrameSequencer.init(),
.is_buffer_full = false,
};
sched.push(.SampleAudio, apu.interval());
sched.push(.{ .ApuChannel = 0 }, @import("apu/signal/Square.zig").interval);
sched.push(.{ .ApuChannel = 1 }, @import("apu/signal/Square.zig").interval);
sched.push(.{ .ApuChannel = 2 }, @import("apu/signal/Wave.zig").interval);
sched.push(.{ .ApuChannel = 3 }, @import("apu/signal/Lfsr.zig").interval);
sched.push(.FrameSequencer, FrameSequencer.interval);
return apu;
}
fn reset(self: *Self) void {
// All PSG Registers between 0x0400_0060..0x0400_0081 are zeroed
// 0x0400_0082 and 0x0400_0088 retain their values
self.ch1.reset();
self.ch2.reset();
self.ch3.reset();
self.ch4.reset();
// GBATEK says 4000060h..4000081h I take this to mean inclusive
self.psg_cnt.raw = 0x0000;
}
/// SOUNDCNT
fn setSoundCnt(self: *Self, value: u32) void {
if (self.cnt.apu_enable.read()) self.setSoundCntL(@truncate(u16, value));
self.setSoundCntH(@truncate(u16, value >> 16));
}
/// SOUNDCNT_L
pub fn soundCntL(self: *const Self) u16 {
return self.psg_cnt.raw & 0xFF77;
}
/// SOUNDCNT_L
pub fn setSoundCntL(self: *Self, value: u16) void {
self.psg_cnt.raw = value;
}
/// SOUNDCNT_H
pub fn setSoundCntH(self: *Self, value: u16) void {
const new: io.DmaSoundControl = .{ .raw = value };
// Reinitializing instead of resetting is fine because
// the FIFOs I'm using are stack allocated and 0x20 bytes big
if (new.chA_reset.read()) self.chA.fifo = SoundFifo.init();
if (new.chB_reset.read()) self.chB.fifo = SoundFifo.init();
self.dma_cnt = new;
}
/// SOUNDCNT_H
pub fn soundCntH(self: *const Self) u16 {
return self.dma_cnt.raw & 0x770F;
}
/// NR52
pub fn setSoundCntX(self: *Self, value: bool) void {
self.cnt.apu_enable.write(value);
if (value) {
self.fs.step = 0; // Reset Frame Sequencer
// Reset Square Wave Offsets
self.ch1.square.reset();
self.ch2.square.reset();
// Reset Wave
self.ch3.wave_dev.reset();
// Rest Noise
self.ch4.lfsr.reset();
} else {
self.reset();
}
}
/// NR52
pub fn soundCntX(self: *const Self) u8 {
const apu_enable: u8 = @boolToInt(self.cnt.apu_enable.read());
const ch1_enable: u8 = @boolToInt(self.ch1.enabled);
const ch2_enable: u8 = @boolToInt(self.ch2.enabled);
const ch3_enable: u8 = @boolToInt(self.ch3.enabled);
const ch4_enable: u8 = @boolToInt(self.ch4.enabled);
return apu_enable << 7 | ch4_enable << 3 | ch3_enable << 2 | ch2_enable << 1 | ch1_enable;
}
pub fn sampleAudio(self: *Self, late: u64) void {
self.sched.push(.SampleAudio, self.interval() -| late);
// Whether the APU is busy or not is determined by the main loop in emu.zig
// This should only ever be true (because this side of the emu is single threaded)
// When audio sync is disaabled
if (self.is_buffer_full) return;
var left: i16 = 0;
var right: i16 = 0;
// SOUNDCNT_L Channel Enable flags
const ch_left: u4 = self.psg_cnt.ch_left.read();
const ch_right: u4 = self.psg_cnt.ch_right.read();
// Determine SOUNDCNT_H volume modifications
const gba_vol: u4 = switch (self.dma_cnt.ch_vol.read()) {
0b00 => 2,
0b01 => 1,
else => 0,
};
// Add all PSG channels together
left += if (ch_left & 1 == 1) @as(i16, self.ch1.sample) else 0;
left += if (ch_left >> 1 & 1 == 1) @as(i16, self.ch2.sample) else 0;
left += if (ch_left >> 2 & 1 == 1) @as(i16, self.ch3.sample) else 0;
left += if (ch_left >> 3 == 1) @as(i16, self.ch4.sample) else 0;
right += if (ch_right & 1 == 1) @as(i16, self.ch1.sample) else 0;
right += if (ch_right >> 1 & 1 == 1) @as(i16, self.ch2.sample) else 0;
right += if (ch_right >> 2 & 1 == 1) @as(i16, self.ch3.sample) else 0;
right += if (ch_right >> 3 == 1) @as(i16, self.ch4.sample) else 0;
// Multiply by master channel volume
left *= 1 + @as(i16, self.psg_cnt.left_vol.read());
right *= 1 + @as(i16, self.psg_cnt.right_vol.read());
// Apply GBA volume modifications to PSG Channels
left >>= gba_vol;
right >>= gba_vol;
const chA_sample = self.chA.amplitude() << if (self.dma_cnt.chA_vol.read()) @as(u4, 2) else 1;
const chB_sample = self.chB.amplitude() << if (self.dma_cnt.chB_vol.read()) @as(u4, 2) else 1;
left += if (self.dma_cnt.chA_left.read()) chA_sample else 0;
left += if (self.dma_cnt.chB_left.read()) chB_sample else 0;
right += if (self.dma_cnt.chA_right.read()) chA_sample else 0;
right += if (self.dma_cnt.chB_right.read()) chB_sample else 0;
// Add SOUNDBIAS
// FIXME: SOUNDBIAS is 10-bit but The waveform is centered around 0 if I treat it as 11-bit
const bias = @as(i16, self.bias.level.read()) << 2;
left += bias;
right += bias;
const clamped_left = std.math.clamp(@bitCast(u16, left), std.math.minInt(u11), std.math.maxInt(u11));
const clamped_right = std.math.clamp(@bitCast(u16, right), std.math.minInt(u11), std.math.maxInt(u11));
// Extend to 16-bit signed audio samples
const ext_left = (clamped_left << 5) | (clamped_left >> 6);
const ext_right = (clamped_right << 5) | (clamped_right >> 6);
if (self.sampling_cycle != self.bias.sampling_cycle.read()) self.replaceSDLResampler();
_ = SDL.SDL_AudioStreamPut(self.stream, &[2]u16{ ext_left, ext_right }, 2 * @sizeOf(u16));
}
fn replaceSDLResampler(self: *Self) void {
@setCold(true);
const sample_rate = Self.sampleRate(self.bias.sampling_cycle.read());
log.info("Sample Rate changed from {}Hz to {}Hz", .{ Self.sampleRate(self.sampling_cycle), sample_rate });
// Sampling Cycle (Sample Rate) changed, Craete a new SDL Audio Resampler
// FIXME: Replace SDL's Audio Resampler with either a custom or more reliable one
const old_stream = self.stream;
defer SDL.SDL_FreeAudioStream(old_stream);
self.sampling_cycle = self.bias.sampling_cycle.read();
self.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, @intCast(c_int, sample_rate), host_format, 2, host_rate).?;
}
fn interval(self: *const Self) u64 {
return (1 << 24) / Self.sampleRate(self.bias.sampling_cycle.read());
}
fn sampleRate(cycle: u2) u64 {
return @as(u64, 1) << (15 + @as(u6, cycle));
}
pub fn onSequencerTick(self: *Self, late: u64) void {
self.fs.tick();
switch (self.fs.step) {
7 => self.tick(.Envelope), // Clock Envelope
0, 4 => self.tick(.Length), // Clock Length
2, 6 => {
// Clock Length and Sweep
self.tick(.Length);
self.tick(.Sweep);
},
1, 3, 5 => {},
}
self.sched.push(.FrameSequencer, ((1 << 24) / 512) -| late);
}
fn tick(self: *Self, comptime kind: Tick) void {
self.ch1.tick(kind);
switch (kind) {
.Length => {
self.ch2.tick(kind);
self.ch3.tick(kind);
self.ch4.tick(kind);
},
.Envelope => {
self.ch2.tick(kind);
self.ch4.tick(kind);
},
.Sweep => {}, // Already handled above (only for Ch1)
}
}
pub fn onDmaAudioSampleRequest(self: *Self, cpu: *Arm7tdmi, tim_id: u3) void {
if (!self.cnt.apu_enable.read()) return;
if (@boolToInt(self.dma_cnt.chA_timer.read()) == tim_id) {
if (!self.chA.enabled) return;
self.chA.updateSample();
if (self.chA.len() <= 15) cpu.bus.dma[1].requestAudio(0x0400_00A0);
}
if (@boolToInt(self.dma_cnt.chB_timer.read()) == tim_id) {
if (!self.chB.enabled) return;
self.chB.updateSample();
if (self.chB.len() <= 15) cpu.bus.dma[2].requestAudio(0x0400_00A4);
}
}
};
pub fn DmaSound(comptime kind: DmaSoundKind) type {
return struct {
const Self = @This();
fifo: SoundFifo,
kind: DmaSoundKind,
sample: i8,
enabled: bool,
fn init() Self {
return .{
.fifo = SoundFifo.init(),
.kind = kind,
.sample = 0,
.enabled = false,
};
}
pub fn push(self: *Self, value: u32) void {
if (!self.enabled) self.enable();
self.fifo.write(&intToBytes(u32, value)) catch |e| log.err("{} Error: {}", .{ kind, e });
}
fn enable(self: *Self) void {
@setCold(true);
self.enabled = true;
}
pub fn len(self: *const Self) usize {
return self.fifo.readableLength();
}
pub fn updateSample(self: *Self) void {
if (self.fifo.readItem()) |sample| self.sample = @bitCast(i8, sample);
}
pub fn amplitude(self: *const Self) i16 {
return @as(i16, self.sample);
}
};
}
const DmaSoundKind = enum {
A,
B,
};
pub const FrameSequencer = struct {
const Self = @This();
pub const interval = (1 << 24) / 512;
step: u3,
pub fn init() Self {
return .{ .step = 0 };
}
pub fn tick(self: *Self) void {
self.step +%= 1;
}
pub fn isLengthNext(self: *const Self) bool {
return (self.step +% 1) & 1 == 0; // Steps, 0, 2, 4, and 6 clock length
}
pub fn isEnvelopeNext(self: *const Self) bool {
return (self.step +% 1) == 7;
}
};

145
src/core/apu/Noise.zig Normal file
View File

@@ -0,0 +1,145 @@
const io = @import("../bus/io.zig");
const util = @import("../../util.zig");
const Scheduler = @import("../scheduler.zig").Scheduler;
const FrameSequencer = @import("../apu.zig").FrameSequencer;
const Tick = @import("../apu.zig").Apu.Tick;
const Envelope = @import("device/Envelope.zig");
const Length = @import("device/Length.zig");
const Lfsr = @import("signal/Lfsr.zig");
const Self = @This();
/// Write-only
/// NR41
len: u6,
/// NR42
envelope: io.Envelope,
/// NR43
poly: io.PolyCounter,
/// NR44
cnt: io.NoiseControl,
/// Length Functionarlity
len_dev: Length,
/// Envelope Functionality
env_dev: Envelope,
// Linear Feedback Shift Register
lfsr: Lfsr,
enabled: bool,
sample: i8,
pub fn init(sched: *Scheduler) Self {
return .{
.len = 0,
.envelope = .{ .raw = 0 },
.poly = .{ .raw = 0 },
.cnt = .{ .raw = 0 },
.enabled = false,
.len_dev = Length.create(),
.env_dev = Envelope.create(),
.lfsr = Lfsr.create(sched),
.sample = 0,
};
}
pub fn reset(self: *Self) void {
self.len = 0; // NR41
self.envelope.raw = 0; // NR42
self.poly.raw = 0; // NR43
self.cnt.raw = 0; // NR44
self.len_dev.reset();
self.env_dev.reset();
self.sample = 0;
self.enabled = false;
}
pub fn tick(self: *Self, comptime kind: Tick) void {
switch (kind) {
.Length => self.len_dev.tick(self.cnt.length_enable.read(), &self.enabled),
.Envelope => self.env_dev.tick(self.envelope),
.Sweep => @compileError("Channel 4 does not implement Sweep"),
}
}
/// NR41, NR42
pub fn sound4CntL(self: *const Self) u16 {
return @as(u16, self.envelope.raw) << 8;
}
/// NR41, NR42
pub fn setSound4CntL(self: *Self, value: u16) void {
self.setNr41(@truncate(u8, value));
self.setNr42(@truncate(u8, value >> 8));
}
/// NR41
pub fn setNr41(self: *Self, len: u8) void {
self.len = @truncate(u6, len);
self.len_dev.timer = @as(u7, 64) - @truncate(u6, len);
}
/// NR42
pub fn setNr42(self: *Self, value: u8) void {
self.envelope.raw = value;
if (!self.isDacEnabled()) self.enabled = false;
}
/// NR43, NR44
pub fn sound4CntH(self: *const Self) u16 {
return @as(u16, self.poly.raw & 0x40) << 8 | self.cnt.raw;
}
/// NR43, NR44
pub fn setSound4CntH(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.poly.raw = @truncate(u8, value);
self.setNr44(fs, @truncate(u8, value >> 8));
}
/// NR44
pub fn setNr44(self: *Self, fs: *const FrameSequencer, byte: u8) void {
var new: io.NoiseControl = .{ .raw = byte };
if (new.trigger.read()) {
self.enabled = true;
if (self.len_dev.timer == 0) {
self.len_dev.timer =
if (!fs.isLengthNext() and new.length_enable.read()) 63 else 64;
}
// Update The Frequency Timer
self.lfsr.reload(self.poly);
self.lfsr.shift = 0x7FFF;
// Update Envelope and Volume
self.env_dev.timer = self.envelope.period.read();
if (fs.isEnvelopeNext() and self.env_dev.timer != 0b111) self.env_dev.timer += 1;
self.env_dev.vol = self.envelope.init_vol.read();
self.enabled = self.isDacEnabled();
}
util.audio.length.ch4.update(self, fs, new);
self.cnt = new;
}
pub fn onNoiseEvent(self: *Self, late: u64) void {
self.lfsr.onLfsrTimerExpire(self.poly, late);
self.sample = 0;
if (!self.isDacEnabled()) return;
self.sample = if (self.enabled) self.lfsr.sample() * @as(i8, self.env_dev.vol) else 0;
}
fn isDacEnabled(self: *const Self) bool {
return self.envelope.raw & 0xF8 != 0x00;
}

141
src/core/apu/Tone.zig Normal file
View File

@@ -0,0 +1,141 @@
const io = @import("../bus/io.zig");
const util = @import("../../util.zig");
const Scheduler = @import("../scheduler.zig").Scheduler;
const FrameSequencer = @import("../apu.zig").FrameSequencer;
const Tick = @import("../apu.zig").Apu.Tick;
const Length = @import("device/Length.zig");
const Envelope = @import("device/Envelope.zig");
const Square = @import("signal/Square.zig");
const Self = @This();
/// NR21
duty: io.Duty,
/// NR22
envelope: io.Envelope,
/// NR23, NR24
freq: io.Frequency,
/// Length Functionarlity
len_dev: Length,
/// Envelope Functionality
env_dev: Envelope,
/// FrequencyTimer Functionality
square: Square,
enabled: bool,
sample: i8,
pub fn init(sched: *Scheduler) Self {
return .{
.duty = .{ .raw = 0 },
.envelope = .{ .raw = 0 },
.freq = .{ .raw = 0 },
.enabled = false,
.square = Square.init(sched),
.len_dev = Length.create(),
.env_dev = Envelope.create(),
.sample = 0,
};
}
pub fn reset(self: *Self) void {
self.duty.raw = 0; // NR21
self.envelope.raw = 0; // NR22
self.freq.raw = 0; // NR32, NR24
self.len_dev.reset();
self.env_dev.reset();
self.sample = 0;
self.enabled = false;
}
pub fn tick(self: *Self, comptime kind: Tick) void {
switch (kind) {
.Length => self.len_dev.tick(self.freq.length_enable.read(), &self.enabled),
.Envelope => self.env_dev.tick(self.envelope),
.Sweep => @compileError("Channel 2 does not implement Sweep"),
}
}
pub fn onToneEvent(self: *Self, late: u64) void {
self.square.onSquareTimerExpire(Self, self.freq, late);
self.sample = 0;
if (!self.isDacEnabled()) return;
self.sample = if (self.enabled) self.square.sample(self.duty) * @as(i8, self.env_dev.vol) else 0;
}
/// NR21, NR22
pub fn sound2CntL(self: *const Self) u16 {
return @as(u16, self.envelope.raw) << 8 | (self.duty.raw & 0xC0);
}
/// NR21, NR22
pub fn setSound2CntL(self: *Self, value: u16) void {
self.setNr21(@truncate(u8, value));
self.setNr22(@truncate(u8, value >> 8));
}
/// NR21
pub fn setNr21(self: *Self, value: u8) void {
self.duty.raw = value;
self.len_dev.timer = @as(u7, 64) - @truncate(u6, value);
}
/// NR22
pub fn setNr22(self: *Self, value: u8) void {
self.envelope.raw = value;
if (!self.isDacEnabled()) self.enabled = false;
}
/// NR23, NR24
pub fn sound2CntH(self: *const Self) u16 {
return self.freq.raw & 0x4000;
}
/// NR23, NR24
pub fn setSound2CntH(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setNr23(@truncate(u8, value));
self.setNr24(fs, @truncate(u8, value >> 8));
}
/// NR23
pub fn setNr23(self: *Self, byte: u8) void {
self.freq.raw = (self.freq.raw & 0xFF00) | byte;
}
/// NR24
pub fn setNr24(self: *Self, fs: *const FrameSequencer, byte: u8) void {
var new: io.Frequency = .{ .raw = (@as(u16, byte) << 8) | (self.freq.raw & 0xFF) };
if (new.trigger.read()) {
self.enabled = true;
if (self.len_dev.timer == 0) {
self.len_dev.timer =
if (!fs.isLengthNext() and new.length_enable.read()) 63 else 64;
}
self.square.reload(Self, self.freq.frequency.read());
// Reload Envelope period and timer
self.env_dev.timer = self.envelope.period.read();
if (fs.isEnvelopeNext() and self.env_dev.timer != 0b111) self.env_dev.timer += 1;
self.env_dev.vol = self.envelope.init_vol.read();
self.enabled = self.isDacEnabled();
}
util.audio.length.update(Self, self, fs, new);
self.freq = new;
}
fn isDacEnabled(self: *const Self) bool {
return self.envelope.raw & 0xF8 != 0;
}

185
src/core/apu/ToneSweep.zig Normal file
View File

@@ -0,0 +1,185 @@
const io = @import("../bus/io.zig");
const util = @import("../../util.zig");
const Scheduler = @import("../scheduler.zig").Scheduler;
const FrameSequencer = @import("../apu.zig").FrameSequencer;
const Length = @import("device/Length.zig");
const Envelope = @import("device/Envelope.zig");
const Sweep = @import("device/Sweep.zig");
const Square = @import("signal/Square.zig");
const Tick = @import("../apu.zig").Apu.Tick;
const Self = @This();
/// NR10
sweep: io.Sweep,
/// NR11
duty: io.Duty,
/// NR12
envelope: io.Envelope,
/// NR13, NR14
freq: io.Frequency,
/// Length Functionality
len_dev: Length,
/// Sweep Functionality
sweep_dev: Sweep,
/// Envelope Functionality
env_dev: Envelope,
/// Frequency Timer Functionality
square: Square,
enabled: bool,
sample: i8,
pub fn init(sched: *Scheduler) Self {
return .{
.sweep = .{ .raw = 0 },
.duty = .{ .raw = 0 },
.envelope = .{ .raw = 0 },
.freq = .{ .raw = 0 },
.sample = 0,
.enabled = false,
.square = Square.init(sched),
.len_dev = Length.create(),
.sweep_dev = Sweep.create(),
.env_dev = Envelope.create(),
};
}
pub fn reset(self: *Self) void {
self.sweep.raw = 0; // NR10
self.duty.raw = 0; // NR11
self.envelope.raw = 0; // NR12
self.freq.raw = 0; // NR13, NR14
self.len_dev.reset();
self.sweep_dev.reset();
self.env_dev.reset();
self.sample = 0;
self.enabled = false;
}
pub fn tick(self: *Self, comptime kind: Tick) void {
switch (kind) {
.Length => self.len_dev.tick(self.freq.length_enable.read(), &self.enabled),
.Envelope => self.env_dev.tick(self.envelope),
.Sweep => self.sweep_dev.tick(self),
}
}
pub fn onToneSweepEvent(self: *Self, late: u64) void {
self.square.onSquareTimerExpire(Self, self.freq, late);
self.sample = 0;
if (!self.isDacEnabled()) return;
self.sample = if (self.enabled) self.square.sample(self.duty) * @as(i8, self.env_dev.vol) else 0;
}
/// NR10, NR11, NR12
pub fn setSound1Cnt(self: *Self, value: u32) void {
self.setSound1CntL(@truncate(u8, value));
self.setSound1CntH(@truncate(u16, value >> 16));
}
/// NR10
pub fn sound1CntL(self: *const Self) u8 {
return self.sweep.raw & 0x7F;
}
/// NR10
pub fn setSound1CntL(self: *Self, value: u8) void {
const new = io.Sweep{ .raw = value };
if (!new.direction.read()) {
// If at least one (1) sweep calculation has been made with
// the negate bit set (since last trigger), disable the channel
if (self.sweep_dev.calc_performed) self.enabled = false;
}
self.sweep.raw = value;
}
/// NR11, NR12
pub fn sound1CntH(self: *const Self) u16 {
return @as(u16, self.envelope.raw) << 8 | (self.duty.raw & 0xC0);
}
/// NR11, NR12
pub fn setSound1CntH(self: *Self, value: u16) void {
self.setNr11(@truncate(u8, value));
self.setNr12(@truncate(u8, value >> 8));
}
/// NR11
pub fn setNr11(self: *Self, value: u8) void {
self.duty.raw = value;
self.len_dev.timer = @as(u7, 64) - @truncate(u6, value);
}
/// NR12
pub fn setNr12(self: *Self, value: u8) void {
self.envelope.raw = value;
if (!self.isDacEnabled()) self.enabled = false;
}
/// NR13, NR14
pub fn sound1CntX(self: *const Self) u16 {
return self.freq.raw & 0x4000;
}
/// NR13, NR14
pub fn setSound1CntX(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setNr13(@truncate(u8, value));
self.setNr14(fs, @truncate(u8, value >> 8));
}
/// NR13
pub fn setNr13(self: *Self, byte: u8) void {
self.freq.raw = (self.freq.raw & 0xFF00) | byte;
}
/// NR14
pub fn setNr14(self: *Self, fs: *const FrameSequencer, byte: u8) void {
var new: io.Frequency = .{ .raw = (@as(u16, byte) << 8) | (self.freq.raw & 0xFF) };
if (new.trigger.read()) {
self.enabled = true;
if (self.len_dev.timer == 0) {
self.len_dev.timer =
if (!fs.isLengthNext() and new.length_enable.read()) 63 else 64;
}
self.square.reload(Self, self.freq.frequency.read());
// Reload Envelope period and timer
self.env_dev.timer = self.envelope.period.read();
if (fs.isEnvelopeNext() and self.env_dev.timer != 0b111) self.env_dev.timer += 1;
self.env_dev.vol = self.envelope.init_vol.read();
// Sweep Trigger Behaviour
const sw_period = self.sweep.period.read();
const sw_shift = self.sweep.shift.read();
self.sweep_dev.calc_performed = false;
self.sweep_dev.shadow = self.freq.frequency.read();
self.sweep_dev.timer = if (sw_period == 0) 8 else sw_period;
self.sweep_dev.enabled = sw_period != 0 or sw_shift != 0;
if (sw_shift != 0) _ = self.sweep_dev.calculate(self.sweep, &self.enabled);
self.enabled = self.isDacEnabled();
}
util.audio.length.update(Self, self, fs, new);
self.freq = new;
}
fn isDacEnabled(self: *const Self) bool {
return self.envelope.raw & 0xF8 != 0;
}

145
src/core/apu/Wave.zig Normal file
View File

@@ -0,0 +1,145 @@
const io = @import("../bus/io.zig");
const util = @import("../../util.zig");
const Scheduler = @import("../scheduler.zig").Scheduler;
const FrameSequencer = @import("../apu.zig").FrameSequencer;
const Tick = @import("../apu.zig").Apu.Tick;
const Length = @import("device/Length.zig");
const Wave = @import("signal/Wave.zig");
const Self = @This();
/// Write-only
/// NR30
select: io.WaveSelect,
/// NR31
length: u8,
/// NR32
vol: io.WaveVolume,
/// NR33, NR34
freq: io.Frequency,
/// Length Functionarlity
len_dev: Length,
wave_dev: Wave,
enabled: bool,
sample: i8,
pub fn init(sched: *Scheduler) Self {
return .{
.select = .{ .raw = 0 },
.vol = .{ .raw = 0 },
.freq = .{ .raw = 0 },
.length = 0,
.len_dev = Length.create(),
.wave_dev = Wave.init(sched),
.enabled = false,
.sample = 0,
};
}
pub fn reset(self: *Self) void {
self.select.raw = 0; // NR30
self.length = 0; // NR31
self.vol.raw = 0; // NR32
self.freq.raw = 0; // NR33, NR34
self.len_dev.reset();
self.wave_dev.reset();
self.sample = 0;
self.enabled = false;
}
pub fn tick(self: *Self, comptime kind: Tick) void {
switch (kind) {
.Length => self.len_dev.tick(self.freq.length_enable.read(), &self.enabled),
.Envelope => @compileError("Channel 3 does not implement Envelope"),
.Sweep => @compileError("Channel 3 does not implement Sweep"),
}
}
/// NR30, NR31, NR32
pub fn setSound3Cnt(self: *Self, value: u32) void {
self.setSound3CntL(@truncate(u8, value));
self.setSound3CntH(@truncate(u16, value >> 16));
}
/// NR30
pub fn setSound3CntL(self: *Self, value: u8) void {
self.select.raw = value;
if (!self.select.enabled.read()) self.enabled = false;
}
/// NR30
pub fn sound3CntL(self: *const Self) u8 {
return self.select.raw & 0xE0;
}
/// NR31, NR32
pub fn sound3CntH(self: *const Self) u16 {
return @as(u16, self.length & 0xE0) << 8;
}
/// NR31, NR32
pub fn setSound3CntH(self: *Self, value: u16) void {
self.setNr31(@truncate(u8, value));
self.vol.raw = (@truncate(u8, value >> 8));
}
/// NR31
pub fn setNr31(self: *Self, len: u8) void {
self.length = len;
self.len_dev.timer = 256 - @as(u9, len);
}
/// NR33, NR34
pub fn setSound3CntX(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setNr33(@truncate(u8, value));
self.setNr34(fs, @truncate(u8, value >> 8));
}
/// NR33, NR34
pub fn sound3CntX(self: *const Self) u16 {
return self.freq.raw & 0x4000;
}
/// NR33
pub fn setNr33(self: *Self, byte: u8) void {
self.freq.raw = (self.freq.raw & 0xFF00) | byte;
}
/// NR34
pub fn setNr34(self: *Self, fs: *const FrameSequencer, byte: u8) void {
var new: io.Frequency = .{ .raw = (@as(u16, byte) << 8) | (self.freq.raw & 0xFF) };
if (new.trigger.read()) {
self.enabled = true;
if (self.len_dev.timer == 0) {
self.len_dev.timer =
if (!fs.isLengthNext() and new.length_enable.read()) 255 else 256;
}
// Update The Frequency Timer
self.wave_dev.reload(self.freq.frequency.read());
self.wave_dev.offset = 0;
self.enabled = self.select.enabled.read();
}
util.audio.length.update(Self, self, fs, new);
self.freq = new;
}
pub fn onWaveEvent(self: *Self, late: u64) void {
self.wave_dev.onWaveTimerExpire(self.freq, self.select, late);
self.sample = 0;
if (!self.select.enabled.read()) return;
// Convert unsigned 4-bit wave sample to signed 8-bit sample
self.sample = (2 * @as(i8, self.wave_dev.sample(self.select)) - 15) >> self.wave_dev.shift(self.vol);
}

View File

@@ -0,0 +1,33 @@
const io = @import("../../bus/io.zig");
const Self = @This();
/// Period Timer
timer: u3,
/// Current Volume
vol: u4,
pub fn create() Self {
return .{ .timer = 0, .vol = 0 };
}
pub fn reset(self: *Self) void {
self.timer = 0;
self.vol = 0;
}
pub fn tick(self: *Self, nrx2: io.Envelope) void {
if (nrx2.period.read() != 0) {
if (self.timer != 0) self.timer -= 1;
if (self.timer == 0) {
self.timer = nrx2.period.read();
if (nrx2.direction.read()) {
if (self.vol < 0xF) self.vol += 1;
} else {
if (self.vol > 0x0) self.vol -= 1;
}
}
}
}

View File

@@ -0,0 +1,22 @@
const Self = @This();
timer: u9,
pub fn create() Self {
return .{ .timer = 0 };
}
pub fn reset(self: *Self) void {
self.timer = 0;
}
pub fn tick(self: *Self, enabled: bool, ch_enable: *bool) void {
if (enabled) {
if (self.timer == 0) return;
self.timer -= 1;
// By returning early if timer == 0, this is only
// true if timer == 0 because of the decrement we just did
if (self.timer == 0) ch_enable.* = false;
}
}

View File

@@ -0,0 +1,61 @@
const io = @import("../../bus/io.zig");
const ToneSweep = @import("../ToneSweep.zig");
const Self = @This();
timer: u8,
enabled: bool,
shadow: u11,
calc_performed: bool,
pub fn create() Self {
return .{
.timer = 0,
.enabled = false,
.shadow = 0,
.calc_performed = false,
};
}
pub fn reset(self: *Self) void {
self.timer = 0;
self.enabled = false;
self.shadow = 0;
self.calc_performed = false;
}
pub fn tick(self: *Self, ch1: *ToneSweep) void {
if (self.timer != 0) self.timer -= 1;
if (self.timer == 0) {
const period = ch1.sweep.period.read();
self.timer = if (period == 0) 8 else period;
if (self.enabled and period != 0) {
const new_freq = self.calculate(ch1.sweep, &ch1.enabled);
if (new_freq <= 0x7FF and ch1.sweep.shift.read() != 0) {
ch1.freq.frequency.write(@truncate(u11, new_freq));
self.shadow = @truncate(u11, new_freq);
_ = self.calculate(ch1.sweep, &ch1.enabled);
}
}
}
}
/// Calculates the Sweep Frequency
pub fn calculate(self: *Self, sweep: io.Sweep, ch_enable: *bool) u12 {
const shadow = @as(u12, self.shadow);
const shadow_shifted = shadow >> sweep.shift.read();
const decrease = sweep.direction.read();
const freq = if (decrease) blk: {
self.calc_performed = true;
break :blk shadow - shadow_shifted;
} else shadow + shadow_shifted;
if (freq > 0x7FF) ch_enable.* = false;
return freq;
}

View File

@@ -0,0 +1,62 @@
//! Linear Feedback Shift Register
const io = @import("../../bus/io.zig");
const Scheduler = @import("../../scheduler.zig").Scheduler;
const Self = @This();
pub const interval: u64 = (1 << 24) / (1 << 22);
shift: u15,
timer: u16,
sched: *Scheduler,
pub fn create(sched: *Scheduler) Self {
return .{
.shift = 0,
.timer = 0,
.sched = sched,
};
}
pub fn reset(self: *Self) void {
self.shift = 0;
self.timer = 0;
}
pub fn sample(self: *const Self) i8 {
return if ((~self.shift & 1) == 1) 1 else -1;
}
/// Reload LFSR Timer
pub fn reload(self: *Self, poly: io.PolyCounter) void {
self.sched.removeScheduledEvent(.{ .ApuChannel = 3 });
const div = Self.divisor(poly.div_ratio.read());
const timer = div << poly.shift.read();
self.sched.push(.{ .ApuChannel = 3 }, @as(u64, timer) * interval);
}
/// Scheduler Event Handler for LFSR Timer Expire
/// FIXME: This gets called a lot, slowing down the scheduler
pub fn onLfsrTimerExpire(self: *Self, poly: io.PolyCounter, late: u64) void {
// Obscure: "Using a noise channel clock shift of 14 or 15
// results in the LFSR receiving no clocks."
if (poly.shift.read() >= 14) return;
const div = Self.divisor(poly.div_ratio.read());
const timer = div << poly.shift.read();
const tmp = (self.shift & 1) ^ ((self.shift & 2) >> 1);
self.shift = (self.shift >> 1) | (tmp << 14);
if (poly.width.read())
self.shift = (self.shift & ~@as(u15, 0x40)) | tmp << 6;
self.sched.push(.{ .ApuChannel = 3 }, @as(u64, timer) * interval -| late);
}
fn divisor(code: u3) u16 {
if (code == 0) return 8;
return @as(u16, code) << 4;
}

View File

@@ -0,0 +1,62 @@
const std = @import("std");
const io = @import("../../bus/io.zig");
const Scheduler = @import("../../scheduler.zig").Scheduler;
const ToneSweep = @import("../ToneSweep.zig");
const Tone = @import("../Tone.zig");
const Self = @This();
pub const interval: u64 = (1 << 24) / (1 << 22);
pos: u3,
sched: *Scheduler,
timer: u16,
pub fn init(sched: *Scheduler) Self {
return .{
.timer = 0,
.pos = 0,
.sched = sched,
};
}
pub fn reset(self: *Self) void {
self.timer = 0;
self.pos = 0;
}
/// Scheduler Event Handler for Square Synth Timer Expire
pub fn onSquareTimerExpire(self: *Self, comptime T: type, nrx34: io.Frequency, late: u64) void {
comptime std.debug.assert(T == ToneSweep or T == Tone);
self.pos +%= 1;
self.timer = (@as(u16, 2048) - nrx34.frequency.read()) * 4;
self.sched.push(.{ .ApuChannel = if (T == ToneSweep) 0 else 1 }, @as(u64, self.timer) * interval -| late);
}
/// Reload Square Wave Timer
pub fn reload(self: *Self, comptime T: type, value: u11) void {
comptime std.debug.assert(T == ToneSweep or T == Tone);
const channel = if (T == ToneSweep) 0 else 1;
self.sched.removeScheduledEvent(.{ .ApuChannel = channel });
const tmp = (@as(u16, 2048) - value) * 4; // What Freq Timer should be assuming no weird behaviour
self.timer = (tmp & ~@as(u16, 0x3)) | self.timer & 0x3; // Keep the last two bits from the old timer;
self.sched.push(.{ .ApuChannel = channel }, @as(u64, self.timer) * interval);
}
pub fn sample(self: *const Self, nrx1: io.Duty) i8 {
const pattern = nrx1.pattern.read();
const i = self.pos ^ 7; // index of 0 should get highest bit
const result = switch (pattern) {
0b00 => @as(u8, 0b00000001) >> i, // 12.5%
0b01 => @as(u8, 0b00000011) >> i, // 25%
0b10 => @as(u8, 0b00001111) >> i, // 50%
0b11 => @as(u8, 0b11111100) >> i, // 75%
};
return if (result & 1 == 1) 1 else -1;
}

View File

@@ -0,0 +1,84 @@
const std = @import("std");
const io = @import("../../bus/io.zig");
const Scheduler = @import("../../scheduler.zig").Scheduler;
const buf_len = 0x20;
pub const interval: u64 = (1 << 24) / (1 << 22);
const Self = @This();
buf: [buf_len]u8,
timer: u16,
offset: u12,
sched: *Scheduler,
pub fn read(self: *const Self, comptime T: type, nr30: io.WaveSelect, addr: u32) T {
// TODO: Handle reads when Channel 3 is disabled
const base = if (!nr30.bank.read()) @as(u32, 0x10) else 0; // Read from the Opposite Bank in Use
const i = base + addr - 0x0400_0090;
return std.mem.readIntSliceLittle(T, self.buf[i..][0..@sizeOf(T)]);
}
pub fn write(self: *Self, comptime T: type, nr30: io.WaveSelect, addr: u32, value: T) void {
// TODO: Handle writes when Channel 3 is disabled
const base = if (!nr30.bank.read()) @as(u32, 0x10) else 0; // Write to the Opposite Bank in Use
const i = base + addr - 0x0400_0090;
std.mem.writeIntSliceLittle(T, self.buf[i..][0..@sizeOf(T)], value);
}
pub fn init(sched: *Scheduler) Self {
return .{
.buf = [_]u8{0x00} ** buf_len,
.timer = 0,
.offset = 0,
.sched = sched,
};
}
pub fn reset(self: *Self) void {
self.timer = 0;
self.offset = 0;
// sample buffer isn't reset because it's outside of the range of what NR52{7}'s effects
}
/// Reload internal Wave Timer
pub fn reload(self: *Self, value: u11) void {
self.sched.removeScheduledEvent(.{ .ApuChannel = 2 });
self.timer = (@as(u16, 2048) - value) * 2;
self.sched.push(.{ .ApuChannel = 2 }, @as(u64, self.timer) * interval);
}
/// Scheduler Event Handler
pub fn onWaveTimerExpire(self: *Self, nrx34: io.Frequency, nr30: io.WaveSelect, late: u64) void {
if (nr30.dimension.read()) {
self.offset = (self.offset + 1) % 0x40; // 0x20 bytes (both banks), which contain 2 samples each
} else {
self.offset = (self.offset + 1) % 0x20; // 0x10 bytes, which contain 2 samples each
}
self.timer = (@as(u16, 2048) - nrx34.frequency.read()) * 2;
self.sched.push(.{ .ApuChannel = 2 }, @as(u64, self.timer) * interval -| late);
}
/// Generate Sample from Wave Synth
pub fn sample(self: *const Self, nr30: io.WaveSelect) u4 {
const base = if (nr30.bank.read()) @as(u32, 0x10) else 0;
const value = self.buf[base + self.offset / 2];
return if (self.offset & 1 == 0) @truncate(u4, value >> 4) else @truncate(u4, value);
}
/// TODO: Write comment
pub fn shift(_: *const Self, nr32: io.WaveVolume) u2 {
return switch (nr32.kind.read()) {
0b00 => 3, // Mute / Zero
0b01 => 0, // 100% Volume
0b10 => 1, // 50% Volume
0b11 => 2, // 25% Volume
};
}

83
src/core/bus/Bios.zig Normal file
View File

@@ -0,0 +1,83 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Bios);
const rotr = @import("../../util.zig").rotr;
const forceAlign = @import("../Bus.zig").forceAlign;
/// Size of the BIOS in bytes
pub const size = 0x4000;
const Self = @This();
buf: ?[]u8,
allocator: Allocator,
addr_latch: u32 = 0,
// https://github.com/ITotalJustice/notorious_beeg/issues/106
pub fn read(self: *Self, comptime T: type, r15: u32, address: u32) T {
if (r15 < Self.size) {
const addr = forceAlign(T, address);
self.addr_latch = addr;
return self._read(T, addr);
}
log.warn("Open Bus! Read from 0x{X:0>8}, but PC was 0x{X:0>8}", .{ address, r15 });
const value = self._read(u32, self.addr_latch);
return @truncate(T, rotr(u32, value, 8 * rotateBy(T, address)));
}
fn rotateBy(comptime T: type, address: u32) u32 {
return switch (T) {
u8 => address & 3,
u16 => address & 2,
u32 => 0,
else => @compileError("bios: unsupported read width"),
};
}
pub fn dbgRead(self: *const Self, comptime T: type, r15: u32, address: u32) T {
if (r15 < Self.size) return self._read(T, forceAlign(T, address));
const value = self._read(u32, self.addr_latch);
return @truncate(T, rotr(u32, value, 8 * rotateBy(T, address)));
}
/// Read without the GBA safety checks
fn _read(self: *const Self, comptime T: type, addr: u32) T {
const buf = self.buf orelse std.debug.panic("[BIOS] ZBA tried to read {} from 0x{X:0>8} but not BIOS was present", .{ T, addr });
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, buf[addr..][0..@sizeOf(T)]),
else => @compileError("BIOS: Unsupported read width"),
};
}
pub fn write(_: *Self, comptime T: type, addr: u32, value: T) void {
@setCold(true);
log.debug("Tried to write {} 0x{X:} to 0x{X:0>8} ", .{ T, value, addr });
}
pub fn init(allocator: Allocator, maybe_path: ?[]const u8) !Self {
if (maybe_path == null) return .{ .buf = null, .allocator = allocator };
const path = maybe_path.?;
const buf = try allocator.alloc(u8, Self.size);
errdefer allocator.free(buf);
const file = try std.fs.cwd().openFile(path, .{});
defer file.close();
const file_len = try file.readAll(buf);
if (file_len != Self.size) log.err("Expected BIOS to be {}B, was {}B", .{ Self.size, file_len });
return Self{ .buf = buf, .allocator = allocator };
}
pub fn deinit(self: *Self) void {
if (self.buf) |buf| self.allocator.free(buf);
self.* = undefined;
}

41
src/core/bus/Ewram.zig Normal file
View File

@@ -0,0 +1,41 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const ewram_size = 0x40000;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FFFF;
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
else => @compileError("EWRAM: Unsupported read width"),
};
}
pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x3FFFF;
return switch (T) {
u32, u16, u8 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
else => @compileError("EWRAM: Unsupported write width"),
};
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, ewram_size);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.allocator = allocator,
};
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}

256
src/core/bus/GamePak.zig Normal file
View File

@@ -0,0 +1,256 @@
const std = @import("std");
const config = @import("../../config.zig");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Backup = @import("backup.zig").Backup;
const Gpio = @import("gpio.zig").Gpio;
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.GamePak);
const Self = @This();
title: [12]u8,
buf: []u8,
allocator: Allocator,
backup: Backup,
gpio: *Gpio,
pub fn read(self: *Self, comptime T: type, address: u32) T {
const addr = address & 0x1FF_FFFF;
if (self.backup.kind == .Eeprom) {
if (self.buf.len > 0x100_0000) { // Large
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
if (addr > 0x1FF_FEFF)
return self.backup.eeprom.read();
} else {
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
return self.backup.eeprom.read();
}
}
if (self.gpio.cnt == 1) {
// GPIO Can be read from
// We assume that this will only be true when a ROM actually does want something from GPIO
switch (T) {
u32 => switch (address) {
// TODO: Do I even need to implement these?
0x0800_00C4 => std.debug.panic("Handle 32-bit GPIO Data/Direction Reads", .{}),
0x0800_00C6 => std.debug.panic("Handle 32-bit GPIO Direction/Control Reads", .{}),
0x0800_00C8 => std.debug.panic("Handle 32-bit GPIO Control Reads", .{}),
else => {},
},
u16 => switch (address) {
// FIXME: What do 16-bit GPIO Reads look like?
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
else => {},
},
u8 => switch (address) {
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
else => {},
},
else => @compileError("GamePak[GPIO]: Unsupported read width"),
}
}
return switch (T) {
u32 => (@as(T, self.get(addr + 3)) << 24) | (@as(T, self.get(addr + 2)) << 16) | (@as(T, self.get(addr + 1)) << 8) | (@as(T, self.get(addr))),
u16 => (@as(T, self.get(addr + 1)) << 8) | @as(T, self.get(addr)),
u8 => self.get(addr),
else => @compileError("GamePak: Unsupported read width"),
};
}
inline fn get(self: *const Self, i: u32) u8 {
@setRuntimeSafety(false);
if (i < self.buf.len) return self.buf[i];
const lhs = i >> 1 & 0xFFFF;
return @truncate(u8, lhs >> 8 * @truncate(u5, i & 1));
}
pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
const addr = address & 0x1FF_FFFF;
if (self.backup.kind == .Eeprom) {
if (self.buf.len > 0x100_0000) { // Large
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
if (addr > 0x1FF_FEFF)
return self.backup.eeprom.dbgRead();
} else {
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
return self.backup.eeprom.dbgRead();
}
}
if (self.gpio.cnt == 1) {
// GPIO Can be read from
// We assume that this will only be true when a ROM actually does want something from GPIO
switch (T) {
u32 => switch (address) {
// FIXME: Do I even need to implement these?
0x0800_00C4 => std.debug.panic("Handle 32-bit GPIO Data/Direction Reads", .{}),
0x0800_00C6 => std.debug.panic("Handle 32-bit GPIO Direction/Control Reads", .{}),
0x0800_00C8 => std.debug.panic("Handle 32-bit GPIO Control Reads", .{}),
else => {},
},
u16 => switch (address) {
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
else => {},
},
u8 => switch (address) {
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
else => {},
},
else => @compileError("GamePak[GPIO]: Unsupported read width"),
}
}
return switch (T) {
u32 => (@as(T, self.get(addr + 3)) << 24) | (@as(T, self.get(addr + 2)) << 16) | (@as(T, self.get(addr + 1)) << 8) | (@as(T, self.get(addr))),
u16 => (@as(T, self.get(addr + 1)) << 8) | @as(T, self.get(addr)),
u8 => self.get(addr),
else => @compileError("GamePak: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value: T) void {
const addr = address & 0x1FF_FFFF;
if (self.backup.kind == .Eeprom) {
const bit = @truncate(u1, value);
if (self.buf.len > 0x100_0000) { // Large
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
if (addr > 0x1FF_FEFF)
return self.backup.eeprom.write(word_count, &self.backup.buf, bit);
} else {
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
return self.backup.eeprom.write(word_count, &self.backup.buf, bit);
}
}
switch (T) {
u32 => switch (address) {
0x0800_00C4 => {
self.gpio.write(.Data, @truncate(u4, value));
self.gpio.write(.Direction, @truncate(u4, value >> 16));
},
0x0800_00C6 => {
self.gpio.write(.Direction, @truncate(u4, value));
self.gpio.write(.Control, @truncate(u1, value >> 16));
},
else => log.err("Wrote {} 0x{X:0>8} to 0x{X:0>8}, Unhandled", .{ T, value, address }),
},
u16 => switch (address) {
0x0800_00C4 => self.gpio.write(.Data, @truncate(u4, value)),
0x0800_00C6 => self.gpio.write(.Direction, @truncate(u4, value)),
0x0800_00C8 => self.gpio.write(.Control, @truncate(u1, value)),
else => log.err("Wrote {} 0x{X:0>4} to 0x{X:0>8}, Unhandled", .{ T, value, address }),
},
u8 => log.debug("Wrote {} 0x{X:0>2} to 0x{X:0>8}, Ignored.", .{ T, value, address }),
else => @compileError("GamePak: Unsupported write width"),
}
}
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, rom_path: []const u8, save_path: ?[]const u8) !Self {
const file = try std.fs.cwd().openFile(rom_path, .{});
defer file.close();
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
const title = file_buf[0xA0..0xAC].*;
const kind = Backup.guess(file_buf);
const device = if (config.config().guest.force_rtc) .Rtc else guessDevice(file_buf);
logHeader(file_buf, &title);
return .{
.buf = file_buf,
.allocator = allocator,
.title = title,
.backup = try Backup.init(allocator, kind, title, save_path),
.gpio = try Gpio.init(allocator, cpu, device),
};
}
pub fn deinit(self: *Self) void {
self.backup.deinit();
self.gpio.deinit(self.allocator);
self.allocator.destroy(self.gpio);
self.allocator.free(self.buf);
self.* = undefined;
}
/// Searches the ROM to see if it can determine whether the ROM it's searching uses
/// any GPIO device, like a RTC for example.
fn guessDevice(buf: []const u8) Gpio.Device.Kind {
// Try to Guess if ROM uses RTC
const needle = "RTC_V"; // I was told SIIRTC_V, though Pokemen Firered (USA) is a false negative
// TODO: Use new for loop syntax?
var i: usize = 0;
while ((i + needle.len) < buf.len) : (i += 1) {
if (std.mem.eql(u8, needle, buf[i..(i + needle.len)])) return .Rtc;
}
// TODO: Detect other GPIO devices
return .None;
}
fn logHeader(buf: []const u8, title: *const [12]u8) void {
const code = buf[0xAC..0xB0];
const maker = buf[0xB0..0xB2];
const version = buf[0xBC];
log.info("Title: {s}", .{title});
if (version != 0) log.info("Version: {}", .{version});
log.info("Game Code: {s}", .{code});
log.info("Maker Code: {s}", .{maker});
}
test "OOB Access" {
const title = .{ 'H', 'E', 'L', 'L', 'O', ' ', 'W', 'O', 'R', 'L', 'D', '!' };
const alloc = std.testing.allocator;
const pak = Self{
.buf = &.{},
.alloc = alloc,
.title = title,
.backup = try Backup.init(alloc, .None, title, null),
};
std.debug.assert(pak.get(0) == 0x00); // 0x0000
std.debug.assert(pak.get(1) == 0x00);
std.debug.assert(pak.get(2) == 0x01); // 0x0001
std.debug.assert(pak.get(3) == 0x00);
std.debug.assert(pak.get(4) == 0x02); // 0x0002
std.debug.assert(pak.get(5) == 0x00);
}

41
src/core/bus/Iwram.zig Normal file
View File

@@ -0,0 +1,41 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const iwram_size = 0x8000;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x7FFF;
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
else => @compileError("IWRAM: Unsupported read width"),
};
}
pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x7FFF;
return switch (T) {
u32, u16, u8 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
else => @compileError("IWRAM: Unsupported write width"),
};
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, iwram_size);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.allocator = allocator,
};
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}

219
src/core/bus/backup.zig Normal file
View File

@@ -0,0 +1,219 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Backup);
const Eeprom = @import("backup/eeprom.zig").Eeprom;
const Flash = @import("backup/Flash.zig");
const escape = @import("../../util.zig").escape;
const Needle = struct { str: []const u8, kind: Backup.Kind };
const backup_kinds = [6]Needle{
.{ .str = "EEPROM_V", .kind = .Eeprom },
.{ .str = "SRAM_V", .kind = .Sram },
.{ .str = "SRAM_F_V", .kind = .Sram },
.{ .str = "FLASH_V", .kind = .Flash },
.{ .str = "FLASH512_V", .kind = .Flash },
.{ .str = "FLASH1M_V", .kind = .Flash1M },
};
const SaveError = error{Unsupported};
pub const Backup = struct {
const Self = @This();
buf: []u8,
allocator: Allocator,
kind: Kind,
title: [12]u8,
save_path: ?[]const u8,
flash: Flash,
eeprom: Eeprom,
const Kind = enum {
Eeprom,
Sram,
Flash,
Flash1M,
None,
};
pub fn read(self: *const Self, address: usize) u8 {
const addr = address & 0xFFFF;
switch (self.kind) {
.Flash => {
switch (addr) {
0x0000 => if (self.flash.id_mode) return 0x32, // Panasonic manufacturer ID
0x0001 => if (self.flash.id_mode) return 0x1B, // Panasonic device ID
else => {},
}
return self.flash.read(self.buf, addr);
},
.Flash1M => {
switch (addr) {
0x0000 => if (self.flash.id_mode) return 0x62, // Sanyo manufacturer ID
0x0001 => if (self.flash.id_mode) return 0x13, // Sanyo device ID
else => {},
}
return self.flash.read(self.buf, addr);
},
.Sram => return self.buf[addr & 0x7FFF], // 32K SRAM chip is mirrored
.None, .Eeprom => return 0xFF,
}
}
pub fn write(self: *Self, address: usize, byte: u8) void {
const addr = address & 0xFFFF;
switch (self.kind) {
.Flash, .Flash1M => {
if (self.flash.prep_write) return self.flash.write(self.buf, addr, byte);
if (self.flash.shouldEraseSector(addr, byte)) return self.flash.erase(self.buf, addr);
switch (addr) {
0x0000 => if (self.kind == .Flash1M and self.flash.set_bank) {
self.flash.bank = @truncate(u1, byte);
},
0x5555 => {
if (self.flash.state == .Command) {
self.flash.handleCommand(self.buf, byte);
} else if (byte == 0xAA and self.flash.state == .Ready) {
self.flash.state = .Set;
} else if (byte == 0xF0) {
self.flash.state = .Ready;
}
},
0x2AAA => if (byte == 0x55 and self.flash.state == .Set) {
self.flash.state = .Command;
},
else => {},
}
},
.Sram => self.buf[addr & 0x7FFF] = byte,
.None, .Eeprom => {},
}
}
pub fn init(allocator: Allocator, kind: Kind, title: [12]u8, path: ?[]const u8) !Self {
log.info("Kind: {}", .{kind});
const buf_size: usize = switch (kind) {
.Sram => 0x8000, // 32K
.Flash => 0x10000, // 64K
.Flash1M => 0x20000, // 128K
.None, .Eeprom => 0, // EEPROM is handled upon first Read Request to it
};
const buf = try allocator.alloc(u8, buf_size);
std.mem.set(u8, buf, 0xFF);
var backup = Self{
.buf = buf,
.allocator = allocator,
.kind = kind,
.title = title,
.save_path = path,
.flash = Flash.create(),
.eeprom = Eeprom.create(allocator),
};
if (backup.save_path) |p| backup.readSave(allocator, p) catch |e| log.err("Failed to load save: {}", .{e});
return backup;
}
pub fn deinit(self: *Self) void {
if (self.save_path) |path| self.writeSave(self.allocator, path) catch |e| log.err("Failed to write save: {}", .{e});
self.allocator.free(self.buf);
self.* = undefined;
}
/// Guesses the Backup Kind of a GBA ROM
pub fn guess(rom: []const u8) Kind {
for (backup_kinds) |needle| {
const needle_len = needle.str.len;
// TODO: Use new for loop syntax?
var i: usize = 0;
while ((i + needle_len) < rom.len) : (i += 1) {
if (std.mem.eql(u8, needle.str, rom[i..][0..needle_len])) return needle.kind;
}
}
return .None;
}
fn readSave(self: *Self, allocator: Allocator, path: []const u8) !void {
const file_path = try self.savePath(allocator, path);
defer allocator.free(file_path);
const expected = "untitled.sav";
if (std.mem.eql(u8, file_path[file_path.len - expected.len .. file_path.len], expected)) {
return log.err("ROM header lacks title, no save loaded", .{});
}
const file: std.fs.File = try std.fs.openFileAbsolute(file_path, .{});
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
defer allocator.free(file_buf);
switch (self.kind) {
.Sram, .Flash, .Flash1M => {
if (self.buf.len == file_buf.len) {
std.mem.copy(u8, self.buf, file_buf);
return log.info("Loaded Save from {s}", .{file_path});
}
log.err("{s} is {} bytes, but we expected {} bytes", .{ file_path, file_buf.len, self.buf.len });
},
.Eeprom => {
if (file_buf.len == 0x200 or file_buf.len == 0x2000) {
self.eeprom.kind = if (file_buf.len == 0x200) .Small else .Large;
self.buf = try allocator.alloc(u8, file_buf.len);
std.mem.copy(u8, self.buf, file_buf);
return log.info("Loaded Save from {s}", .{file_path});
}
log.err("EEPROM can either be 0x200 bytes or 0x2000 byes, but {s} was {X:} bytes", .{
file_path,
file_buf.len,
});
},
.None => return SaveError.Unsupported,
}
}
fn savePath(self: *const Self, allocator: Allocator, path: []const u8) ![]const u8 {
const filename = try self.saveName(allocator);
defer allocator.free(filename);
return try std.fs.path.join(allocator, &[_][]const u8{ path, filename });
}
fn saveName(self: *const Self, allocator: Allocator) ![]const u8 {
const title_str = std.mem.sliceTo(&escape(self.title), 0);
const name = if (title_str.len != 0) title_str else "untitled";
return try std.mem.concat(allocator, u8, &[_][]const u8{ name, ".sav" });
}
fn writeSave(self: Self, allocator: Allocator, path: []const u8) !void {
const file_path = try self.savePath(allocator, path);
defer allocator.free(file_path);
switch (self.kind) {
.Sram, .Flash, .Flash1M, .Eeprom => {
const file = try std.fs.createFileAbsolute(file_path, .{});
defer file.close();
try file.writeAll(self.buf);
log.info("Wrote Save to {s}", .{file_path});
},
else => return SaveError.Unsupported,
}
}
};

View File

@@ -0,0 +1,72 @@
const std = @import("std");
const Self = @This();
state: State,
id_mode: bool,
set_bank: bool,
prep_erase: bool,
prep_write: bool,
bank: u1,
const State = enum {
Ready,
Set,
Command,
};
pub fn read(self: *const Self, buf: []u8, idx: usize) u8 {
return buf[self.address() + idx];
}
pub fn write(self: *Self, buf: []u8, idx: usize, byte: u8) void {
buf[self.address() + idx] = byte;
self.prep_write = false;
}
pub fn create() Self {
return .{
.state = .Ready,
.id_mode = false,
.set_bank = false,
.prep_erase = false,
.prep_write = false,
.bank = 0,
};
}
pub fn handleCommand(self: *Self, buf: []u8, byte: u8) void {
switch (byte) {
0x90 => self.id_mode = true,
0xF0 => self.id_mode = false,
0xB0 => self.set_bank = true,
0x80 => self.prep_erase = true,
0x10 => {
std.mem.set(u8, buf, 0xFF);
self.prep_erase = false;
},
0xA0 => self.prep_write = true,
else => std.debug.panic("Unhandled Flash Command: 0x{X:0>2}", .{byte}),
}
self.state = .Ready;
}
pub fn shouldEraseSector(self: *const Self, addr: usize, byte: u8) bool {
return self.state == .Command and self.prep_erase and byte == 0x30 and addr & 0xFFF == 0x000;
}
pub fn erase(self: *Self, buf: []u8, sector: usize) void {
const start = self.address() + (sector & 0xF000);
std.mem.set(u8, buf[start..][0..0x1000], 0xFF);
self.prep_erase = false;
self.state = .Ready;
}
/// Base Address
inline fn address(self: *const Self) usize {
return if (self.bank == 1) 0x10000 else @as(usize, 0);
}

View File

@@ -0,0 +1,269 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Eeprom);
pub const Eeprom = struct {
const Self = @This();
addr: u14,
kind: Kind,
state: State,
writer: Writer,
reader: Reader,
allocator: Allocator,
const Kind = enum {
Unknown,
Small, // 512B
Large, // 8KB
};
const State = enum {
Ready,
Read,
Write,
WriteTransfer,
RequestEnd,
};
pub fn read(self: *Self) u1 {
return self.reader.read();
}
pub fn dbgRead(self: *const Self) u1 {
return self.reader.dbgRead();
}
pub fn write(self: *Self, word_count: u16, buf: *[]u8, bit: u1) void {
if (self.guessKind(word_count)) |found| {
log.info("EEPROM Kind: {}", .{found});
self.kind = found;
// buf.len will not equal zero when a save file was found and loaded.
// Right now, we assume that the save file is of the correct size which
// isn't necessarily true, since we can't trust anything a user can influence
// TODO: use ?[]u8 instead of a 0-sized slice?
if (buf.len == 0) {
const len: usize = switch (found) {
.Small => 0x200,
.Large => 0x2000,
else => unreachable,
};
buf.* = self.allocator.alloc(u8, len) catch |e| {
log.err("Failed to resize EEPROM buf to {} bytes", .{len});
std.debug.panic("EEPROM entered irrecoverable state {}", .{e});
};
std.mem.set(u8, buf.*, 0xFF);
}
}
if (self.state == .RequestEnd) {
// if (bit != 0) log.debug("EEPROM Request did not end in 0u1. TODO: is this ok?", .{});
self.state = .Ready;
return;
}
switch (self.state) {
.Ready => self.writer.requestWrite(bit),
.Read, .Write => self.writer.addressWrite(self.kind, bit),
.WriteTransfer => self.writer.dataWrite(bit),
.RequestEnd => unreachable, // We return early just above this block
}
self.tick(buf.*);
}
pub fn create(allocator: Allocator) Self {
return .{
.kind = .Unknown,
.state = .Ready,
.writer = Writer.create(),
.reader = Reader.create(),
.addr = 0,
.allocator = allocator,
};
}
fn guessKind(self: *const Self, word_count: u16) ?Kind {
if (self.kind != .Unknown or self.state != .Read) return null;
return switch (word_count) {
17 => .Large,
9 => .Small,
else => blk: {
log.err("Unexpected length of DMA3 Transfer upon initial EEPROM read: {}", .{word_count});
break :blk null;
},
};
}
fn tick(self: *Self, buf: []u8) void {
switch (self.state) {
.Ready => {
if (self.writer.len() == 2) {
const req = @intCast(u2, self.writer.finish());
switch (req) {
0b11 => self.state = .Read,
0b10 => self.state = .Write,
else => log.err("Unknown EEPROM Request 0b{b:0>2}", .{req}),
}
}
},
.Read => {
switch (self.kind) {
.Large => {
if (self.writer.len() == 14) {
const addr = @intCast(u10, self.writer.finish());
const value = std.mem.readIntSliceLittle(u64, buf[@as(u13, addr) * 8 ..][0..8]);
self.reader.configure(value);
self.state = .RequestEnd;
}
},
.Small => {
if (self.writer.len() == 6) {
// FIXME: Duplicated code from above
const addr = @intCast(u6, self.writer.finish());
const value = std.mem.readIntSliceLittle(u64, buf[@as(u13, addr) * 8 ..][0..8]);
self.reader.configure(value);
self.state = .RequestEnd;
}
},
else => log.err("Unable to calculate EEPROM read address. EEPROM size UNKNOWN", .{}),
}
},
.Write => {
switch (self.kind) {
.Large => {
if (self.writer.len() == 14) {
self.addr = @intCast(u10, self.writer.finish());
self.state = .WriteTransfer;
}
},
.Small => {
if (self.writer.len() == 6) {
self.addr = @intCast(u6, self.writer.finish());
self.state = .WriteTransfer;
}
},
else => log.err("Unable to calculate EEPROM write address. EEPROM size UNKNOWN", .{}),
}
},
.WriteTransfer => {
if (self.writer.len() == 64) {
std.mem.writeIntSliceLittle(u64, buf[self.addr * 8 ..][0..8], self.writer.finish());
self.state = .RequestEnd;
}
},
.RequestEnd => unreachable, // We return early in write() if state is .RequestEnd
}
}
};
const Reader = struct {
const Self = @This();
data: u64,
i: u8,
enabled: bool,
fn create() Self {
return .{
.data = 0,
.i = 0,
.enabled = false,
};
}
fn read(self: *Self) u1 {
if (!self.enabled) return 1;
const bit = if (self.i < 4) blk: {
break :blk 0;
} else blk: {
const idx = @intCast(u6, 63 - (self.i - 4));
break :blk @truncate(u1, self.data >> idx);
};
self.i = (self.i + 1) % (64 + 4);
if (self.i == 0) self.enabled = false;
return bit;
}
fn dbgRead(self: *const Self) u1 {
if (!self.enabled) return 1;
const bit = if (self.i < 4) blk: {
break :blk 0;
} else blk: {
const idx = @intCast(u6, 63 - (self.i - 4));
break :blk @truncate(u1, self.data >> idx);
};
return bit;
}
fn configure(self: *Self, value: u64) void {
self.data = value;
self.i = 0;
self.enabled = true;
}
};
const Writer = struct {
const Self = @This();
data: u64,
i: u8,
fn create() Self {
return .{ .data = 0, .i = 0 };
}
fn requestWrite(self: *Self, bit: u1) void {
const idx = @intCast(u1, 1 - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}
fn addressWrite(self: *Self, kind: Eeprom.Kind, bit: u1) void {
if (kind == .Unknown) return;
const size: u4 = switch (kind) {
.Large => 13,
.Small => 5,
.Unknown => unreachable,
};
const idx = @intCast(u4, size - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}
fn dataWrite(self: *Self, bit: u1) void {
const idx = @intCast(u6, 63 - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}
fn len(self: *const Self) u8 {
return self.i;
}
fn finish(self: *Self) u64 {
defer self.reset();
return self.data;
}
fn reset(self: *Self) void {
self.i = 0;
self.data = 0;
}
};

357
src/core/bus/dma.zig Normal file
View File

@@ -0,0 +1,357 @@
const std = @import("std");
const util = @import("../../util.zig");
const DmaControl = @import("io.zig").DmaControl;
const Bus = @import("../Bus.zig");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
pub const DmaTuple = struct { DmaController(0), DmaController(1), DmaController(2), DmaController(3) };
const log = std.log.scoped(.DmaTransfer);
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const setQuart = util.setQuart;
const rotr = @import("../../util.zig").rotr;
pub fn create() DmaTuple {
return .{ DmaController(0).init(), DmaController(1).init(), DmaController(2).init(), DmaController(3).init() };
}
pub fn read(comptime T: type, dma: *const DmaTuple, addr: u32) ?T {
const byte_addr = @truncate(u8, addr);
return switch (T) {
u32 => switch (byte_addr) {
0xB0, 0xB4 => null, // DMA0SAD, DMA0DAD,
0xB8 => @as(T, dma.*[0].dmacntH()) << 16, // DMA0CNT_L is write-only
0xBC, 0xC0 => null, // DMA1SAD, DMA1DAD
0xC4 => @as(T, dma.*[1].dmacntH()) << 16, // DMA1CNT_L is write-only
0xC8, 0xCC => null, // DMA2SAD, DMA2DAD
0xD0 => @as(T, dma.*[2].dmacntH()) << 16, // DMA2CNT_L is write-only
0xD4, 0xD8 => null, // DMA3SAD, DMA3DAD
0xDC => @as(T, dma.*[3].dmacntH()) << 16, // DMA3CNT_L is write-only
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte_addr) {
0xB0, 0xB2, 0xB4, 0xB6 => null, // DMA0SAD, DMA0DAD
0xB8 => 0x0000, // DMA0CNT_L, suite.gba expects 0x0000 instead of 0xDEAD
0xBA => dma.*[0].dmacntH(),
0xBC, 0xBE, 0xC0, 0xC2 => null, // DMA1SAD, DMA1DAD
0xC4 => 0x0000, // DMA1CNT_L
0xC6 => dma.*[1].dmacntH(),
0xC8, 0xCA, 0xCC, 0xCE => null, // DMA2SAD, DMA2DAD
0xD0 => 0x0000, // DMA2CNT_L
0xD2 => dma.*[2].dmacntH(),
0xD4, 0xD6, 0xD8, 0xDA => null, // DMA3SAD, DMA3DAD
0xDC => 0x0000, // DMA3CNT_L
0xDE => dma.*[3].dmacntH(),
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0xB0...0xB7 => null, // DMA0SAD, DMA0DAD
0xB8, 0xB9 => 0x00, // DMA0CNT_L
0xBA, 0xBB => @truncate(T, dma.*[0].dmacntH() >> getHalf(byte_addr)),
0xBC...0xC3 => null, // DMA1SAD, DMA1DAD
0xC4, 0xC5 => 0x00, // DMA1CNT_L
0xC6, 0xC7 => @truncate(T, dma.*[1].dmacntH() >> getHalf(byte_addr)),
0xC8...0xCF => null, // DMA2SAD, DMA2DAD
0xD0, 0xD1 => 0x00, // DMA2CNT_L
0xD2, 0xD3 => @truncate(T, dma.*[2].dmacntH() >> getHalf(byte_addr)),
0xD4...0xDB => null, // DMA3SAD, DMA3DAD
0xDC, 0xDD => 0x00, // DMA3CNT_L
0xDE, 0xDF => @truncate(T, dma.*[3].dmacntH() >> getHalf(byte_addr)),
else => util.io.read.err(T, log, "unexpected {} read from 0x{X:0>8}", .{ T, addr }),
},
else => @compileError("DMA: Unsupported read width"),
};
}
pub fn write(comptime T: type, dma: *DmaTuple, addr: u32, value: T) void {
const byte_addr = @truncate(u8, addr);
switch (T) {
u32 => switch (byte_addr) {
0xB0 => dma.*[0].setDmasad(value),
0xB4 => dma.*[0].setDmadad(value),
0xB8 => dma.*[0].setDmacnt(value),
0xBC => dma.*[1].setDmasad(value),
0xC0 => dma.*[1].setDmadad(value),
0xC4 => dma.*[1].setDmacnt(value),
0xC8 => dma.*[2].setDmasad(value),
0xCC => dma.*[2].setDmadad(value),
0xD0 => dma.*[2].setDmacnt(value),
0xD4 => dma.*[3].setDmasad(value),
0xD8 => dma.*[3].setDmadad(value),
0xDC => dma.*[3].setDmacnt(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (byte_addr) {
0xB0, 0xB2 => dma.*[0].setDmasad(setHalf(u32, dma.*[0].sad, byte_addr, value)),
0xB4, 0xB6 => dma.*[0].setDmadad(setHalf(u32, dma.*[0].dad, byte_addr, value)),
0xB8 => dma.*[0].setDmacntL(value),
0xBA => dma.*[0].setDmacntH(value),
0xBC, 0xBE => dma.*[1].setDmasad(setHalf(u32, dma.*[1].sad, byte_addr, value)),
0xC0, 0xC2 => dma.*[1].setDmadad(setHalf(u32, dma.*[1].dad, byte_addr, value)),
0xC4 => dma.*[1].setDmacntL(value),
0xC6 => dma.*[1].setDmacntH(value),
0xC8, 0xCA => dma.*[2].setDmasad(setHalf(u32, dma.*[2].sad, byte_addr, value)),
0xCC, 0xCE => dma.*[2].setDmadad(setHalf(u32, dma.*[2].dad, byte_addr, value)),
0xD0 => dma.*[2].setDmacntL(value),
0xD2 => dma.*[2].setDmacntH(value),
0xD4, 0xD6 => dma.*[3].setDmasad(setHalf(u32, dma.*[3].sad, byte_addr, value)),
0xD8, 0xDA => dma.*[3].setDmadad(setHalf(u32, dma.*[3].dad, byte_addr, value)),
0xDC => dma.*[3].setDmacntL(value),
0xDE => dma.*[3].setDmacntH(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => switch (byte_addr) {
0xB0, 0xB1, 0xB2, 0xB3 => dma.*[0].setDmasad(setQuart(dma.*[0].sad, byte_addr, value)),
0xB4, 0xB5, 0xB6, 0xB7 => dma.*[0].setDmadad(setQuart(dma.*[0].dad, byte_addr, value)),
0xB8, 0xB9 => dma.*[0].setDmacntL(setHalf(u16, dma.*[0].word_count, byte_addr, value)),
0xBA, 0xBB => dma.*[0].setDmacntH(setHalf(u16, dma.*[0].cnt.raw, byte_addr, value)),
0xBC, 0xBD, 0xBE, 0xBF => dma.*[1].setDmasad(setQuart(dma.*[1].sad, byte_addr, value)),
0xC0, 0xC1, 0xC2, 0xC3 => dma.*[1].setDmadad(setQuart(dma.*[1].dad, byte_addr, value)),
0xC4, 0xC5 => dma.*[1].setDmacntL(setHalf(u16, dma.*[1].word_count, byte_addr, value)),
0xC6, 0xC7 => dma.*[1].setDmacntH(setHalf(u16, dma.*[1].cnt.raw, byte_addr, value)),
0xC8, 0xC9, 0xCA, 0xCB => dma.*[2].setDmasad(setQuart(dma.*[2].sad, byte_addr, value)),
0xCC, 0xCD, 0xCE, 0xCF => dma.*[2].setDmadad(setQuart(dma.*[2].dad, byte_addr, value)),
0xD0, 0xD1 => dma.*[2].setDmacntL(setHalf(u16, dma.*[2].word_count, byte_addr, value)),
0xD2, 0xD3 => dma.*[2].setDmacntH(setHalf(u16, dma.*[2].cnt.raw, byte_addr, value)),
0xD4, 0xD5, 0xD6, 0xD7 => dma.*[3].setDmasad(setQuart(dma.*[3].sad, byte_addr, value)),
0xD8, 0xD9, 0xDA, 0xDB => dma.*[3].setDmadad(setQuart(dma.*[3].dad, byte_addr, value)),
0xDC, 0xDD => dma.*[3].setDmacntL(setHalf(u16, dma.*[3].word_count, byte_addr, value)),
0xDE, 0xDF => dma.*[3].setDmacntH(setHalf(u16, dma.*[3].cnt.raw, byte_addr, value)),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
},
else => @compileError("DMA: Unsupported write width"),
}
}
/// Function that creates a DMAController. Determines unique DMA Controller behaiour at compile-time
fn DmaController(comptime id: u2) type {
return struct {
const Self = @This();
const sad_mask: u32 = if (id == 0) 0x07FF_FFFF else 0x0FFF_FFFF;
const dad_mask: u32 = if (id != 3) 0x07FF_FFFF else 0x0FFF_FFFF;
const WordCount = if (id == 3) u16 else u14;
/// Write-only. The first address in a DMA transfer. (DMASAD)
/// Note: use writeSrc instead of manipulating src_addr directly
sad: u32,
/// Write-only. The final address in a DMA transffer. (DMADAD)
/// Note: Use writeDst instead of manipulatig dst_addr directly
dad: u32,
/// Write-only. The Word Count for the DMA Transfer (DMACNT_L)
word_count: WordCount,
/// Read / Write. DMACNT_H
/// Note: Use writeControl instead of manipulating cnt directly.
cnt: DmaControl,
/// Internal. The last successfully read value
data_latch: u32,
/// Internal. Currrent Source Address
sad_latch: u32,
/// Internal. Current Destination Address
dad_latch: u32,
/// Internal. Word Count
_word_count: WordCount,
/// Some DMA Transfers are enabled during Hblank / VBlank and / or
/// have delays. Thefore bit 15 of DMACNT isn't actually something
/// we can use to control when we do or do not execute a step in a DMA Transfer
in_progress: bool,
pub fn init() Self {
return .{
.sad = 0,
.dad = 0,
.word_count = 0,
.cnt = .{ .raw = 0x000 },
// Internals
.sad_latch = 0,
.dad_latch = 0,
.data_latch = 0,
._word_count = 0,
.in_progress = false,
};
}
pub fn setDmasad(self: *Self, addr: u32) void {
self.sad = addr & sad_mask;
}
pub fn setDmadad(self: *Self, addr: u32) void {
self.dad = addr & dad_mask;
}
pub fn setDmacntL(self: *Self, halfword: u16) void {
self.word_count = @truncate(@TypeOf(self.word_count), halfword);
}
pub fn dmacntH(self: *const Self) u16 {
return self.cnt.raw & if (id == 3) 0xFFE0 else 0xF7E0;
}
pub fn setDmacntH(self: *Self, halfword: u16) void {
const new = DmaControl{ .raw = halfword };
if (!self.cnt.enabled.read() and new.enabled.read()) {
// Reload Internals on Rising Edge.
self.sad_latch = self.sad;
self.dad_latch = self.dad;
self._word_count = if (self.word_count == 0) std.math.maxInt(WordCount) else self.word_count;
// Only a Start Timing of 00 has a DMA Transfer immediately begin
self.in_progress = new.start_timing.read() == 0b00;
}
self.cnt.raw = halfword;
}
pub fn setDmacnt(self: *Self, word: u32) void {
self.setDmacntL(@truncate(u16, word));
self.setDmacntH(@truncate(u16, word >> 16));
}
pub fn step(self: *Self, cpu: *Arm7tdmi) void {
const is_fifo = (id == 1 or id == 2) and self.cnt.start_timing.read() == 0b11;
const sad_adj = @intToEnum(Adjustment, self.cnt.sad_adj.read());
const dad_adj = if (is_fifo) .Fixed else @intToEnum(Adjustment, self.cnt.dad_adj.read());
const transfer_type = is_fifo or self.cnt.transfer_type.read();
const offset: u32 = if (transfer_type) @sizeOf(u32) else @sizeOf(u16);
const mask = if (transfer_type) ~@as(u32, 3) else ~@as(u32, 1);
const sad_addr = self.sad_latch & mask;
const dad_addr = self.dad_latch & mask;
if (transfer_type) {
if (sad_addr >= 0x0200_0000) self.data_latch = cpu.bus.read(u32, sad_addr);
cpu.bus.write(u32, dad_addr, self.data_latch);
} else {
if (sad_addr >= 0x0200_0000) {
const value: u32 = cpu.bus.read(u16, sad_addr);
self.data_latch = value << 16 | value;
}
cpu.bus.write(u16, dad_addr, @truncate(u16, rotr(u32, self.data_latch, 8 * (dad_addr & 3))));
}
switch (@truncate(u8, sad_addr >> 24)) {
// according to fleroviux, DMAs with a source address in ROM misbehave
// the resultant behaviour is that the source address will increment despite what DMAXCNT says
0x08...0x0D => self.sad_latch +%= offset, // obscure behaviour
else => switch (sad_adj) {
.Increment => self.sad_latch +%= offset,
.Decrement => self.sad_latch -%= offset,
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
.Fixed => {},
},
}
switch (dad_adj) {
.Increment, .IncrementReload => self.dad_latch +%= offset,
.Decrement => self.dad_latch -%= offset,
.Fixed => {},
}
self._word_count -= 1;
if (self._word_count == 0) {
if (self.cnt.irq.read()) {
switch (id) {
0 => cpu.bus.io.irq.dma0.set(),
1 => cpu.bus.io.irq.dma1.set(),
2 => cpu.bus.io.irq.dma2.set(),
3 => cpu.bus.io.irq.dma3.set(),
}
cpu.handleInterrupt();
}
// If we're not repeating, Fire the IRQs and disable the DMA
if (!self.cnt.repeat.read()) self.cnt.enabled.unset();
// We want to disable our internal enabled flag regardless of repeat
// because we only want to step A DMA that repeats during it's specific
// timing window
self.in_progress = false;
}
}
fn poll(self: *Self, comptime kind: DmaKind) void {
if (self.in_progress) return; // If there's an ongoing DMA Transfer, exit early
// No ongoing DMA Transfer, We want to check if we should repeat an existing one
// Determined by the repeat bit and whether the DMA is in the right start_timing
switch (kind) {
.VBlank => self.in_progress = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b01,
.HBlank => self.in_progress = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b10,
.Immediate, .Special => {},
}
// If we determined that the repeat bit is set (and now the Hblank / Vblank DMA is now in progress)
// Reload internal word count latch
// Reload internal DAD latch if we are in IncrementRelaod
if (self.in_progress) {
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
if (@intToEnum(Adjustment, self.cnt.dad_adj.read()) == .IncrementReload) self.dad_latch = self.dad;
}
}
pub fn requestAudio(self: *Self, _: u32) void {
comptime std.debug.assert(id == 1 or id == 2);
if (self.in_progress) return; // APU must wait their turn
// DMA May not be configured for handling DMAs
if (self.cnt.start_timing.read() != 0b11) return;
// We Assume the Repeat Bit is Set
// We Assume that DAD is set to 0x0400_00A0 or 0x0400_00A4 (fifo_addr)
// We Assume DMACNT_L is set to 4
// FIXME: Safe to just assume whatever DAD is set to is the FIFO Address?
// self.dad_latch = fifo_addr;
self.cnt.repeat.set();
self._word_count = 4;
self.in_progress = true;
}
};
}
pub fn onBlanking(bus: *Bus, comptime kind: DmaKind) void {
inline for (0..4) |i| bus.dma[i].poll(kind);
}
const Adjustment = enum(u2) {
Increment = 0,
Decrement = 1,
Fixed = 2,
IncrementReload = 3,
};
const DmaKind = enum(u2) {
Immediate = 0,
HBlank,
VBlank,
Special,
};

456
src/core/bus/gpio.zig Normal file
View File

@@ -0,0 +1,456 @@
const std = @import("std");
const Bit = @import("bitfield").Bit;
const DateTime = @import("datetime").datetime.Datetime;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Allocator = std.mem.Allocator;
/// GPIO Register Implementation
pub const Gpio = struct {
const Self = @This();
const log = std.log.scoped(.Gpio);
data: u4,
direction: u4,
cnt: u1,
device: Device,
const Register = enum { Data, Direction, Control };
pub const Device = struct {
ptr: ?*anyopaque,
kind: Kind, // TODO: Make comptime known?
pub const Kind = enum { Rtc, None };
fn step(self: *Device, value: u4) u4 {
return switch (self.kind) {
.Rtc => blk: {
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?));
break :blk clock.step(Clock.Data{ .raw = value });
},
.None => value,
};
}
fn init(kind: Kind, ptr: ?*anyopaque) Device {
return .{ .kind = kind, .ptr = ptr };
}
};
pub fn write(self: *Self, comptime reg: Register, value: if (reg == .Control) u1 else u4) void {
switch (reg) {
.Data => {
const masked_value = value & self.direction;
// The value which is actually stored in the GPIO register
// might be modified by the device implementing the GPIO interface e.g. RTC reads
self.data = self.device.step(masked_value);
},
.Direction => self.direction = value,
.Control => self.cnt = value,
}
}
pub fn read(self: *const Self, comptime reg: Register) if (reg == .Control) u1 else u4 {
if (self.cnt == 0) return 0;
return switch (reg) {
.Data => self.data & ~self.direction,
.Direction => self.direction,
.Control => self.cnt,
};
}
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, kind: Device.Kind) !*Self {
log.info("Device: {}", .{kind});
const self = try allocator.create(Self);
errdefer allocator.destroy(self);
self.* = .{
.data = 0b0000,
.direction = 0b1111, // TODO: What is GPIO Direction set to by default?
.cnt = 0b0,
.device = switch (kind) {
.Rtc => blk: {
const clock = try allocator.create(Clock);
clock.init(cpu, self);
break :blk Device{ .kind = kind, .ptr = clock };
},
.None => Device{ .kind = kind, .ptr = null },
},
};
return self;
}
pub fn deinit(self: *Self, allocator: Allocator) void {
switch (self.device.kind) {
.Rtc => allocator.destroy(@ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.device.ptr.?))),
.None => {},
}
self.* = undefined;
}
};
/// GBA Real Time Clock
pub const Clock = struct {
const Self = @This();
const log = std.log.scoped(.Rtc);
writer: Writer,
reader: Reader,
state: State,
cnt: Control,
year: u8,
month: u5,
day: u6,
weekday: u3,
hour: u6,
minute: u7,
second: u7,
cpu: *Arm7tdmi,
gpio: *const Gpio,
const Register = enum {
Control,
DateTime,
Time,
};
const State = union(enum) {
Idle,
Command,
Write: Register,
Read: Register,
};
const Reader = struct {
i: u4,
count: u8,
/// Reads a bit from RTC registers. Which bit it reads is dependent on
///
/// 1. The RTC State Machine, whitch tells us which register we're accessing
/// 2. A `count`, which keeps track of which byte is currently being read
/// 3. An index, which keeps track of which bit of the byte determined by `count` is being read
fn read(self: *Reader, clock: *const Clock, register: Register) u1 {
const idx = @intCast(u3, self.i);
defer self.i += 1;
// FIXME: What do I do about the unused bits?
return switch (register) {
.Control => @truncate(u1, switch (self.count) {
0 => clock.cnt.raw >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
}),
.DateTime => @truncate(u1, switch (self.count) {
// Date
0 => clock.year >> idx,
1 => @as(u8, clock.month) >> idx,
2 => @as(u8, clock.day) >> idx,
3 => @as(u8, clock.weekday) >> idx,
// Time
4 => @as(u8, clock.hour) >> idx,
5 => @as(u8, clock.minute) >> idx,
6 => @as(u8, clock.second) >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 7 bytes)", .{ self.count, register }),
}),
.Time => @truncate(u1, switch (self.count) {
0 => @as(u8, clock.hour) >> idx,
1 => @as(u8, clock.minute) >> idx,
2 => @as(u8, clock.second) >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 3 bytes)", .{ self.count, register }),
}),
};
}
/// Is true when a Reader has read a u8's worth of bits
fn finished(self: *const Reader) bool {
return self.i >= 8;
}
/// Resets the index used to shift bits out of RTC registers
/// and `count`, which is used to keep track of which byte we're reading
/// is incremeneted
fn lap(self: *Reader) void {
self.i = 0;
self.count += 1;
}
/// Resets the state of a `Reader` in preparation for a future
/// read command
fn reset(self: *Reader) void {
self.i = 0;
self.count = 0;
}
};
const Writer = struct {
buf: u8,
i: u4,
/// The Number of bytes written since last reset
count: u8,
/// Append a bit to the internal bit buffer (aka an integer)
fn push(self: *Writer, value: u1) void {
const idx = @intCast(u3, self.i);
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
self.i += 1;
}
/// Takes the contents of the internal buffer and writes it to an RTC register
/// Where it writes to is dependent on:
///
/// 1. The RTC State Machine, whitch tells us which register we're accessing
/// 2. A `count`, which keeps track of which byte is currently being read
fn write(self: *const Writer, clock: *Clock, register: Register) void {
// FIXME: What do do about unused bits?
switch (register) {
.Control => switch (self.count) {
0 => clock.cnt.raw = (clock.cnt.raw & 0x80) | (self.buf & 0x7F), // Bit 7 read-only
else => std.debug.panic("Tried to write to byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
},
.DateTime, .Time => log.debug("Ignoring {} write", .{register}),
}
}
/// Is true when 8 bits have been shifted into the internal buffer
fn finished(self: *const Writer) bool {
return self.i >= 8;
}
/// Resets the internal buffer
/// resets the index used to shift bits into the internal buffer
/// increments `count` (which keeps track of byte offsets) by one
fn lap(self: *Writer) void {
self.buf = 0;
self.i = 0;
self.count += 1;
}
/// Resets `Writer` to a clean state in preparation for a future write command
fn reset(self: *Writer) void {
self.buf = 0;
self.i = 0;
self.count = 0;
}
};
const Data = extern union {
sck: Bit(u8, 0),
sio: Bit(u8, 1),
cs: Bit(u8, 2),
raw: u8,
};
const Control = extern union {
/// Unknown, value should be preserved though
unk: Bit(u8, 1),
/// Per-minute IRQ
/// If set, fire a Gamepak IRQ every 30s,
irq: Bit(u8, 3),
/// 12/24 Hour Bit
/// If set, 12h mode
/// If cleared, 24h mode
mode: Bit(u8, 6),
/// Read-Only, bit cleared on read
/// If is set, means that there has been a failure / time has been lost
off: Bit(u8, 7),
raw: u8,
};
fn init(ptr: *Self, cpu: *Arm7tdmi, gpio: *const Gpio) void {
ptr.* = .{
.writer = .{ .buf = 0, .i = 0, .count = 0 },
.reader = .{ .i = 0, .count = 0 },
.state = .Idle,
.cnt = .{ .raw = 0 },
.year = 0x01,
.month = 0x6,
.day = 0x13,
.weekday = 0x3,
.hour = 0x23,
.minute = 0x59,
.second = 0x59,
.cpu = cpu,
.gpio = gpio, // Can't use Arm7tdmi ptr b/c not initialized yet
};
cpu.sched.push(.RealTimeClock, 1 << 24); // Every Second
}
pub fn onClockUpdate(self: *Self, late: u64) void {
self.cpu.sched.push(.RealTimeClock, (1 << 24) -| late); // Reschedule
const now = DateTime.now();
self.year = bcd(@intCast(u8, now.date.year - 2000));
self.month = @truncate(u5, bcd(now.date.month));
self.day = @truncate(u6, bcd(now.date.day));
self.weekday = @truncate(u3, bcd((now.date.weekday() + 1) % 7)); // API is Monday = 0, Sunday = 6. We want Sunday = 0, Saturday = 6
self.hour = @truncate(u6, bcd(now.time.hour));
self.minute = @truncate(u7, bcd(now.time.minute));
self.second = @truncate(u7, bcd(now.time.second));
}
fn step(self: *Self, value: Data) u4 {
const cache: Data = .{ .raw = self.gpio.data };
return switch (self.state) {
.Idle => blk: {
// FIXME: Maybe check incoming value to see if SCK is also high?
if (cache.sck.read()) {
if (!cache.cs.read() and value.cs.read()) {
log.debug("Entering Command Mode", .{});
self.state = .Command;
}
}
break :blk @truncate(u4, value.raw);
},
.Command => blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
self.writer.push(@boolToInt(value.sio.read()));
if (self.writer.finished()) {
self.state = self.processCommand(self.writer.buf);
self.writer.reset();
log.debug("Switching to {}", .{self.state});
}
}
break :blk @truncate(u4, value.raw);
},
.Write => |register| blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
self.writer.push(@boolToInt(value.sio.read()));
const register_width: u32 = switch (register) {
.Control => 1,
.DateTime => 7,
.Time => 3,
};
if (self.writer.finished()) {
self.writer.write(self, register); // write inner buffer to RTC register
self.writer.lap();
if (self.writer.count == register_width) {
self.writer.reset();
self.state = .Idle;
}
}
}
break :blk @truncate(u4, value.raw);
},
.Read => |register| blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
var ret = value;
// if SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
ret.sio.write(self.reader.read(self, register) == 0b1);
const register_width: u32 = switch (register) {
.Control => 1,
.DateTime => 7,
.Time => 3,
};
if (self.reader.finished()) {
self.reader.lap();
if (self.reader.count == register_width) {
self.reader.reset();
self.state = .Idle;
}
}
}
break :blk @truncate(u4, ret.raw);
},
};
}
fn reset(self: *Self) void {
// mGBA and NBA only zero the control register. We will do the same
log.debug("Reset (control register was zeroed)", .{});
self.cnt.raw = 0;
}
fn irq(self: *Self) void {
// TODO: Confirm that this is the right behaviour
log.debug("Force GamePak IRQ", .{});
self.cpu.bus.io.irq.game_pak.set();
self.cpu.handleInterrupt();
}
fn processCommand(self: *Self, raw_command: u8) State {
const command = blk: {
// If High Nybble is 0x6, no need to switch the endianness
if (raw_command >> 4 & 0xF == 0x6) break :blk raw_command;
// Turns out reversing the order of bits isn't trivial at all
// https://stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
var ret = raw_command;
ret = (ret & 0xF0) >> 4 | (ret & 0x0F) << 4;
ret = (ret & 0xCC) >> 2 | (ret & 0x33) << 2;
ret = (ret & 0xAA) >> 1 | (ret & 0x55) << 1;
break :blk ret;
};
log.debug("Handling Command 0x{X:0>2} [0b{b:0>8}]", .{ command, command });
const is_write = command & 1 == 0;
const rtc_register = @truncate(u3, command >> 1 & 0x7);
if (is_write) {
return switch (rtc_register) {
0 => blk: {
self.reset();
break :blk .Idle;
},
1 => .{ .Write = .Control },
2 => .{ .Write = .DateTime },
3 => .{ .Write = .Time },
6 => blk: {
self.irq();
break :blk .Idle;
},
4, 5, 7 => .Idle,
};
} else {
return switch (rtc_register) {
1 => .{ .Read = .Control },
2 => .{ .Read = .DateTime },
3 => .{ .Read = .Time },
0, 4, 5, 6, 7 => .Idle, // Do Nothing
};
}
}
};
/// Converts an 8-bit unsigned integer to its BCD representation.
/// Note: Algorithm only works for values between 0 and 99 inclusive.
fn bcd(value: u8) u8 {
return ((value / 10) << 4) + (value % 10);
}

675
src/core/bus/io.zig Normal file
View File

@@ -0,0 +1,675 @@
const std = @import("std");
const timer = @import("timer.zig");
const dma = @import("dma.zig");
const apu = @import("../apu.zig");
const ppu = @import("../ppu.zig");
const util = @import("../../util.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Bus = @import("../Bus.zig");
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const log = std.log.scoped(.@"I/O");
pub const Io = struct {
const Self = @This();
/// Read / Write
ime: bool,
ie: InterruptEnable,
irq: InterruptRequest,
postflg: PostFlag,
waitcnt: WaitControl,
haltcnt: HaltControl,
keyinput: AtomicKeyInput,
pub fn init() Self {
return .{
.ime = false,
.ie = .{ .raw = 0x0000 },
.irq = .{ .raw = 0x0000 },
.keyinput = AtomicKeyInput.init(.{ .raw = 0x03FF }),
.waitcnt = .{ .raw = 0x0000_0000 }, // Bit 15 == 0 for GBA
.postflg = .FirstBoot,
.haltcnt = .Execute,
};
}
fn setIrqs(self: *Io, word: u32) void {
self.ie.raw = @truncate(u16, word);
self.irq.raw &= ~@truncate(u16, word >> 16);
}
};
pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
return switch (T) {
u32 => switch (address) {
// Display
0x0400_0000...0x0400_0054 => ppu.read(T, &bus.ppu, address),
// Sound
0x0400_0060...0x0400_00A4 => apu.read(T, &bus.apu, address),
// DMA Transfers
0x0400_00B0...0x0400_00DC => dma.read(T, &bus.dma, address),
// Timers
0x0400_0100...0x0400_010C => timer.read(T, &bus.tim, address),
// Serial Communication 1
0x0400_0128 => util.io.read.todo(log, "Read {} from SIOCNT and SIOMLT_SEND", .{T}),
// Keypad Input
0x0400_0130 => util.io.read.todo(log, "Read {} from KEYINPUT", .{T}),
// Serial Communication 2
0x0400_0150 => util.io.read.todo(log, "Read {} from JOY_RECV", .{T}),
// Interrupts
0x0400_0200 => @as(u32, bus.io.irq.raw) << 16 | bus.io.ie.raw,
0x0400_0204 => bus.io.waitcnt.raw,
0x0400_0208 => @boolToInt(bus.io.ime),
0x0400_0300 => @enumToInt(bus.io.postflg),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
u16 => switch (address) {
// Display
0x0400_0000...0x0400_0054 => ppu.read(T, &bus.ppu, address),
// Sound
0x0400_0060...0x0400_00A6 => apu.read(T, &bus.apu, address),
// DMA Transfers
0x0400_00B0...0x0400_00DE => dma.read(T, &bus.dma, address),
// Timers
0x0400_0100...0x0400_010E => timer.read(T, &bus.tim, address),
// Serial Communication 1
0x0400_0128 => util.io.read.todo(log, "Read {} from SIOCNT", .{T}),
// Keypad Input
0x0400_0130 => bus.io.keyinput.load(.Monotonic).raw,
// Serial Communication 2
0x0400_0134 => util.io.read.todo(log, "Read {} from RCNT", .{T}),
0x0400_0136 => 0x0000,
0x0400_0142 => 0x0000,
0x0400_015A => 0x0000,
// Interrupts
0x0400_0200 => bus.io.ie.raw,
0x0400_0202 => bus.io.irq.raw,
0x0400_0204 => bus.io.waitcnt.raw,
0x0400_0206 => 0x0000,
0x0400_0208 => @boolToInt(bus.io.ime),
0x0400_020A => 0x0000,
0x0400_0300 => @enumToInt(bus.io.postflg),
0x0400_0302 => 0x0000,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
u8 => return switch (address) {
// Display
0x0400_0000...0x0400_0055 => ppu.read(T, &bus.ppu, address),
// Sound
0x0400_0060...0x0400_00A7 => apu.read(T, &bus.apu, address),
// DMA Transfers
0x0400_00B0...0x0400_00DF => dma.read(T, &bus.dma, address),
// Timers
0x0400_0100...0x0400_010F => timer.read(T, &bus.tim, address),
// Serial Communication 1
0x0400_0128 => util.io.read.todo(log, "Read {} from SIOCNT_L", .{T}),
// Keypad Input
0x0400_0130 => util.io.read.todo(log, "read {} from KEYINPUT_L", .{T}),
// Serial Communication 2
0x0400_0135 => util.io.read.todo(log, "Read {} from RCNT_H", .{T}),
0x0400_0136, 0x0400_0137 => 0x00,
0x0400_0142, 0x0400_0143 => 0x00,
0x0400_015A, 0x0400_015B => 0x00,
// Interrupts
0x0400_0200, 0x0400_0201 => @truncate(T, bus.io.ie.raw >> getHalf(@truncate(u8, address))),
0x0400_0202, 0x0400_0203 => @truncate(T, bus.io.irq.raw >> getHalf(@truncate(u8, address))),
0x0400_0204, 0x0400_0205 => @truncate(T, bus.io.waitcnt.raw >> getHalf(@truncate(u8, address))),
0x0400_0206, 0x0400_0207 => 0x00,
0x0400_0208, 0x0400_0209 => @truncate(T, @as(u16, @boolToInt(bus.io.ime)) >> getHalf(@truncate(u8, address))),
0x0400_020A, 0x0400_020B => 0x00,
0x0400_0300 => @enumToInt(bus.io.postflg),
0x0400_0301 => null,
0x0400_0302, 0x0400_0303 => 0x00,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
else => @compileError("I/O: Unsupported read width"),
};
}
pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
return switch (T) {
u32 => switch (address) {
// Display
0x0400_0000...0x0400_0054 => ppu.write(T, &bus.ppu, address, value),
0x0400_0058...0x0400_005C => {}, // Unused
// Sound
0x0400_0060...0x0400_00A4 => apu.write(T, &bus.apu, address, value),
0x0400_00A8, 0x0400_00AC => {}, // Unused
// DMA Transfers
0x0400_00B0...0x0400_00DC => dma.write(T, &bus.dma, address, value),
0x0400_00E0...0x0400_00FC => {}, // Unused
// Timers
0x0400_0100...0x0400_010C => timer.write(T, &bus.tim, address, value),
0x0400_0110...0x0400_011C => {}, // Unused
// Serial Communication 1
0x0400_0120 => log.debug("Wrote 0x{X:0>8} to SIODATA32/(SIOMULTI0 and SIOMULTI1)", .{value}),
0x0400_0124 => log.debug("Wrote 0x{X:0>8} to SIOMULTI2 and SIOMULTI3", .{value}),
0x0400_0128 => log.debug("Wrote 0x{X:0>8} to SIOCNT and SIOMLT_SEND/SIODATA8", .{value}),
0x0400_012C => {}, // Unused
// Keypad Input
0x0400_0130 => log.debug("Wrote 0x{X:0>8} to KEYINPUT and KEYCNT", .{value}),
0x0400_0134 => log.debug("Wrote 0x{X:0>8} to RCNT and IR", .{value}),
0x0400_0138, 0x0400_013C => {}, // Unused
// Serial Communication 2
0x0400_0140 => log.debug("Wrote 0x{X:0>8} to JOYCNT", .{value}),
0x0400_0150 => log.debug("Wrote 0x{X:0>8} to JOY_RECV", .{value}),
0x0400_0154 => log.debug("Wrote 0x{X:0>8} to JOY_TRANS", .{value}),
0x0400_0158 => log.debug("Wrote 0x{X:0>8} to JOYSTAT (?)", .{value}),
0x0400_0144...0x0400_014C, 0x0400_015C => {}, // Unused
0x0400_0160...0x0400_01FC => {},
// Interrupts
0x0400_0200 => bus.io.setIrqs(value),
0x0400_0204 => bus.io.waitcnt.set(@truncate(u16, value)),
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0300 => {
bus.io.postflg = @intToEnum(PostFlag, value & 1);
bus.io.haltcnt = if (value >> 15 & 1 == 0) .Halt else @panic("TODO: Implement STOP");
},
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, address }),
},
u16 => switch (address) {
// Display
0x0400_0000...0x0400_0054 => ppu.write(T, &bus.ppu, address, value),
0x0400_0056 => {}, // Not used
// Sound
0x0400_0060...0x0400_00A6 => apu.write(T, &bus.apu, address, value),
// Dma Transfers
0x0400_00B0...0x0400_00DE => dma.write(T, &bus.dma, address, value),
// Timers
0x0400_0100...0x0400_010E => timer.write(T, &bus.tim, address, value),
0x0400_0114 => {},
0x0400_0110 => {}, // Not Used,
// Serial Communication 1
0x0400_0120 => log.debug("Wrote 0x{X:0>4} to SIOMULTI0", .{value}),
0x0400_0122 => log.debug("Wrote 0x{X:0>4} to SIOMULTI1", .{value}),
0x0400_0124 => log.debug("Wrote 0x{X:0>4} to SIOMULTI2", .{value}),
0x0400_0126 => log.debug("Wrote 0x{X:0>4} to SIOMULTI3", .{value}),
0x0400_0128 => log.debug("Wrote 0x{X:0>4} to SIOCNT", .{value}),
0x0400_012A => log.debug("Wrote 0x{X:0>4} to SIOMLT_SEND", .{value}),
// Keypad Input
0x0400_0130 => log.debug("Wrote 0x{X:0>4} to KEYINPUT. Ignored", .{value}),
0x0400_0132 => log.debug("Wrote 0x{X:0>4} to KEYCNT", .{value}),
// Serial Communication 2
0x0400_0134 => log.debug("Wrote 0x{X:0>4} to RCNT", .{value}),
0x0400_0140 => log.debug("Wrote 0x{X:0>4} to JOYCNT", .{value}),
0x0400_0158 => log.debug("Wrote 0x{X:0>4} to JOYSTAT", .{value}),
0x0400_0142, 0x0400_015A => {}, // Not Used
// Interrupts
0x0400_0200 => bus.io.ie.raw = value,
0x0400_0202 => bus.io.irq.raw &= ~value,
0x0400_0204 => bus.io.waitcnt.set(value),
0x0400_0206 => {},
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_020A => {},
0x0400_0300 => {
bus.io.postflg = @intToEnum(PostFlag, value & 1);
bus.io.haltcnt = if (value >> 15 & 1 == 0) .Halt else @panic("TODO: Implement STOP");
},
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, address }),
},
u8 => switch (address) {
// Display
0x0400_0000...0x0400_0055 => ppu.write(T, &bus.ppu, address, value),
// Sound
0x0400_0060...0x0400_00A7 => apu.write(T, &bus.apu, address, value),
// Dma Transfers
0x0400_00B0...0x0400_00DF => dma.write(T, &bus.dma, address, value),
// Timers
0x0400_0100...0x0400_010F => timer.write(T, &bus.tim, address, value),
// Serial Communication 1
0x0400_0120 => log.debug("Wrote 0x{X:0>2} to SIODATA32_L_L", .{value}),
0x0400_0128 => log.debug("Wrote 0x{X:0>2} to SIOCNT_L", .{value}),
// Serial Communication 2
0x0400_0135 => log.debug("Wrote 0x{X:0>2} to RCNT_H", .{value}),
0x0400_0140 => log.debug("Wrote 0x{X:0>2} to JOYCNT_L", .{value}),
// Interrupts
0x0400_0200, 0x0400_0201 => bus.io.ie.raw = setHalf(u16, bus.io.ie.raw, @truncate(u8, address), value),
0x0400_0202 => bus.io.irq.raw &= ~@as(u16, value),
0x0400_0203 => bus.io.irq.raw &= ~@as(u16, value) << 8, // TODO: Is this good?
0x0400_0204, 0x0400_0205 => bus.io.waitcnt.set(setHalf(u16, @truncate(u16, bus.io.waitcnt.raw), @truncate(u8, address), value)),
0x0400_0206, 0x0400_0207 => {},
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0209 => {},
0x0400_020A, 0x0400_020B => {},
0x0400_0300 => bus.io.postflg = @intToEnum(PostFlag, value & 1),
0x0400_0301 => bus.io.haltcnt = if (value >> 7 & 1 == 0) .Halt else std.debug.panic("TODO: Implement STOP", .{}),
0x0400_0410 => log.debug("Wrote 0x{X:0>2} to the common yet undocumented 0x{X:0>8}", .{ value, address }),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, address }),
},
else => @compileError("I/O: Unsupported write width"),
};
}
/// Read / Write
pub const PostFlag = enum(u1) {
FirstBoot = 0,
FurtherBoots = 1,
};
/// Write Only
pub const HaltControl = enum {
Halt,
Stop,
Execute,
};
/// Read / Write
pub const DisplayControl = extern union {
bg_mode: Bitfield(u16, 0, 3),
frame_select: Bit(u16, 4),
hblank_interval_free: Bit(u16, 5),
obj_mapping: Bit(u16, 6),
forced_blank: Bit(u16, 7),
bg_enable: Bitfield(u16, 8, 4),
obj_enable: Bit(u16, 12),
win_enable: Bitfield(u16, 13, 2),
obj_win_enable: Bit(u16, 15),
raw: u16,
};
/// Read / Write
pub const DisplayStatus = extern union {
/// read-only
vblank: Bit(u16, 0),
/// read-only
hblank: Bit(u16, 1),
// read-only
coincidence: Bit(u16, 2),
vblank_irq: Bit(u16, 3),
hblank_irq: Bit(u16, 4),
vcount_irq: Bit(u16, 5),
vcount_trigger: Bitfield(u16, 8, 8),
raw: u16,
pub fn set(self: *DisplayStatus, value: u16) void {
const mask: u16 = 0x00C7; // set bits are read-only
self.raw = (self.raw & mask) | (value & ~mask);
}
};
/// Read Only
pub const VCount = extern union {
scanline: Bitfield(u16, 0, 8),
raw: u16,
};
/// Read / Write
const InterruptEnable = extern union {
vblank: Bit(u16, 0),
hblank: Bit(u16, 1),
coincidence: Bit(u16, 2),
tm0_overflow: Bit(u16, 3),
tm1_overflow: Bit(u16, 4),
tm2_overflow: Bit(u16, 5),
tm3_overflow: Bit(u16, 6),
serial: Bit(u16, 7),
dma0: Bit(u16, 8),
dma1: Bit(u16, 9),
dma2: Bit(u16, 10),
dma3: Bit(u16, 11),
keypad: Bit(u16, 12),
game_pak: Bit(u16, 13),
raw: u16,
};
/// Read Only
/// 0 = Pressed, 1 = Released
const KeyInput = extern union {
a: Bit(u16, 0),
b: Bit(u16, 1),
select: Bit(u16, 2),
start: Bit(u16, 3),
right: Bit(u16, 4),
left: Bit(u16, 5),
up: Bit(u16, 6),
down: Bit(u16, 7),
shoulder_r: Bit(u16, 8),
shoulder_l: Bit(u16, 9),
raw: u16,
};
const AtomicKeyInput = struct {
const Self = @This();
const Ordering = std.atomic.Ordering;
inner: KeyInput,
pub fn init(value: KeyInput) Self {
return .{ .inner = value };
}
pub inline fn load(self: *const Self, comptime ordering: Ordering) KeyInput {
return .{ .raw = switch (ordering) {
.AcqRel, .Release => @compileError("not supported for atomic loads"),
else => @atomicLoad(u16, &self.inner.raw, ordering),
} };
}
pub inline fn store(self: *Self, value: u16, comptime ordering: Ordering) void {
switch (ordering) {
.AcqRel, .Acquire => @compileError("not supported for atomic stores"),
else => @atomicStore(u16, &self.inner.raw, value, ordering),
}
}
};
// Read / Write
pub const BackgroundControl = extern union {
priority: Bitfield(u16, 0, 2),
char_base: Bitfield(u16, 2, 2),
mosaic_enable: Bit(u16, 6),
colour_mode: Bit(u16, 7),
screen_base: Bitfield(u16, 8, 5),
display_overflow: Bit(u16, 13),
size: Bitfield(u16, 14, 2),
raw: u16,
};
/// Write Only
pub const BackgroundOffset = extern union {
offset: Bitfield(u16, 0, 9),
raw: u16,
};
/// Read / Write
pub const BldCnt = extern union {
/// BLDCNT{0} is BG0 A
/// BLDCNT{4} is OBJ A
/// BLDCNT{5} is BD A
layer_a: Bitfield(u16, 0, 6),
mode: Bitfield(u16, 6, 2),
/// BLDCNT{8} is BG0 B
/// BLDCNT{12} is OBJ B
/// BLDCNT{13} is BD B
layer_b: Bitfield(u16, 8, 6),
raw: u16,
};
/// Read-only?
/// Alpha Blending Coefficients
pub const BldAlpha = extern union {
eva: Bitfield(u16, 0, 5),
evb: Bitfield(u16, 8, 5),
raw: u16,
};
/// Write-only?
/// Brightness COefficients
pub const BldY = extern union {
evy: Bitfield(u16, 0, 5),
raw: u16,
};
const u8WriteKind = enum { Hi, Lo };
/// Write-only
pub const WinH = extern union {
x2: Bitfield(u16, 0, 8),
x1: Bitfield(u16, 8, 8),
raw: u16,
};
/// Write-only
pub const WinV = extern union {
const Self = @This();
y2: Bitfield(u16, 0, 8),
y1: Bitfield(u16, 8, 8),
raw: u16,
};
pub const WinIn = extern union {
w0_bg: Bitfield(u16, 0, 4),
w0_obj: Bit(u16, 4),
w0_bld: Bit(u16, 5),
w1_bg: Bitfield(u16, 8, 4),
w1_obj: Bit(u16, 12),
w1_bld: Bit(u16, 13),
raw: u16,
};
pub const WinOut = extern union {
out_bg: Bitfield(u16, 0, 4),
out_obj: Bit(u16, 4),
out_bld: Bit(u16, 5),
obj_bg: Bitfield(u16, 8, 4),
obj_obj: Bit(u16, 12),
obj_bld: Bit(u16, 13),
raw: u16,
};
/// Read / Write
const InterruptRequest = extern union {
vblank: Bit(u16, 0),
hblank: Bit(u16, 1),
coincidence: Bit(u16, 2),
tim0: Bit(u16, 3),
tim1: Bit(u16, 4),
tim2: Bit(u16, 5),
tim3: Bit(u16, 6),
serial: Bit(u16, 7),
dma0: Bit(u16, 8),
dma1: Bit(u16, 9),
dma2: Bit(u16, 10),
dma3: Bit(u16, 11),
keypad: Bit(u16, 12),
game_pak: Bit(u16, 13),
raw: u16,
};
/// Read / Write
pub const DmaControl = extern union {
dad_adj: Bitfield(u16, 5, 2),
sad_adj: Bitfield(u16, 7, 2),
repeat: Bit(u16, 9),
transfer_type: Bit(u16, 10),
pak_drq: Bit(u16, 11),
start_timing: Bitfield(u16, 12, 2),
irq: Bit(u16, 14),
enabled: Bit(u16, 15),
raw: u16,
};
/// Read / Write
pub const TimerControl = extern union {
frequency: Bitfield(u16, 0, 2),
cascade: Bit(u16, 2),
irq: Bit(u16, 6),
enabled: Bit(u16, 7),
raw: u16,
};
/// Read / Write
/// NR10
pub const Sweep = extern union {
shift: Bitfield(u8, 0, 3),
direction: Bit(u8, 3),
period: Bitfield(u8, 4, 3),
raw: u8,
};
/// Read / Write
/// This represents the Duty / Len
/// NRx1
pub const Duty = extern union {
/// Write-only
/// Only used when bit 6 is set
length: Bitfield(u16, 0, 6),
pattern: Bitfield(u16, 6, 2),
raw: u8,
};
/// Read / Write
/// NRx2
pub const Envelope = extern union {
period: Bitfield(u8, 0, 3),
direction: Bit(u8, 3),
init_vol: Bitfield(u8, 4, 4),
raw: u8,
};
/// Read / Write
/// NRx3, NRx4
pub const Frequency = extern union {
/// Write-only
frequency: Bitfield(u16, 0, 11),
length_enable: Bit(u16, 14),
/// Write-only
trigger: Bit(u16, 15),
raw: u16,
};
/// Read / Write
/// NR30
pub const WaveSelect = extern union {
dimension: Bit(u8, 5),
bank: Bit(u8, 6),
enabled: Bit(u8, 7),
raw: u8,
};
/// Read / Write
/// NR32
pub const WaveVolume = extern union {
kind: Bitfield(u8, 5, 2),
force: Bit(u8, 7),
raw: u8,
};
/// Read / Write
/// NR43
pub const PolyCounter = extern union {
div_ratio: Bitfield(u8, 0, 3),
width: Bit(u8, 3),
shift: Bitfield(u8, 4, 4),
raw: u8,
};
/// Read / Write
/// NR44
pub const NoiseControl = extern union {
length_enable: Bit(u8, 6),
trigger: Bit(u8, 7),
raw: u8,
};
/// Read / Write
pub const ChannelVolumeControl = extern union {
right_vol: Bitfield(u16, 0, 3),
left_vol: Bitfield(u16, 4, 3),
ch_right: Bitfield(u16, 8, 4),
ch_left: Bitfield(u16, 12, 4),
raw: u16,
};
/// Read / Write
pub const DmaSoundControl = extern union {
ch_vol: Bitfield(u16, 0, 2),
chA_vol: Bit(u16, 2),
chB_vol: Bit(u16, 3),
chA_right: Bit(u16, 8),
chA_left: Bit(u16, 9),
chA_timer: Bit(u16, 10),
/// Write only?
chA_reset: Bit(u16, 11),
chB_right: Bit(u16, 12),
chB_left: Bit(u16, 13),
chB_timer: Bit(u16, 14),
/// Write only?
chB_reset: Bit(u16, 15),
raw: u16,
};
/// Read / Write
pub const SoundControl = extern union {
/// Read-only
ch1_enable: Bit(u8, 0),
/// Read-only
ch2_enable: Bit(u8, 1),
/// Read-only
ch3_enable: Bit(u8, 2),
/// Read-only
ch4_enable: Bit(u8, 3),
apu_enable: Bit(u8, 7),
raw: u8,
};
/// Read / Write
pub const SoundBias = extern union {
level: Bitfield(u16, 1, 9),
sampling_cycle: Bitfield(u16, 14, 2),
raw: u16,
};
/// Read / Write
pub const WaitControl = extern union {
sram_cnt: Bitfield(u16, 0, 2),
s0_first: Bitfield(u16, 2, 2),
s0_second: Bit(u16, 4),
s1_first: Bitfield(u16, 5, 2),
s1_second: Bit(u16, 7),
s2_first: Bitfield(u16, 8, 2),
s2_second: Bit(u16, 10),
phi_out: Bitfield(u16, 11, 2),
prefetch_enable: Bit(u16, 14),
pak_kind: Bit(u16, 15),
raw: u16,
pub fn set(self: *WaitControl, value: u16) void {
const mask: u16 = 0x8000; // set bits are read-only
self.raw = (self.raw & mask) | (value & ~mask);
}
};

243
src/core/bus/timer.zig Normal file
View File

@@ -0,0 +1,243 @@
const std = @import("std");
const util = @import("../../util.zig");
const TimerControl = @import("io.zig").TimerControl;
const Scheduler = @import("../scheduler.zig").Scheduler;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
pub const TimerTuple = struct { Timer(0), Timer(1), Timer(2), Timer(3) };
const log = std.log.scoped(.Timer);
const getHalf = util.getHalf;
const setHalf = util.setHalf;
pub fn create(sched: *Scheduler) TimerTuple {
return .{ Timer(0).init(sched), Timer(1).init(sched), Timer(2).init(sched), Timer(3).init(sched) };
}
pub fn read(comptime T: type, tim: *const TimerTuple, addr: u32) ?T {
const nybble_addr = @truncate(u4, addr);
return switch (T) {
u32 => switch (nybble_addr) {
0x0 => @as(T, tim.*[0].cnt.raw) << 16 | tim.*[0].timcntL(),
0x4 => @as(T, tim.*[1].cnt.raw) << 16 | tim.*[1].timcntL(),
0x8 => @as(T, tim.*[2].cnt.raw) << 16 | tim.*[2].timcntL(),
0xC => @as(T, tim.*[3].cnt.raw) << 16 | tim.*[3].timcntL(),
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (nybble_addr) {
0x0 => tim.*[0].timcntL(),
0x2 => tim.*[0].cnt.raw,
0x4 => tim.*[1].timcntL(),
0x6 => tim.*[1].cnt.raw,
0x8 => tim.*[2].timcntL(),
0xA => tim.*[2].cnt.raw,
0xC => tim.*[3].timcntL(),
0xE => tim.*[3].cnt.raw,
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (nybble_addr) {
0x0, 0x1 => @truncate(T, tim.*[0].timcntL() >> getHalf(nybble_addr)),
0x2, 0x3 => @truncate(T, tim.*[0].cnt.raw >> getHalf(nybble_addr)),
0x4, 0x5 => @truncate(T, tim.*[1].timcntL() >> getHalf(nybble_addr)),
0x6, 0x7 => @truncate(T, tim.*[1].cnt.raw >> getHalf(nybble_addr)),
0x8, 0x9 => @truncate(T, tim.*[2].timcntL() >> getHalf(nybble_addr)),
0xA, 0xB => @truncate(T, tim.*[2].cnt.raw >> getHalf(nybble_addr)),
0xC, 0xD => @truncate(T, tim.*[3].timcntL() >> getHalf(nybble_addr)),
0xE, 0xF => @truncate(T, tim.*[3].cnt.raw >> getHalf(nybble_addr)),
},
else => @compileError("TIM: Unsupported read width"),
};
}
pub fn write(comptime T: type, tim: *TimerTuple, addr: u32, value: T) void {
const nybble_addr = @truncate(u4, addr);
return switch (T) {
u32 => switch (nybble_addr) {
0x0 => tim.*[0].setTimcnt(value),
0x4 => tim.*[1].setTimcnt(value),
0x8 => tim.*[2].setTimcnt(value),
0xC => tim.*[3].setTimcnt(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (nybble_addr) {
0x0 => tim.*[0].setTimcntL(value),
0x2 => tim.*[0].setTimcntH(value),
0x4 => tim.*[1].setTimcntL(value),
0x6 => tim.*[1].setTimcntH(value),
0x8 => tim.*[2].setTimcntL(value),
0xA => tim.*[2].setTimcntH(value),
0xC => tim.*[3].setTimcntL(value),
0xE => tim.*[3].setTimcntH(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => switch (nybble_addr) {
0x0, 0x1 => tim.*[0].setTimcntL(setHalf(u16, tim.*[0]._reload, nybble_addr, value)),
0x2, 0x3 => tim.*[0].setTimcntH(setHalf(u16, tim.*[0].cnt.raw, nybble_addr, value)),
0x4, 0x5 => tim.*[1].setTimcntL(setHalf(u16, tim.*[1]._reload, nybble_addr, value)),
0x6, 0x7 => tim.*[1].setTimcntH(setHalf(u16, tim.*[1].cnt.raw, nybble_addr, value)),
0x8, 0x9 => tim.*[2].setTimcntL(setHalf(u16, tim.*[2]._reload, nybble_addr, value)),
0xA, 0xB => tim.*[2].setTimcntH(setHalf(u16, tim.*[2].cnt.raw, nybble_addr, value)),
0xC, 0xD => tim.*[3].setTimcntL(setHalf(u16, tim.*[3]._reload, nybble_addr, value)),
0xE, 0xF => tim.*[3].setTimcntH(setHalf(u16, tim.*[3].cnt.raw, nybble_addr, value)),
},
else => @compileError("TIM: Unsupported write width"),
};
}
fn Timer(comptime id: u2) type {
return struct {
const Self = @This();
/// Read Only, Internal. Please use self.timcntL()
_counter: u16,
/// Write Only, Internal. Please use self.setTimcntL()
_reload: u16,
/// Write Only, Internal. Please use self.setTimcntH()
cnt: TimerControl,
/// Internal.
sched: *Scheduler,
/// Internal
_start_timestamp: u64,
pub fn init(sched: *Scheduler) Self {
return .{
._reload = 0,
._counter = 0,
.cnt = .{ .raw = 0x0000 },
.sched = sched,
._start_timestamp = 0,
};
}
/// TIMCNT_L Getter
pub fn timcntL(self: *const Self) u16 {
if (self.cnt.cascade.read() or !self.cnt.enabled.read()) return self._counter;
return self._counter +% @truncate(u16, (self.sched.now() - self._start_timestamp) / self.frequency());
}
/// TIMCNT_L Setter
pub fn setTimcntL(self: *Self, halfword: u16) void {
self._reload = halfword;
}
/// TIMCNT_L & TIMCNT_H
pub fn setTimcnt(self: *Self, word: u32) void {
self.setTimcntL(@truncate(u16, word));
self.setTimcntH(@truncate(u16, word >> 16));
}
/// TIMCNT_H
pub fn setTimcntH(self: *Self, halfword: u16) void {
const new = TimerControl{ .raw = halfword };
if (self.cnt.enabled.read()) {
// timer was already enabled
// If enabled falling edge or cascade falling edge, timer is paused
if (!new.enabled.read() or (!self.cnt.cascade.read() and new.cascade.read())) {
self.sched.removeScheduledEvent(.{ .TimerOverflow = id });
// Counter should hold the value it stopped at meaning we have to calculate it now
self._counter +%= @truncate(u16, (self.sched.now() - self._start_timestamp) / self.frequency());
}
// the timer has always been enabled, but the cascade bit which was blocking the timer has been unset
if (new.enabled.read() and (self.cnt.cascade.read() and !new.cascade.read())) {
// we want to reschedule the timer event, however we won't reload the counter.
// the invariant here is that self._counter holds the already calculated paused value
self.rescheduleTimerExpire(0);
}
} else {
// the timer was previously disabeld
if (new.enabled.read()) {
// timer should start counting (with a reloaded counter value)
self._counter = self._reload;
// if cascade happens to be set, the timer doesn't actually do anything though
if (!new.cascade.read()) self.rescheduleTimerExpire(0);
}
}
self.cnt.raw = halfword;
}
pub fn onTimerExpire(self: *Self, cpu: *Arm7tdmi, late: u64) void {
// Fire IRQ if enabled
const io = &cpu.bus.io;
if (self.cnt.irq.read()) {
switch (id) {
0 => io.irq.tim0.set(),
1 => io.irq.tim1.set(),
2 => io.irq.tim2.set(),
3 => io.irq.tim3.set(),
}
cpu.handleInterrupt();
}
// DMA Sound Things
if (id == 0 or id == 1) {
cpu.bus.apu.onDmaAudioSampleRequest(cpu, id);
}
// Perform Cascade Behaviour
switch (id) {
inline 0, 1, 2 => |idx| {
const next = idx + 1;
if (cpu.bus.tim[next].cnt.cascade.read()) {
cpu.bus.tim[next]._counter +%= 1;
if (cpu.bus.tim[next]._counter == 0) cpu.bus.tim[next].onTimerExpire(cpu, late);
}
},
3 => {}, // THere is no timer for TIM3 to cascade to
}
// Reschedule Timer if we're not cascading
// TIM0 cascade value is N/A
if (id == 0 or !self.cnt.cascade.read()) {
self._counter = self._reload;
self.rescheduleTimerExpire(late);
}
}
fn rescheduleTimerExpire(self: *Self, late: u64) void {
const when = (@as(u64, 0x10000) - self._counter) * self.frequency();
self._start_timestamp = self.sched.now();
self.sched.push(.{ .TimerOverflow = id }, when -| late);
}
fn frequency(self: *const Self) u16 {
return switch (self.cnt.frequency.read()) {
0 => 1,
1 => 64,
2 => 256,
3 => 1024,
};
}
};
}

673
src/core/cpu.zig Normal file
View File

@@ -0,0 +1,673 @@
const std = @import("std");
const Bus = @import("Bus.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Scheduler = @import("scheduler.zig").Scheduler;
const Logger = @import("../util.zig").Logger;
const File = std.fs.File;
const log = std.log.scoped(.Arm7Tdmi);
// ARM Instructions
pub const arm = struct {
pub const InstrFn = *const fn (*Arm7tdmi, *Bus, u32) void;
const lut: [0x1000]InstrFn = populate();
const processing = @import("cpu/arm/data_processing.zig").dataProcessing;
const psrTransfer = @import("cpu/arm/psr_transfer.zig").psrTransfer;
const transfer = @import("cpu/arm/single_data_transfer.zig").singleDataTransfer;
const halfSignedTransfer = @import("cpu/arm/half_signed_data_transfer.zig").halfAndSignedDataTransfer;
const blockTransfer = @import("cpu/arm/block_data_transfer.zig").blockDataTransfer;
const branch = @import("cpu/arm/branch.zig").branch;
const branchExchange = @import("cpu/arm/branch.zig").branchAndExchange;
const swi = @import("cpu/arm/software_interrupt.zig").armSoftwareInterrupt;
const swap = @import("cpu/arm/single_data_swap.zig").singleDataSwap;
const multiply = @import("cpu/arm/multiply.zig").multiply;
const multiplyLong = @import("cpu/arm/multiply.zig").multiplyLong;
/// Determine index into ARM InstrFn LUT
fn idx(opcode: u32) u12 {
return @truncate(u12, opcode >> 20 & 0xFF) << 4 | @truncate(u12, opcode >> 4 & 0xF);
}
// Undefined ARM Instruction handler
fn und(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const id = idx(opcode);
cpu.panic("[CPU/Decode] ID: 0x{X:0>3} 0x{X:0>8} is an illegal opcode", .{ id, opcode });
}
fn populate() [0x1000]InstrFn {
comptime {
@setEvalBranchQuota(0xE000);
var table = [_]InstrFn{und} ** 0x1000;
for (&table, 0..) |*handler, i| {
handler.* = switch (@as(u2, i >> 10)) {
0b00 => if (i == 0x121) blk: {
break :blk branchExchange;
} else if (i & 0xFCF == 0x009) blk: {
const A = i >> 5 & 1 == 1;
const S = i >> 4 & 1 == 1;
break :blk multiply(A, S);
} else if (i & 0xFBF == 0x109) blk: {
const B = i >> 6 & 1 == 1;
break :blk swap(B);
} else if (i & 0xF8F == 0x089) blk: {
const U = i >> 6 & 1 == 1;
const A = i >> 5 & 1 == 1;
const S = i >> 4 & 1 == 1;
break :blk multiplyLong(U, A, S);
} else if (i & 0xE49 == 0x009 or i & 0xE49 == 0x049) blk: {
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const I = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
break :blk halfSignedTransfer(P, U, I, W, L);
} else if (i & 0xD90 == 0x100) blk: {
const I = i >> 9 & 1 == 1;
const R = i >> 6 & 1 == 1;
const kind = i >> 4 & 0x3;
break :blk psrTransfer(I, R, kind);
} else blk: {
const I = i >> 9 & 1 == 1;
const S = i >> 4 & 1 == 1;
const instrKind = i >> 5 & 0xF;
break :blk processing(I, S, instrKind);
},
0b01 => if (i >> 9 & 1 == 1 and i & 1 == 1) und else blk: {
const I = i >> 9 & 1 == 1;
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const B = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
break :blk transfer(I, P, U, B, W, L);
},
else => switch (@as(u2, i >> 9 & 0x3)) {
// MSB is guaranteed to be 1
0b00 => blk: {
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const S = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
break :blk blockTransfer(P, U, S, W, L);
},
0b01 => blk: {
const L = i >> 8 & 1 == 1;
break :blk branch(L);
},
0b10 => und, // COP Data Transfer
0b11 => if (i >> 8 & 1 == 1) swi() else und, // COP Data Operation + Register Transfer
},
};
}
return table;
}
}
};
// THUMB Instructions
pub const thumb = struct {
pub const InstrFn = *const fn (*Arm7tdmi, *Bus, u16) void;
const lut: [0x400]InstrFn = populate();
const processing = @import("cpu/thumb/data_processing.zig");
const alu = @import("cpu/thumb/alu.zig").fmt4;
const transfer = @import("cpu/thumb/data_transfer.zig");
const block_transfer = @import("cpu/thumb/block_data_transfer.zig");
const swi = @import("cpu/thumb/software_interrupt.zig").fmt17;
const branch = @import("cpu/thumb/branch.zig");
/// Determine index into THUMB InstrFn LUT
fn idx(opcode: u16) u10 {
return @truncate(u10, opcode >> 6);
}
/// Undefined THUMB Instruction Handler
fn und(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const id = idx(opcode);
cpu.panic("[CPU/Decode] ID: 0b{b:0>10} 0x{X:0>2} is an illegal opcode", .{ id, opcode });
}
fn populate() [0x400]InstrFn {
comptime {
@setEvalBranchQuota(5025); // This is exact
var table = [_]InstrFn{und} ** 0x400;
for (&table, 0..) |*handler, i| {
handler.* = switch (@as(u3, i >> 7 & 0x7)) {
0b000 => if (i >> 5 & 0x3 == 0b11) blk: {
const I = i >> 4 & 1 == 1;
const is_sub = i >> 3 & 1 == 1;
const rn = i & 0x7;
break :blk processing.fmt2(I, is_sub, rn);
} else blk: {
const op = i >> 5 & 0x3;
const offset = i & 0x1F;
break :blk processing.fmt1(op, offset);
},
0b001 => blk: {
const op = i >> 5 & 0x3;
const rd = i >> 2 & 0x7;
break :blk processing.fmt3(op, rd);
},
0b010 => switch (@as(u2, i >> 5 & 0x3)) {
0b00 => if (i >> 4 & 1 == 1) blk: {
const op = i >> 2 & 0x3;
const h1 = i >> 1 & 1;
const h2 = i & 1;
break :blk processing.fmt5(op, h1, h2);
} else blk: {
const op = i & 0xF;
break :blk alu(op);
},
0b01 => blk: {
const rd = i >> 2 & 0x7;
break :blk transfer.fmt6(rd);
},
else => blk: {
const op = i >> 4 & 0x3;
const T = i >> 3 & 1 == 1;
break :blk transfer.fmt78(op, T);
},
},
0b011 => blk: {
const B = i >> 6 & 1 == 1;
const L = i >> 5 & 1 == 1;
const offset = i & 0x1F;
break :blk transfer.fmt9(B, L, offset);
},
else => switch (@as(u3, i >> 6 & 0x7)) {
// MSB is guaranteed to be 1
0b000 => blk: {
const L = i >> 5 & 1 == 1;
const offset = i & 0x1F;
break :blk transfer.fmt10(L, offset);
},
0b001 => blk: {
const L = i >> 5 & 1 == 1;
const rd = i >> 2 & 0x7;
break :blk transfer.fmt11(L, rd);
},
0b010 => blk: {
const isSP = i >> 5 & 1 == 1;
const rd = i >> 2 & 0x7;
break :blk processing.fmt12(isSP, rd);
},
0b011 => if (i >> 4 & 1 == 1) blk: {
const L = i >> 5 & 1 == 1;
const R = i >> 2 & 1 == 1;
break :blk block_transfer.fmt14(L, R);
} else blk: {
const S = i >> 1 & 1 == 1;
break :blk processing.fmt13(S);
},
0b100 => blk: {
const L = i >> 5 & 1 == 1;
const rb = i >> 2 & 0x7;
break :blk block_transfer.fmt15(L, rb);
},
0b101 => if (i >> 2 & 0xF == 0b1111) blk: {
break :blk thumb.swi();
} else blk: {
const cond = i >> 2 & 0xF;
break :blk branch.fmt16(cond);
},
0b110 => branch.fmt18(),
0b111 => blk: {
const is_low = i >> 5 & 1 == 1;
break :blk branch.fmt19(is_low);
},
},
};
}
return table;
}
}
};
pub const Arm7tdmi = struct {
const Self = @This();
r: [16]u32,
pipe: Pipeline,
sched: *Scheduler,
bus: *Bus,
cpsr: PSR,
spsr: PSR,
bank: Bank,
logger: ?Logger,
/// Bank of Registers from other CPU Modes
const Bank = struct {
/// Storage for r13_<mode>, r14_<mode>
/// e.g. [r13, r14, r13_svc, r14_svc]
r: [2 * 6]u32,
/// Storage for R8_fiq -> R12_fiq and their normal counterparts
/// e.g [r[0 + 8], fiq_r[0 + 8], r[1 + 8], fiq_r[1 + 8]...]
fiq: [2 * 5]u32,
spsr: [5]PSR,
const Kind = enum(u1) {
R13 = 0,
R14,
};
pub fn create() Bank {
return .{
.r = [_]u32{0x00} ** 12,
.fiq = [_]u32{0x00} ** 10,
.spsr = [_]PSR{.{ .raw = 0x0000_0000 }} ** 5,
};
}
inline fn regIdx(mode: Mode, kind: Kind) usize {
const idx: usize = switch (mode) {
.User, .System => 0,
.Supervisor => 1,
.Abort => 2,
.Undefined => 3,
.Irq => 4,
.Fiq => 5,
};
return (idx * 2) + if (kind == .R14) @as(usize, 1) else 0;
}
inline fn spsrIdx(mode: Mode) usize {
return switch (mode) {
.Supervisor => 0,
.Abort => 1,
.Undefined => 2,
.Irq => 3,
.Fiq => 4,
else => std.debug.panic("[CPU/Mode] {} does not have a SPSR Register", .{mode}),
};
}
inline fn fiqIdx(i: usize, mode: Mode) usize {
return (i * 2) + if (mode == .Fiq) @as(usize, 1) else 0;
}
};
pub fn init(sched: *Scheduler, bus: *Bus, log_file: ?std.fs.File) Self {
return Self{
.r = [_]u32{0x00} ** 16,
.pipe = Pipeline.init(),
.sched = sched,
.bus = bus,
.cpsr = .{ .raw = 0x0000_001F },
.spsr = .{ .raw = 0x0000_0000 },
.bank = Bank.create(),
.logger = if (log_file) |file| Logger.init(file) else null,
};
}
pub inline fn hasSPSR(self: *const Self) bool {
const mode = getModeChecked(self, self.cpsr.mode.read());
return switch (mode) {
.System, .User => false,
else => true,
};
}
pub inline fn isPrivileged(self: *const Self) bool {
const mode = getModeChecked(self, self.cpsr.mode.read());
return switch (mode) {
.User => false,
else => true,
};
}
pub inline fn isHalted(self: *const Self) bool {
return self.bus.io.haltcnt == .Halt;
}
pub fn setCpsr(self: *Self, value: u32) void {
if (value & 0x1F != self.cpsr.raw & 0x1F) self.changeModeFromIdx(@truncate(u5, value & 0x1F));
self.cpsr.raw = value;
}
fn changeModeFromIdx(self: *Self, next: u5) void {
self.changeMode(getModeChecked(self, next));
}
pub fn setUserModeRegister(self: *Self, idx: usize, value: u32) void {
const current = getModeChecked(self, self.cpsr.mode.read());
switch (idx) {
8...12 => {
if (current == .Fiq) {
self.bank.fiq[Bank.fiqIdx(idx - 8, .User)] = value;
} else self.r[idx] = value;
},
13, 14 => switch (current) {
.User, .System => self.r[idx] = value,
else => {
const kind = std.meta.intToEnum(Bank.Kind, idx - 13) catch unreachable;
self.bank.r[Bank.regIdx(.User, kind)] = value;
},
},
else => self.r[idx] = value, // R0 -> R7 and R15
}
}
pub fn getUserModeRegister(self: *Self, idx: usize) u32 {
const current = getModeChecked(self, self.cpsr.mode.read());
return switch (idx) {
8...12 => if (current == .Fiq) self.bank.fiq[Bank.fiqIdx(idx - 8, .User)] else self.r[idx],
13, 14 => switch (current) {
.User, .System => self.r[idx],
else => blk: {
const kind = std.meta.intToEnum(Bank.Kind, idx - 13) catch unreachable;
break :blk self.bank.r[Bank.regIdx(.User, kind)];
},
},
else => self.r[idx], // R0 -> R7 and R15
};
}
pub fn changeMode(self: *Self, next: Mode) void {
const now = getModeChecked(self, self.cpsr.mode.read());
// Bank R8 -> r12
for (0..5) |i| {
self.bank.fiq[Bank.fiqIdx(i, now)] = self.r[8 + i];
}
// Bank r13, r14, SPSR
switch (now) {
.User, .System => {
self.bank.r[Bank.regIdx(now, .R13)] = self.r[13];
self.bank.r[Bank.regIdx(now, .R14)] = self.r[14];
},
else => {
self.bank.r[Bank.regIdx(now, .R13)] = self.r[13];
self.bank.r[Bank.regIdx(now, .R14)] = self.r[14];
self.bank.spsr[Bank.spsrIdx(now)] = self.spsr;
},
}
// Grab R8 -> R12
for (0..5) |i| {
self.r[8 + i] = self.bank.fiq[Bank.fiqIdx(i, next)];
}
// Grab r13, r14, SPSR
switch (next) {
.User, .System => {
self.r[13] = self.bank.r[Bank.regIdx(next, .R13)];
self.r[14] = self.bank.r[Bank.regIdx(next, .R14)];
},
else => {
self.r[13] = self.bank.r[Bank.regIdx(next, .R13)];
self.r[14] = self.bank.r[Bank.regIdx(next, .R14)];
self.spsr = self.bank.spsr[Bank.spsrIdx(next)];
},
}
self.cpsr.mode.write(@enumToInt(next));
}
/// Advances state so that the BIOS is skipped
///
/// Note: This accesses the CPU's bus ptr so it only may be called
/// once the Bus has been properly initialized
///
/// TODO: Make above notice impossible to do in code
pub fn fastBoot(self: *Self) void {
self.r = std.mem.zeroes([16]u32);
// self.r[0] = 0x08000000;
// self.r[1] = 0x000000EA;
self.r[13] = 0x0300_7F00;
self.r[15] = 0x0800_0000;
self.bank.r[Bank.regIdx(.Irq, .R13)] = 0x0300_7FA0;
self.bank.r[Bank.regIdx(.Supervisor, .R13)] = 0x0300_7FE0;
// self.cpsr.raw = 0x6000001F;
self.cpsr.raw = 0x0000_001F;
self.bus.bios.addr_latch = 0x0000_00DC + 8;
}
pub fn step(self: *Self) void {
defer {
if (!self.pipe.flushed) self.r[15] += if (self.cpsr.t.read()) 2 else @as(u32, 4);
self.pipe.flushed = false;
}
if (self.cpsr.t.read()) {
const opcode = @truncate(u16, self.pipe.step(self, u16) orelse return);
if (self.logger) |*trace| trace.mgbaLog(self, opcode);
thumb.lut[thumb.idx(opcode)](self, self.bus, opcode);
} else {
const opcode = self.pipe.step(self, u32) orelse return;
if (self.logger) |*trace| trace.mgbaLog(self, opcode);
if (checkCond(self.cpsr, @truncate(u4, opcode >> 28))) {
arm.lut[arm.idx(opcode)](self, self.bus, opcode);
}
}
}
pub fn stepDmaTransfer(self: *Self) bool {
inline for (0..4) |i| {
if (self.bus.dma[i].in_progress) {
self.bus.dma[i].step(self);
return true;
}
}
return false;
}
pub fn handleInterrupt(self: *Self) void {
const should_handle = self.bus.io.ie.raw & self.bus.io.irq.raw;
// Return if IME is disabled, CPSR I is set or there is nothing to handle
if (!self.bus.io.ime or self.cpsr.i.read() or should_handle == 0) return;
// If Pipeline isn't full, we have a bug
std.debug.assert(self.pipe.isFull());
// log.debug("Handling Interrupt!", .{});
self.bus.io.haltcnt = .Execute;
// FIXME: This seems weird, but retAddr.gba suggests I need to make these changes
const ret_addr = self.r[15] - if (self.cpsr.t.read()) 0 else @as(u32, 4);
const new_spsr = self.cpsr.raw;
self.changeMode(.Irq);
self.cpsr.t.write(false);
self.cpsr.i.write(true);
self.r[14] = ret_addr;
self.spsr.raw = new_spsr;
self.r[15] = 0x0000_0018;
self.pipe.reload(self);
}
inline fn fetch(self: *Self, comptime T: type, address: u32) T {
comptime std.debug.assert(T == u32 or T == u16); // Opcode may be 32-bit (ARM) or 16-bit (THUMB)
// Bus.read will advance the scheduler. There are different timings for CPU fetches,
// so we want to undo what Bus.read will apply. We can do this by caching the current tick
// This is very dumb.
//
// FIXME: Please rework this
const tick_cache = self.sched.tick;
defer self.sched.tick = tick_cache + Bus.fetch_timings[@boolToInt(T == u32)][@truncate(u4, address >> 24)];
return self.bus.read(T, address);
}
pub fn panic(self: *const Self, comptime format: []const u8, args: anytype) noreturn {
var i: usize = 0;
while (i < 16) : (i += 4) {
const i_1 = i + 1;
const i_2 = i + 2;
const i_3 = i + 3;
std.debug.print("R{}: 0x{X:0>8}\tR{}: 0x{X:0>8}\tR{}: 0x{X:0>8}\tR{}: 0x{X:0>8}\n", .{ i, self.r[i], i_1, self.r[i_1], i_2, self.r[i_2], i_3, self.r[i_3] });
}
std.debug.print("cpsr: 0x{X:0>8} ", .{self.cpsr.raw});
self.cpsr.toString();
std.debug.print("spsr: 0x{X:0>8} ", .{self.spsr.raw});
self.spsr.toString();
std.debug.print("pipeline: {??X:0>8}\n", .{self.pipe.stage});
if (self.cpsr.t.read()) {
const opcode = self.bus.dbgRead(u16, self.r[15] - 4);
const id = thumb.idx(opcode);
std.debug.print("opcode: ID: 0x{b:0>10} 0x{X:0>4}\n", .{ id, opcode });
} else {
const opcode = self.bus.dbgRead(u32, self.r[15] - 4);
const id = arm.idx(opcode);
std.debug.print("opcode: ID: 0x{X:0>3} 0x{X:0>8}\n", .{ id, opcode });
}
std.debug.print("tick: {}\n\n", .{self.sched.tick});
std.debug.panic(format, args);
}
};
const condition_lut = [_]u16{
0xF0F0, // EQ - Equal
0x0F0F, // NE - Not Equal
0xCCCC, // CS - Unsigned higher or same
0x3333, // CC - Unsigned lower
0xFF00, // MI - Negative
0x00FF, // PL - Positive or Zero
0xAAAA, // VS - Overflow
0x5555, // VC - No Overflow
0x0C0C, // HI - unsigned hierh
0xF3F3, // LS - unsigned lower or same
0xAA55, // GE - greater or equal
0x55AA, // LT - less than
0x0A05, // GT - greater than
0xF5FA, // LE - less than or equal
0xFFFF, // AL - always
0x0000, // NV - never
};
pub inline fn checkCond(cpsr: PSR, cond: u4) bool {
const flags = @truncate(u4, cpsr.raw >> 28);
return condition_lut[cond] & (@as(u16, 1) << flags) != 0;
}
const Pipeline = struct {
const Self = @This();
stage: [2]?u32,
flushed: bool,
fn init() Self {
return .{
.stage = [_]?u32{null} ** 2,
.flushed = false,
};
}
pub fn isFull(self: *const Self) bool {
return self.stage[0] != null and self.stage[1] != null;
}
pub fn step(self: *Self, cpu: *Arm7tdmi, comptime T: type) ?u32 {
comptime std.debug.assert(T == u32 or T == u16);
const opcode = self.stage[0];
self.stage[0] = self.stage[1];
self.stage[1] = cpu.fetch(T, cpu.r[15]);
return opcode;
}
pub fn reload(self: *Self, cpu: *Arm7tdmi) void {
if (cpu.cpsr.t.read()) {
self.stage[0] = cpu.fetch(u16, cpu.r[15]);
self.stage[1] = cpu.fetch(u16, cpu.r[15] + 2);
cpu.r[15] += 4;
} else {
self.stage[0] = cpu.fetch(u32, cpu.r[15]);
self.stage[1] = cpu.fetch(u32, cpu.r[15] + 4);
cpu.r[15] += 8;
}
self.flushed = true;
}
};
pub const PSR = extern union {
mode: Bitfield(u32, 0, 5),
t: Bit(u32, 5),
f: Bit(u32, 6),
i: Bit(u32, 7),
v: Bit(u32, 28),
c: Bit(u32, 29),
z: Bit(u32, 30),
n: Bit(u32, 31),
raw: u32,
fn toString(self: PSR) void {
std.debug.print("[", .{});
if (self.n.read()) std.debug.print("N", .{}) else std.debug.print("-", .{});
if (self.z.read()) std.debug.print("Z", .{}) else std.debug.print("-", .{});
if (self.c.read()) std.debug.print("C", .{}) else std.debug.print("-", .{});
if (self.v.read()) std.debug.print("V", .{}) else std.debug.print("-", .{});
if (self.i.read()) std.debug.print("I", .{}) else std.debug.print("-", .{});
if (self.f.read()) std.debug.print("F", .{}) else std.debug.print("-", .{});
if (self.t.read()) std.debug.print("T", .{}) else std.debug.print("-", .{});
std.debug.print("|", .{});
if (getMode(self.mode.read())) |m| std.debug.print("{s}", .{m.toString()}) else std.debug.print("---", .{});
std.debug.print("]\n", .{});
}
};
const Mode = enum(u5) {
User = 0b10000,
Fiq = 0b10001,
Irq = 0b10010,
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
fn toString(self: Mode) []const u8 {
return switch (self) {
.User => "usr",
.Fiq => "fiq",
.Irq => "irq",
.Supervisor => "svc",
.Abort => "abt",
.Undefined => "und",
.System => "sys",
};
}
};
fn getMode(bits: u5) ?Mode {
return std.meta.intToEnum(Mode, bits) catch null;
}
fn getModeChecked(cpu: *const Arm7tdmi, bits: u5) Mode {
return getMode(bits) orelse cpu.panic("[CPU/CPSR] 0b{b:0>5} is an invalid CPU mode", .{bits});
}

View File

@@ -0,0 +1,111 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
pub fn blockDataTransfer(comptime P: bool, comptime U: bool, comptime S: bool, comptime W: bool, comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = @truncate(u4, opcode >> 16 & 0xF);
const rlist = opcode & 0xFFFF;
const r15 = rlist >> 15 & 1 == 1;
var count: u32 = 0;
var i: u5 = 0;
var first: u4 = 0;
var write_to_base = true;
while (i < 16) : (i += 1) {
const r = @truncate(u4, 15 - i);
if (rlist >> r & 1 == 1) {
first = r;
count += 1;
}
}
var start = cpu.r[rn];
if (U) {
start += if (P) 4 else 0;
} else {
start = start - (4 * count) + if (!P) 4 else 0;
}
var end = cpu.r[rn];
if (U) {
end = end + (4 * count) - if (!P) 4 else 0;
} else {
end -= if (P) 4 else 0;
}
var new_base = cpu.r[rn];
if (U) {
new_base += 4 * count;
} else {
new_base -= 4 * count;
}
var address = start;
if (rlist == 0) {
var und_addr = cpu.r[rn];
if (U) {
und_addr += if (P) 4 else 0;
} else {
und_addr -= 0x40 - if (!P) 4 else 0;
}
if (L) {
cpu.r[15] = bus.read(u32, und_addr);
cpu.pipe.reload(cpu);
} else {
bus.write(u32, und_addr, cpu.r[15] + 4);
}
cpu.r[rn] = if (U) cpu.r[rn] + 0x40 else cpu.r[rn] - 0x40;
return;
}
i = first;
while (i < 16) : (i += 1) {
if (rlist >> i & 1 == 1) {
transfer(cpu, bus, r15, i, address);
address += 4;
if (W and !L and write_to_base) {
cpu.r[rn] = new_base;
write_to_base = false;
}
}
}
if (W and L and rlist >> rn & 1 == 0) cpu.r[rn] = new_base;
}
fn transfer(cpu: *Arm7tdmi, bus: *Bus, r15_present: bool, i: u5, address: u32) void {
if (L) {
if (S and !r15_present) {
// Always Transfer User mode Registers
cpu.setUserModeRegister(i, bus.read(u32, address));
} else {
const value = bus.read(u32, address);
cpu.r[i] = value;
if (i == 0xF) {
cpu.r[i] &= ~@as(u32, 3); // Align r15
cpu.pipe.reload(cpu);
if (S) cpu.setCpsr(cpu.spsr.raw);
}
}
} else {
if (S) {
// Always Transfer User mode Registers
// This happens regardless if r15 is in the list
const value = cpu.getUserModeRegister(i);
bus.write(u32, address, value + if (i == 0xF) 4 else @as(u32, 0)); // PC is already 8 ahead to make 12
} else {
bus.write(u32, address, cpu.r[i] + if (i == 0xF) 4 else @as(u32, 0));
}
}
}
}.inner;
}

View File

@@ -0,0 +1,26 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const sext = @import("../../../util.zig").sext;
pub fn branch(comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
if (L) cpu.r[14] = cpu.r[15] - 4;
cpu.r[15] +%= sext(u32, u24, opcode) << 2;
cpu.pipe.reload(cpu);
}
}.inner;
}
pub fn branchAndExchange(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rn = opcode & 0xF;
const thumb = cpu.r[rn] & 1 == 1;
cpu.r[15] = cpu.r[rn] & if (thumb) ~@as(u32, 1) else ~@as(u32, 3);
cpu.cpsr.t.write(thumb);
cpu.pipe.reload(cpu);
}

View File

@@ -0,0 +1,185 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const exec = @import("../barrel_shifter.zig").exec;
const ror = @import("../barrel_shifter.zig").ror;
pub fn dataProcessing(comptime I: bool, comptime S: bool, comptime kind: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd = @truncate(u4, opcode >> 12 & 0xF);
const rn = opcode >> 16 & 0xF;
const old_carry = @boolToInt(cpu.cpsr.c.read());
// If certain conditions are met, PC is 12 ahead instead of 8
// TODO: Why these conditions?
if (!I and opcode >> 4 & 1 == 1) cpu.r[15] += 4;
const op1 = cpu.r[rn];
const amount = @truncate(u8, (opcode >> 8 & 0xF) << 1);
const op2 = if (I) ror(S, &cpu.cpsr, opcode & 0xFF, amount) else exec(S, cpu, opcode);
// Undo special condition from above
if (!I and opcode >> 4 & 1 == 1) cpu.r[15] -= 4;
var result: u32 = undefined;
var overflow: u1 = undefined;
// Perform Data Processing Logic
switch (kind) {
0x0 => result = op1 & op2, // AND
0x1 => result = op1 ^ op2, // EOR
0x2 => result = op1 -% op2, // SUB
0x3 => result = op2 -% op1, // RSB
0x4 => result = add(&overflow, op1, op2), // ADD
0x5 => result = adc(&overflow, op1, op2, old_carry), // ADC
0x6 => result = sbc(op1, op2, old_carry), // SBC
0x7 => result = sbc(op2, op1, old_carry), // RSC
0x8 => {
// TST
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
result = op1 & op2;
},
0x9 => {
// TEQ
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
result = op1 ^ op2;
},
0xA => {
// CMP
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
result = op1 -% op2;
},
0xB => {
// CMN
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
const tmp = @addWithOverflow(op1, op2);
result = tmp[0];
overflow = tmp[1];
},
0xC => result = op1 | op2, // ORR
0xD => result = op2, // MOV
0xE => result = op1 & ~op2, // BIC
0xF => result = ~op2, // MVN
}
// Write to Destination Register
switch (kind) {
0x8, 0x9, 0xA, 0xB => {}, // Test Operations
else => {
cpu.r[rd] = result;
if (rd == 0xF) {
if (S) cpu.setCpsr(cpu.spsr.raw);
cpu.pipe.reload(cpu);
}
},
}
// Write Flags
switch (kind) {
0x0, 0x1, 0xC, 0xD, 0xE, 0xF => if (S and rd != 0xF) {
// Logic Operation Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// C set by Barrel Shifter, V is unaffected
},
0x2, 0x3 => if (S and rd != 0xF) {
// SUB, RSB Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0x2) {
// SUB specific
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else {
// RSB Specific
cpu.cpsr.c.write(op1 <= op2);
cpu.cpsr.v.write(((op2 ^ result) & (~op1 ^ result)) >> 31 & 1 == 1);
}
},
0x4, 0x5 => if (S and rd != 0xF) {
// ADD, ADC Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(overflow == 0b1);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
},
0x6, 0x7 => if (S and rd != 0xF) {
// SBC, RSC Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0x6) {
// SBC specific
const subtrahend = @as(u64, op2) -% old_carry +% 1;
cpu.cpsr.c.write(subtrahend <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else {
// RSC Specific
const subtrahend = @as(u64, op1) -% old_carry +% 1;
cpu.cpsr.c.write(subtrahend <= op2);
cpu.cpsr.v.write(((op2 ^ result) & (~op1 ^ result)) >> 31 & 1 == 1);
}
},
0x8, 0x9, 0xA, 0xB => {
// Test Operation Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0xA) {
// CMP specific
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else if (kind == 0xB) {
// CMN specific
cpu.cpsr.c.write(overflow == 0b1);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
} else {
// TST, TEQ specific
// Barrel Shifter should always calc CPSR C in TST
if (!S) _ = exec(true, cpu, opcode);
}
},
}
}
}.inner;
}
pub fn sbc(left: u32, right: u32, old_carry: u1) u32 {
// TODO: Make your own version (thanks peach.bot)
const subtrahend = @as(u64, right) -% old_carry +% 1;
const ret = @truncate(u32, left -% subtrahend);
return ret;
}
pub fn add(overflow: *u1, left: u32, right: u32) u32 {
const ret = @addWithOverflow(left, right);
overflow.* = ret[1];
return ret[0];
}
pub fn adc(overflow: *u1, left: u32, right: u32, old_carry: u1) u32 {
const tmp = @addWithOverflow(left, right);
const ret = @addWithOverflow(tmp[0], old_carry);
overflow.* = tmp[1] | ret[1];
return ret[0];
}
fn undefinedTestBehaviour(cpu: *Arm7tdmi) void {
@setCold(true);
cpu.setCpsr(cpu.spsr.raw);
}

View File

@@ -0,0 +1,53 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const sext = @import("../../../util.zig").sext;
const rotr = @import("../../../util.zig").rotr;
pub fn halfAndSignedDataTransfer(comptime P: bool, comptime U: bool, comptime I: bool, comptime W: bool, comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
const rm = opcode & 0xF;
const imm_offset_high = opcode >> 8 & 0xF;
const base = cpu.r[rn] + if (!L and rn == 0xF) 4 else @as(u32, 0);
const offset = if (I) imm_offset_high << 4 | rm else cpu.r[rm];
const modified_base = if (U) base +% offset else base -% offset;
var address = if (P) modified_base else base;
var result: u32 = undefined;
if (L) {
switch (@truncate(u2, opcode >> 5)) {
0b01 => {
// LDRH
const value = bus.read(u16, address);
result = rotr(u32, value, 8 * (address & 1));
},
0b10 => {
// LDRSB
result = sext(u32, u8, bus.read(u8, address));
},
0b11 => {
// LDRSH
const value = bus.read(u16, address);
result = if (address & 1 == 1) sext(u32, u8, @truncate(u8, value >> 8)) else sext(u32, u16, value);
},
0b00 => unreachable, // SWP
}
} else {
if (opcode >> 5 & 0x01 == 0x01) {
// STRH
bus.write(u16, address, @truncate(u16, cpu.r[rd]));
} else unreachable; // SWP
}
address = modified_base;
if (W and P or !P) cpu.r[rn] = address;
if (L) cpu.r[rd] = result; // // This emulates the LDR rd == rn behaviour
}
}.inner;
}

View File

@@ -0,0 +1,57 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
pub fn multiply(comptime A: bool, comptime S: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd = opcode >> 16 & 0xF;
const rn = opcode >> 12 & 0xF;
const rs = opcode >> 8 & 0xF;
const rm = opcode & 0xF;
const temp: u64 = @as(u64, cpu.r[rm]) * @as(u64, cpu.r[rs]) + if (A) cpu.r[rn] else 0;
const result = @truncate(u32, temp);
cpu.r[rd] = result;
if (S) {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// V is unaffected, C is *actually* undefined in ARMv4
}
}
}.inner;
}
pub fn multiplyLong(comptime U: bool, comptime A: bool, comptime S: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd_hi = opcode >> 16 & 0xF;
const rd_lo = opcode >> 12 & 0xF;
const rs = opcode >> 8 & 0xF;
const rm = opcode & 0xF;
if (U) {
// Signed (WHY IS IT U THEN?)
var result: i64 = @as(i64, @bitCast(i32, cpu.r[rm])) * @as(i64, @bitCast(i32, cpu.r[rs]));
if (A) result +%= @bitCast(i64, @as(u64, cpu.r[rd_hi]) << 32 | @as(u64, cpu.r[rd_lo]));
cpu.r[rd_hi] = @bitCast(u32, @truncate(i32, result >> 32));
cpu.r[rd_lo] = @bitCast(u32, @truncate(i32, result));
} else {
// Unsigned
var result: u64 = @as(u64, cpu.r[rm]) * @as(u64, cpu.r[rs]);
if (A) result +%= @as(u64, cpu.r[rd_hi]) << 32 | @as(u64, cpu.r[rd_lo]);
cpu.r[rd_hi] = @truncate(u32, result >> 32);
cpu.r[rd_lo] = @truncate(u32, result);
}
if (S) {
cpu.cpsr.z.write(cpu.r[rd_hi] == 0 and cpu.r[rd_lo] == 0);
cpu.cpsr.n.write(cpu.r[rd_hi] >> 31 & 1 == 1);
// C and V are set to meaningless values
}
}
}.inner;
}

View File

@@ -0,0 +1,59 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const PSR = @import("../../cpu.zig").PSR;
const log = std.log.scoped(.PsrTransfer);
const rotr = @import("../../../util.zig").rotr;
pub fn psrTransfer(comptime I: bool, comptime R: bool, comptime kind: u2) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
switch (kind) {
0b00 => {
// MRS
const rd = opcode >> 12 & 0xF;
if (R and !cpu.hasSPSR()) log.err("Tried to read SPSR from User/System Mode", .{});
cpu.r[rd] = if (R) cpu.spsr.raw else cpu.cpsr.raw;
},
0b10 => {
// MSR
const field_mask = @truncate(u4, opcode >> 16 & 0xF);
const rm_idx = opcode & 0xF;
const right = if (I) rotr(u32, opcode & 0xFF, (opcode >> 8 & 0xF) * 2) else cpu.r[rm_idx];
if (R and !cpu.hasSPSR()) log.err("Tried to write to SPSR in User/System Mode", .{});
if (R) {
// arm.gba seems to expect the SPSR to do somethign in SYS mode,
// so we just assume that despite writing to the SPSR in USR or SYS mode
// being UNPREDICTABLE, it just magically has a working SPSR somehow
cpu.spsr.raw = fieldMask(&cpu.spsr, field_mask, right);
} else {
if (cpu.isPrivileged()) cpu.setCpsr(fieldMask(&cpu.cpsr, field_mask, right));
}
},
else => cpu.panic("[CPU/PSR Transfer] Bits 21:220 of {X:0>8} are undefined", .{opcode}),
}
}
}.inner;
}
fn fieldMask(psr: *const PSR, field_mask: u4, right: u32) u32 {
// This bitwise ORs bits 3 and 0 of the field mask into a u2
// We do this because we only care about bits 7:0 and 31:28 of the CPSR
const bits = @truncate(u2, (field_mask >> 2 & 0x2) | (field_mask & 1));
const mask: u32 = switch (bits) {
0b00 => 0x0000_0000,
0b01 => 0x0000_00FF,
0b10 => 0xF000_0000,
0b11 => 0xF000_00FF,
};
return (psr.raw & ~mask) | (right & mask);
}

View File

@@ -0,0 +1,29 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const rotr = @import("../../../util.zig").rotr;
pub fn singleDataSwap(comptime B: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
const rm = opcode & 0xF;
const address = cpu.r[rn];
if (B) {
// SWPB
const value = bus.read(u8, address);
bus.write(u8, address, @truncate(u8, cpu.r[rm]));
cpu.r[rd] = value;
} else {
// SWP
const value = rotr(u32, bus.read(u32, address), 8 * (address & 0x3));
bus.write(u32, address, cpu.r[rm]);
cpu.r[rd] = value;
}
}
}.inner;
}

View File

@@ -0,0 +1,55 @@
const shifter = @import("../barrel_shifter.zig");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const rotr = @import("../../../util.zig").rotr;
pub fn singleDataTransfer(comptime I: bool, comptime P: bool, comptime U: bool, comptime B: bool, comptime W: bool, comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
const base = cpu.r[rn];
const offset = if (I) shifter.immediate(false, cpu, opcode) else opcode & 0xFFF;
const modified_base = if (U) base +% offset else base -% offset;
var address = if (P) modified_base else base;
var result: u32 = undefined;
if (L) {
if (B) {
// LDRB
result = bus.read(u8, address);
} else {
// LDR
const value = bus.read(u32, address);
result = rotr(u32, value, 8 * (address & 0x3));
}
} else {
if (B) {
// STRB
const value = cpu.r[rd] + if (rd == 0xF) 4 else @as(u32, 0); // PC is 12 ahead
bus.write(u8, address, @truncate(u8, value));
} else {
// STR
const value = cpu.r[rd] + if (rd == 0xF) 4 else @as(u32, 0);
bus.write(u32, address, value);
}
}
address = modified_base;
if (W and P or !P) {
cpu.r[rn] = address;
if (rn == 0xF) cpu.pipe.reload(cpu);
}
if (L) {
// This emulates the LDR rd == rn behaviour
cpu.r[rd] = result;
if (rd == 0xF) cpu.pipe.reload(cpu);
}
}
}.inner;
}

View File

@@ -0,0 +1,23 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
pub fn armSoftwareInterrupt() InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, _: u32) void {
// Copy Values from Current Mode
const ret_addr = cpu.r[15] - 4;
const cpsr = cpu.cpsr.raw;
// Switch Mode
cpu.changeMode(.Supervisor);
cpu.cpsr.t.write(false); // Force ARM Mode
cpu.cpsr.i.write(true); // Disable normal interrupts
cpu.r[14] = ret_addr; // Resume Execution
cpu.spsr.raw = cpsr; // Previous mode CPSR
cpu.r[15] = 0x0000_0008;
cpu.pipe.reload(cpu);
}
}.inner;
}

View File

@@ -0,0 +1,147 @@
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const CPSR = @import("../cpu.zig").PSR;
const rotr = @import("../../util.zig").rotr;
pub fn exec(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
var result: u32 = undefined;
if (opcode >> 4 & 1 == 1) {
result = register(S, cpu, opcode);
} else {
result = immediate(S, cpu, opcode);
}
return result;
}
fn register(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
const rs_idx = opcode >> 8 & 0xF;
const rm = cpu.r[opcode & 0xF];
const rs = @truncate(u8, cpu.r[rs_idx]);
return switch (@truncate(u2, opcode >> 5)) {
0b00 => lsl(S, &cpu.cpsr, rm, rs),
0b01 => lsr(S, &cpu.cpsr, rm, rs),
0b10 => asr(S, &cpu.cpsr, rm, rs),
0b11 => ror(S, &cpu.cpsr, rm, rs),
};
}
pub fn immediate(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
const amount = @truncate(u8, opcode >> 7 & 0x1F);
const rm = cpu.r[opcode & 0xF];
var result: u32 = undefined;
if (amount == 0) {
switch (@truncate(u2, opcode >> 5)) {
0b00 => {
// LSL #0
result = rm;
},
0b01 => {
// LSR #0 aka LSR #32
if (S) cpu.cpsr.c.write(rm >> 31 & 1 == 1);
result = 0x0000_0000;
},
0b10 => {
// ASR #0 aka ASR #32
result = @bitCast(u32, @bitCast(i32, rm) >> 31);
if (S) cpu.cpsr.c.write(result >> 31 & 1 == 1);
},
0b11 => {
// ROR #0 aka RRX
const carry: u32 = @boolToInt(cpu.cpsr.c.read());
if (S) cpu.cpsr.c.write(rm & 1 == 1);
result = (carry << 31) | (rm >> 1);
},
}
} else {
switch (@truncate(u2, opcode >> 5)) {
0b00 => result = lsl(S, &cpu.cpsr, rm, amount),
0b01 => result = lsr(S, &cpu.cpsr, rm, amount),
0b10 => result = asr(S, &cpu.cpsr, rm, amount),
0b11 => result = ror(S, &cpu.cpsr, rm, amount),
}
}
return result;
}
pub fn lsl(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 {
const amount = @truncate(u5, total_amount);
const bit_count: u8 = @typeInfo(u32).Int.bits;
var result: u32 = 0x0000_0000;
if (total_amount < bit_count) {
// We can perform a well-defined shift here
result = rm << amount;
if (S and total_amount != 0) {
const carry_bit = @truncate(u5, bit_count - amount);
cpsr.c.write(rm >> carry_bit & 1 == 1);
}
} else {
if (S) {
if (total_amount == bit_count) {
// Shifted all bits out, carry bit is bit 0 of rm
cpsr.c.write(rm & 1 == 1);
} else {
cpsr.c.write(false);
}
}
}
return result;
}
pub fn lsr(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u32) u32 {
const amount = @truncate(u5, total_amount);
const bit_count: u8 = @typeInfo(u32).Int.bits;
var result: u32 = 0x0000_0000;
if (total_amount < bit_count) {
// We can perform a well-defined shift
result = rm >> amount;
if (S and total_amount != 0) cpsr.c.write(rm >> (amount - 1) & 1 == 1);
} else {
if (S) {
if (total_amount == bit_count) {
// LSR #32
cpsr.c.write(rm >> 31 & 1 == 1);
} else {
// All bits have been shifted out, including carry bit
cpsr.c.write(false);
}
}
}
return result;
}
pub fn asr(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 {
const amount = @truncate(u5, total_amount);
const bit_count: u8 = @typeInfo(u32).Int.bits;
var result: u32 = 0x0000_0000;
if (total_amount < bit_count) {
result = @bitCast(u32, @bitCast(i32, rm) >> amount);
if (S and total_amount != 0) cpsr.c.write(rm >> (amount - 1) & 1 == 1);
} else {
// ASR #32 and ASR #>32 have the same result
result = @bitCast(u32, @bitCast(i32, rm) >> 31);
if (S) cpsr.c.write(result >> 31 & 1 == 1);
}
return result;
}
pub fn ror(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 {
const result = rotr(u32, rm, total_amount);
if (S and total_amount != 0) {
cpsr.c.write(result >> 31 & 1 == 1);
}
return result;
}

108
src/core/cpu/thumb/alu.zig Normal file
View File

@@ -0,0 +1,108 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
const adc = @import("../arm/data_processing.zig").adc;
const sbc = @import("../arm/data_processing.zig").sbc;
const lsl = @import("../barrel_shifter.zig").lsl;
const lsr = @import("../barrel_shifter.zig").lsr;
const asr = @import("../barrel_shifter.zig").asr;
const ror = @import("../barrel_shifter.zig").ror;
pub fn fmt4(comptime op: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const rs = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
const carry = @boolToInt(cpu.cpsr.c.read());
const op1 = cpu.r[rd];
const op2 = cpu.r[rs];
var result: u32 = undefined;
var overflow: u1 = undefined;
switch (op) {
0x0 => result = op1 & op2, // AND
0x1 => result = op1 ^ op2, // EOR
0x2 => result = lsl(true, &cpu.cpsr, op1, @truncate(u8, op2)), // LSL
0x3 => result = lsr(true, &cpu.cpsr, op1, @truncate(u8, op2)), // LSR
0x4 => result = asr(true, &cpu.cpsr, op1, @truncate(u8, op2)), // ASR
0x5 => result = adc(&overflow, op1, op2, carry), // ADC
0x6 => result = sbc(op1, op2, carry), // SBC
0x7 => result = ror(true, &cpu.cpsr, op1, @truncate(u8, op2)), // ROR
0x8 => result = op1 & op2, // TST
0x9 => result = 0 -% op2, // NEG
0xA => result = op1 -% op2, // CMP
0xB => {
// CMN
const tmp = @addWithOverflow(op1, op2);
result = tmp[0];
overflow = tmp[1];
},
0xC => result = op1 | op2, // ORR
0xD => result = @truncate(u32, @as(u64, op2) * @as(u64, op1)),
0xE => result = op1 & ~op2,
0xF => result = ~op2,
}
// Write to Destination Register
switch (op) {
0x8, 0xA, 0xB => {},
else => cpu.r[rd] = result,
}
// Write Flags
switch (op) {
0x0, 0x1, 0x2, 0x3, 0x4, 0x7, 0xC, 0xE, 0xF => {
// Logic Operations
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// C set by Barrel Shifter, V is unaffected
},
0x8, 0xA => {
// Test Flags
// CMN (0xB) is handled with ADC
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (op == 0xA) {
// CMP specific
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
}
},
0x5, 0xB => {
// ADC, CMN
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(overflow == 0b1);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
},
0x6 => {
// SBC
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
const subtrahend = @as(u64, op2) -% carry +% 1;
cpu.cpsr.c.write(subtrahend <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0x9 => {
// NEG
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(op2 <= 0);
cpu.cpsr.v.write(((0 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0xD => {
// Multiplication
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// V is unaffected, assuming similar behaviour to ARMv4 MUL C is undefined
},
}
}
}.inner;
}

View File

@@ -0,0 +1,100 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
pub fn fmt14(comptime L: bool, comptime R: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const count = @boolToInt(R) + countRlist(opcode);
const start = cpu.r[13] - if (!L) count * 4 else 0;
var end = cpu.r[13];
if (L) {
end += count * 4;
} else {
end -= 4;
}
var address = start;
var i: u4 = 0;
while (i < 8) : (i += 1) {
if (opcode >> i & 1 == 1) {
if (L) {
cpu.r[i] = bus.read(u32, address);
} else {
bus.write(u32, address, cpu.r[i]);
}
address += 4;
}
}
if (R) {
if (L) {
const value = bus.read(u32, address);
cpu.r[15] = value & ~@as(u32, 1);
cpu.pipe.reload(cpu);
} else {
bus.write(u32, address, cpu.r[14]);
}
address += 4;
}
cpu.r[13] = if (L) end else start;
}
}.inner;
}
pub fn fmt15(comptime L: bool, comptime rb: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
var address = cpu.r[rb];
const end_address = cpu.r[rb] + 4 * countRlist(opcode);
if (opcode & 0xFF == 0) {
if (L) {
cpu.r[15] = bus.read(u32, address);
cpu.pipe.reload(cpu);
} else {
bus.write(u32, address, cpu.r[15] + 2);
}
cpu.r[rb] += 0x40;
return;
}
var i: u4 = 0;
var first_write = true;
while (i < 8) : (i += 1) {
if (opcode >> i & 1 == 1) {
if (L) {
cpu.r[i] = bus.read(u32, address);
} else {
bus.write(u32, address, cpu.r[i]);
}
if (!L and first_write) {
cpu.r[rb] = end_address;
first_write = false;
}
address += 4;
}
}
if (L and opcode >> rb & 1 != 1) cpu.r[rb] = address;
}
}.inner;
}
inline fn countRlist(opcode: u16) u32 {
var count: u32 = 0;
inline for (0..8) |i| {
if (opcode >> (7 - i) & 1 == 1) count += 1;
}
return count;
}

View File

@@ -0,0 +1,54 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
const checkCond = @import("../../cpu.zig").checkCond;
const sext = @import("../../../util.zig").sext;
pub fn fmt16(comptime cond: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// B
if (cond == 0xE or cond == 0xF)
cpu.panic("[CPU/THUMB.16] Undefined conditional branch with condition {}", .{cond});
if (!checkCond(cpu.cpsr, cond)) return;
cpu.r[15] +%= sext(u32, u8, opcode & 0xFF) << 1;
cpu.pipe.reload(cpu);
}
}.inner;
}
pub fn fmt18() InstrFn {
return struct {
// B but conditional
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
cpu.r[15] +%= sext(u32, u11, opcode & 0x7FF) << 1;
cpu.pipe.reload(cpu);
}
}.inner;
}
pub fn fmt19(comptime is_low: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// BL
const offset = opcode & 0x7FF;
if (is_low) {
// Instruction 2
const next_opcode = cpu.r[15] - 2;
cpu.r[15] = cpu.r[14] +% (offset << 1);
cpu.r[14] = next_opcode | 1;
cpu.pipe.reload(cpu);
} else {
// Instruction 1
const lr_offset = sext(u32, u11, offset) << 12;
cpu.r[14] = (cpu.r[15] +% lr_offset) & ~@as(u32, 1);
}
}
}.inner;
}

View File

@@ -0,0 +1,199 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
const add = @import("../arm/data_processing.zig").add;
const lsl = @import("../barrel_shifter.zig").lsl;
const lsr = @import("../barrel_shifter.zig").lsr;
const asr = @import("../barrel_shifter.zig").asr;
pub fn fmt1(comptime op: u2, comptime offset: u5) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const rs = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
const result = switch (op) {
0b00 => blk: {
// LSL
if (offset == 0) {
break :blk cpu.r[rs];
} else {
break :blk lsl(true, &cpu.cpsr, cpu.r[rs], offset);
}
},
0b01 => blk: {
// LSR
if (offset == 0) {
cpu.cpsr.c.write(cpu.r[rs] >> 31 & 1 == 1);
break :blk @as(u32, 0);
} else {
break :blk lsr(true, &cpu.cpsr, cpu.r[rs], offset);
}
},
0b10 => blk: {
// ASR
if (offset == 0) {
cpu.cpsr.c.write(cpu.r[rs] >> 31 & 1 == 1);
break :blk @bitCast(u32, @bitCast(i32, cpu.r[rs]) >> 31);
} else {
break :blk asr(true, &cpu.cpsr, cpu.r[rs], offset);
}
},
else => cpu.panic("[CPU/THUMB.1] 0b{b:0>2} is not a valid op", .{op}),
};
// Equivalent to an ARM MOVS
cpu.r[rd] = result;
// Write Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
}
}.inner;
}
pub fn fmt5(comptime op: u2, comptime h1: u1, comptime h2: u1) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const rs = @as(u4, h2) << 3 | (opcode >> 3 & 0x7);
const rd = @as(u4, h1) << 3 | (opcode & 0x7);
const op1 = cpu.r[rd];
const op2 = cpu.r[rs];
var result: u32 = undefined;
var overflow: u1 = undefined;
switch (op) {
0b00 => result = add(&overflow, op1, op2), // ADD
0b01 => result = op1 -% op2, // CMP
0b10 => result = op2, // MOV
0b11 => {},
}
// Write to Destination Register
switch (op) {
0b01 => {}, // Test Instruction
0b11 => {
// BX
const is_thumb = op2 & 1 == 1;
cpu.r[15] = op2 & ~@as(u32, 1);
cpu.cpsr.t.write(is_thumb);
cpu.pipe.reload(cpu);
},
else => {
cpu.r[rd] = result;
if (rd == 0xF) {
cpu.r[15] &= ~@as(u32, 1);
cpu.pipe.reload(cpu);
}
},
}
// Write Flags
switch (op) {
0b01 => {
// CMP
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0b00, 0b10, 0b11 => {}, // MOV and Branch Instruction
}
}
}.inner;
}
pub fn fmt2(comptime I: bool, is_sub: bool, rn: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const rs = opcode >> 3 & 0x7;
const rd = @truncate(u3, opcode);
const op1 = cpu.r[rs];
const op2: u32 = if (I) rn else cpu.r[rn];
if (is_sub) {
// SUB
const result = op1 -% op2;
cpu.r[rd] = result;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else {
// ADD
var overflow: u1 = undefined;
const result = add(&overflow, op1, op2);
cpu.r[rd] = result;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(overflow == 0b1);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
}
}
}.inner;
}
pub fn fmt3(comptime op: u2, comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const op1 = cpu.r[rd];
const op2: u32 = opcode & 0xFF; // Offset
var overflow: u1 = undefined;
const result: u32 = switch (op) {
0b00 => op2, // MOV
0b01 => op1 -% op2, // CMP
0b10 => add(&overflow, op1, op2), // ADD
0b11 => op1 -% op2, // SUB
};
// Write to Register
if (op != 0b01) cpu.r[rd] = result;
// Write Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
switch (op) {
0b00 => {}, // MOV | C set by Barrel Shifter, V is unaffected
0b01, 0b11 => {
// SUB, CMP
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0b10 => {
// ADD
cpu.cpsr.c.write(overflow == 0b1);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
},
}
}
}.inner;
}
pub fn fmt12(comptime isSP: bool, comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// ADD
const left = if (isSP) cpu.r[13] else cpu.r[15] & ~@as(u32, 2);
const right = (opcode & 0xFF) << 2;
cpu.r[rd] = left + right;
}
}.inner;
}
pub fn fmt13(comptime S: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// ADD
const offset = (opcode & 0x7F) << 2;
cpu.r[13] = if (S) cpu.r[13] - offset else cpu.r[13] + offset;
}
}.inner;
}

View File

@@ -0,0 +1,145 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
const rotr = @import("../../../util.zig").rotr;
const sext = @import("../../../util.zig").sext;
pub fn fmt6(comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
// LDR
const offset = (opcode & 0xFF) << 2;
// Bit 1 of the PC intentionally ignored
cpu.r[rd] = bus.read(u32, (cpu.r[15] & ~@as(u32, 2)) + offset);
}
}.inner;
}
pub fn fmt78(comptime op: u2, comptime T: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const ro = opcode >> 6 & 0x7;
const rb = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
const address = cpu.r[rb] +% cpu.r[ro];
if (T) {
// Format 8
switch (op) {
0b00 => {
// STRH
bus.write(u16, address, @truncate(u16, cpu.r[rd]));
},
0b01 => {
// LDSB
cpu.r[rd] = sext(u32, u8, bus.read(u8, address));
},
0b10 => {
// LDRH
const value = bus.read(u16, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 1));
},
0b11 => {
// LDRSH
const value = bus.read(u16, address);
cpu.r[rd] = if (address & 1 == 1) sext(u32, u8, @truncate(u8, value >> 8)) else sext(u32, u16, value);
},
}
} else {
// Format 7
switch (op) {
0b00 => {
// STR
bus.write(u32, address, cpu.r[rd]);
},
0b01 => {
// STRB
bus.write(u8, address, @truncate(u8, cpu.r[rd]));
},
0b10 => {
// LDR
const value = bus.read(u32, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 0x3));
},
0b11 => {
// LDRB
cpu.r[rd] = bus.read(u8, address);
},
}
}
}
}.inner;
}
pub fn fmt9(comptime B: bool, comptime L: bool, comptime offset: u5) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const rb = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
if (L) {
if (B) {
// LDRB
const address = cpu.r[rb] + offset;
cpu.r[rd] = bus.read(u8, address);
} else {
// LDR
const address = cpu.r[rb] + (@as(u32, offset) << 2);
const value = bus.read(u32, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 0x3));
}
} else {
if (B) {
// STRB
const address = cpu.r[rb] + offset;
bus.write(u8, address, @truncate(u8, cpu.r[rd]));
} else {
// STR
const address = cpu.r[rb] + (@as(u32, offset) << 2);
bus.write(u32, address, cpu.r[rd]);
}
}
}
}.inner;
}
pub fn fmt10(comptime L: bool, comptime offset: u5) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const rb = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
const address = cpu.r[rb] + (@as(u6, offset) << 1);
if (L) {
// LDRH
const value = bus.read(u16, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 1));
} else {
// STRH
bus.write(u16, address, @truncate(u16, cpu.r[rd]));
}
}
}.inner;
}
pub fn fmt11(comptime L: bool, comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const offset = (opcode & 0xFF) << 2;
const address = cpu.r[13] + offset;
if (L) {
// LDR
const value = bus.read(u32, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 0x3));
} else {
// STR
bus.write(u32, address, cpu.r[rd]);
}
}
}.inner;
}

View File

@@ -0,0 +1,23 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
pub fn fmt17() InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, _: u16) void {
// Copy Values from Current Mode
const ret_addr = cpu.r[15] - 2;
const cpsr = cpu.cpsr.raw;
// Switch Mode
cpu.changeMode(.Supervisor);
cpu.cpsr.t.write(false); // Force ARM Mode
cpu.cpsr.i.write(true); // Disable normal interrupts
cpu.r[14] = ret_addr; // Resume Execution
cpu.spsr.raw = cpsr; // Previous mode CPSR
cpu.r[15] = 0x0000_0008;
cpu.pipe.reload(cpu);
}
}.inner;
}

220
src/core/emu.zig Normal file
View File

@@ -0,0 +1,220 @@
const std = @import("std");
const SDL = @import("sdl2");
const config = @import("../config.zig");
const Scheduler = @import("scheduler.zig").Scheduler;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const FpsTracker = @import("../util.zig").FpsTracker;
const Timer = std.time.Timer;
const Atomic = std.atomic.Atomic;
/// 4 Cycles in 1 dot
const cycles_per_dot = 4;
/// The GBA draws 228 Horizontal which each consist 308 dots
/// (note: not all lines are visible)
const cycles_per_frame = 228 * (308 * cycles_per_dot); //280896
/// The GBA ARM7TDMI runs at 2^24 Hz
const clock_rate = 1 << 24; // 16.78MHz
/// The # of nanoseconds a frame should take
const frame_period = (std.time.ns_per_s * cycles_per_frame) / clock_rate;
/// Exact Value: 59.7275005696Hz
/// The inverse of the frame period
pub const frame_rate: f64 = @intToFloat(f64, clock_rate) / cycles_per_frame;
const log = std.log.scoped(.Emulation);
const RunKind = enum {
Unlimited,
UnlimitedFPS,
Limited,
LimitedFPS,
};
pub fn run(quit: *Atomic(bool), scheduler: *Scheduler, cpu: *Arm7tdmi, tracker: *FpsTracker) void {
const audio_sync = config.config().guest.audio_sync and !config.config().host.mute;
if (audio_sync) log.info("Audio sync enabled", .{});
if (config.config().guest.video_sync) {
inner(.LimitedFPS, audio_sync, quit, scheduler, cpu, tracker);
} else {
inner(.UnlimitedFPS, audio_sync, quit, scheduler, cpu, tracker);
}
}
fn inner(comptime kind: RunKind, audio_sync: bool, quit: *Atomic(bool), scheduler: *Scheduler, cpu: *Arm7tdmi, tracker: ?*FpsTracker) void {
if (kind == .UnlimitedFPS or kind == .LimitedFPS) {
std.debug.assert(tracker != null);
log.info("FPS tracking enabled", .{});
}
switch (kind) {
.Unlimited, .UnlimitedFPS => {
log.info("Emulation w/out video sync", .{});
while (!quit.load(.Monotonic)) {
runFrame(scheduler, cpu);
audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
if (kind == .UnlimitedFPS) tracker.?.tick();
}
},
.Limited, .LimitedFPS => {
log.info("Emulation w/ video sync", .{});
var timer = Timer.start() catch @panic("failed to initalize std.timer.Timer");
var wake_time: u64 = frame_period;
while (!quit.load(.Monotonic)) {
runFrame(scheduler, cpu);
const new_wake_time = videoSync(&timer, wake_time);
// Spin to make up the difference of OS scheduler innacuracies
// If we happen to also be syncing to audio, we choose to spin on
// the amount of time needed for audio to catch up rather than
// our expected wake-up time
audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
if (!audio_sync) spinLoop(&timer, wake_time);
wake_time = new_wake_time;
if (kind == .LimitedFPS) tracker.?.tick();
}
},
}
}
pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void {
const frame_end = sched.tick + cycles_per_frame;
while (sched.tick < frame_end) {
if (!cpu.stepDmaTransfer()) {
if (cpu.isHalted()) {
// Fast-forward to next Event
sched.tick = sched.nextTimestamp();
} else {
cpu.step();
}
}
if (sched.tick >= sched.nextTimestamp()) sched.handleEvent(cpu);
}
}
fn audioSync(audio_sync: bool, stream: *SDL.SDL_AudioStream, is_buffer_full: *bool) void {
comptime std.debug.assert(@import("../platform.zig").sample_format == SDL.AUDIO_U16);
const sample_size = 2 * @sizeOf(u16);
const max_buf_size: c_int = 0x400;
// Determine whether the APU is busy right at this moment
var still_full: bool = SDL.SDL_AudioStreamAvailable(stream) > sample_size * if (is_buffer_full.*) max_buf_size >> 1 else max_buf_size;
defer is_buffer_full.* = still_full; // Update APU Busy status right before exiting scope
// If Busy is false, there's no need to sync here
if (!still_full) return;
while (true) {
still_full = SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1;
if (!audio_sync or !still_full) break;
}
}
fn videoSync(timer: *Timer, wake_time: u64) u64 {
// Use the OS scheduler to put the emulation thread to sleep
const recalculated = sleep(timer, wake_time);
// If sleep() determined we need to adjust our wake up time, do so
// otherwise predict our next wake up time according to the frame period
return recalculated orelse wake_time + frame_period;
}
// TODO: Better sleep impl?
fn sleep(timer: *Timer, wake_time: u64) ?u64 {
const timestamp = timer.read();
// ns_late is non zero if we are late.
var ns_late = timestamp -| wake_time;
// If we're more than a frame late, skip the rest of this loop
// Recalculate what our new wake time should be so that we can
// get "back on track"
if (ns_late > frame_period) return timestamp + frame_period;
const sleep_for = frame_period - ns_late;
const step = 2 * std.time.ns_per_ms; // Granularity of 2ms
const times = sleep_for / step;
for (0..times) |_| {
std.time.sleep(step);
// Upon wakeup, check to see if this particular sleep was longer than expected
// if so we should exit early, but probably not skip a whole frame period
ns_late = timer.read() -| wake_time;
if (ns_late > frame_period) return null;
}
return null;
}
fn spinLoop(timer: *Timer, wake_time: u64) void {
while (true) if (timer.read() > wake_time) break;
}
pub const EmuThing = struct {
const Self = @This();
const Interface = @import("gdbstub").Emulator;
const Allocator = std.mem.Allocator;
cpu: *Arm7tdmi,
scheduler: *Scheduler,
pub fn init(cpu: *Arm7tdmi, scheduler: *Scheduler) Self {
return .{ .cpu = cpu, .scheduler = scheduler };
}
pub fn interface(self: *Self, allocator: Allocator) Interface {
return Interface.init(allocator, self);
}
pub fn read(self: *const Self, addr: u32) u8 {
return self.cpu.bus.dbgRead(u8, addr);
}
pub fn write(self: *Self, addr: u32, value: u8) void {
self.cpu.bus.dbgWrite(u8, addr, value);
}
pub fn registers(self: *const Self) *[16]u32 {
return &self.cpu.r;
}
pub fn cpsr(self: *const Self) u32 {
return self.cpu.cpsr.raw;
}
pub fn step(self: *Self) void {
const cpu = self.cpu;
const sched = self.scheduler;
// Is true when we have executed one (1) instruction
var did_step: bool = false;
// TODO: How can I make it easier to keep this in lock-step with runFrame?
while (!did_step) {
if (!cpu.stepDmaTransfer()) {
if (cpu.isHalted()) {
// Fast-forward to next Event
sched.tick = sched.queue.peek().?.tick;
} else {
cpu.step();
did_step = true;
}
}
if (sched.tick >= sched.nextTimestamp()) sched.handleEvent(cpu);
}
}
};

1563
src/core/ppu.zig Normal file

File diff suppressed because it is too large Load Diff

40
src/core/ppu/Oam.zig Normal file
View File

@@ -0,0 +1,40 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const buf_len = 0x400;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FF;
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
else => @compileError("OAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x3FF;
switch (T) {
u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
u8 => return, // 8-bit writes are explicitly ignored
else => @compileError("OAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
std.mem.set(u8, buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}

47
src/core/ppu/Palette.zig Normal file
View File

@@ -0,0 +1,47 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const buf_len = 0x400;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FF;
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
else => @compileError("PALRAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x3FF;
switch (T) {
u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
u8 => {
const align_addr = addr & ~@as(u32, 1); // Aligned to Halfword boundary
std.mem.writeIntSliceLittle(u16, self.buf[align_addr..][0..@sizeOf(u16)], @as(u16, value) * 0x101);
},
else => @compileError("PALRAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
std.mem.set(u8, buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub inline fn backdrop(self: *const Self) u16 {
return std.mem.readIntNative(u16, self.buf[0..2]);
}

60
src/core/ppu/Vram.zig Normal file
View File

@@ -0,0 +1,60 @@
const std = @import("std");
const io = @import("../bus/io.zig");
const Allocator = std.mem.Allocator;
const buf_len = 0x18000;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = Self.mirror(address);
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
else => @compileError("VRAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, dispcnt: io.DisplayControl, address: usize, value: T) void {
const mode: u3 = dispcnt.bg_mode.read();
const idx = Self.mirror(address);
switch (T) {
u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[idx..][0..@sizeOf(T)], value),
u8 => {
// Ignore write if it falls within the boundaries of OBJ VRAM
switch (mode) {
0, 1, 2 => if (0x0001_0000 <= idx) return,
else => if (0x0001_4000 <= idx) return,
}
const align_idx = idx & ~@as(u32, 1); // Aligned to a halfword boundary
std.mem.writeIntSliceLittle(u16, self.buf[align_idx..][0..@sizeOf(u16)], @as(u16, value) * 0x101);
},
else => @compileError("VRAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
std.mem.set(u8, buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub fn mirror(address: usize) usize {
// Mirrored in steps of 128K (64K + 32K + 32K) (abcc)
const addr = address & 0x1FFFF;
// If the address is within 96K we don't do anything,
// otherwise we want to mirror the last 32K (addresses between 64K and 96K)
return if (addr < buf_len) addr else 0x10000 + (addr & 0x7FFF);
}

120
src/core/scheduler.zig Normal file
View File

@@ -0,0 +1,120 @@
const std = @import("std");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Clock = @import("bus/gpio.zig").Clock;
const Order = std.math.Order;
const PriorityQueue = std.PriorityQueue;
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Scheduler);
pub const Scheduler = struct {
const Self = @This();
tick: u64,
queue: PriorityQueue(Event, void, lessThan),
pub fn init(allocator: Allocator) Self {
var sched = Self{ .tick = 0, .queue = PriorityQueue(Event, void, lessThan).init(allocator, {}) };
sched.queue.add(.{ .kind = .HeatDeath, .tick = std.math.maxInt(u64) }) catch unreachable;
return sched;
}
pub fn deinit(self: *Self) void {
self.queue.deinit();
self.* = undefined;
}
pub inline fn now(self: *const Self) u64 {
return self.tick;
}
pub fn handleEvent(self: *Self, cpu: *Arm7tdmi) void {
const event = self.queue.remove();
const late = self.tick - event.tick;
switch (event.kind) {
.HeatDeath => {
log.err("u64 overflow. This *actually* should never happen.", .{});
unreachable;
},
.Draw => {
// The end of a VDraw
cpu.bus.ppu.drawScanline();
cpu.bus.ppu.onHdrawEnd(cpu, late);
},
.TimerOverflow => |id| {
switch (id) {
inline 0...3 => |idx| cpu.bus.tim[idx].onTimerExpire(cpu, late),
}
},
.ApuChannel => |id| {
switch (id) {
0 => cpu.bus.apu.ch1.onToneSweepEvent(late),
1 => cpu.bus.apu.ch2.onToneEvent(late),
2 => cpu.bus.apu.ch3.onWaveEvent(late),
3 => cpu.bus.apu.ch4.onNoiseEvent(late),
}
},
.RealTimeClock => {
const device = &cpu.bus.pak.gpio.device;
if (device.kind != .Rtc or device.ptr == null) return;
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), device.ptr.?));
clock.onClockUpdate(late);
},
.FrameSequencer => cpu.bus.apu.onSequencerTick(late),
.SampleAudio => cpu.bus.apu.sampleAudio(late),
.HBlank => cpu.bus.ppu.onHblankEnd(cpu, late), // The end of a HBlank
.VBlank => cpu.bus.ppu.onHdrawEnd(cpu, late), // The end of a VBlank
}
}
/// Removes the **first** scheduled event of type `needle`
pub fn removeScheduledEvent(self: *Self, needle: EventKind) void {
for (self.queue.items, 0..) |event, i| {
if (std.meta.eql(event.kind, needle)) {
// invalidates the slice we're iterating over
_ = self.queue.removeIndex(i);
log.debug("Removed {?}@{}", .{ event.kind, event.tick });
break;
}
}
}
pub fn push(self: *Self, kind: EventKind, end: u64) void {
self.queue.add(.{ .kind = kind, .tick = self.now() + end }) catch unreachable;
}
pub inline fn nextTimestamp(self: *const Self) u64 {
@setRuntimeSafety(false);
// Typically you'd use PriorityQueue.peek here, but there's always at least a HeatDeath
// event in the PQ so we can just do this instead. Should be faster in ReleaseSafe
return self.queue.items[0].tick;
}
};
pub const Event = struct {
kind: EventKind,
tick: u64,
};
fn lessThan(_: void, a: Event, b: Event) Order {
return std.math.order(a.tick, b.tick);
}
pub const EventKind = union(enum) {
HeatDeath,
HBlank,
VBlank,
Draw,
TimerOverflow: u2,
SampleAudio,
FrameSequencer,
ApuChannel: u2,
RealTimeClock,
};

View File

@@ -1,189 +0,0 @@
const std = @import("std");
const util = @import("util.zig");
const BarrelShifter = @import("cpu/barrel_shifter.zig");
const Bus = @import("Bus.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Scheduler = @import("scheduler.zig").Scheduler;
const dataProcessing = @import("cpu/data_processing.zig").dataProcessing;
const singleDataTransfer = @import("cpu/single_data_transfer.zig").singleDataTransfer;
const halfAndSignedDataTransfer = @import("cpu/half_signed_data_transfer.zig").halfAndSignedDataTransfer;
const branch = @import("cpu/branch.zig").branch;
pub const InstrFn = fn (*Arm7tdmi, *Bus, u32) void;
const arm_lut: [0x1000]InstrFn = populate();
pub const Arm7tdmi = struct {
r: [16]u32,
sched: *Scheduler,
bus: *Bus,
cpsr: CPSR,
pub fn init(sched: *Scheduler, bus: *Bus) @This() {
return .{
.r = [_]u32{0x00} ** 16,
.sched = sched,
.bus = bus,
.cpsr = .{ .raw = 0x0000_00DF },
};
}
pub fn skipBios(self: *@This()) void {
self.r[0] = 0x08000000;
self.r[1] = 0x000000EA;
// GPRs 2 -> 12 *should* already be 0 initialized
self.r[13] = 0x0300_7F00;
self.r[14] = 0x0000_0000;
self.r[15] = 0x0800_0000;
// TODO: Set sp_irq = 0x0300_7FA0, sp_svc = 0x0300_7FE0
self.cpsr.raw = 0x6000001F;
}
pub inline fn step(self: *@This()) u64 {
const opcode = self.fetch();
// self.mgbaLog(opcode);
if (checkCond(&self.cpsr, opcode)) arm_lut[armIdx(opcode)](self, self.bus, opcode);
return 1;
}
fn fetch(self: *@This()) u32 {
const word = self.bus.read32(self.r[15]);
self.r[15] += 4;
return word;
}
pub fn fakePC(self: *const @This()) u32 {
return self.r[15] + 4;
}
fn mgbaLog(self: *const @This(), opcode: u32) void {
const stderr = std.io.getStdErr().writer();
std.debug.getStderrMutex().lock();
defer std.debug.getStderrMutex().unlock();
const r0 = self.r[0];
const r1 = self.r[1];
const r2 = self.r[2];
const r3 = self.r[3];
const r4 = self.r[4];
const r5 = self.r[5];
const r6 = self.r[6];
const r7 = self.r[7];
const r8 = self.r[8];
const r9 = self.r[9];
const r10 = self.r[10];
const r11 = self.r[11];
const r12 = self.r[12];
const r13 = self.r[13];
const r14 = self.r[14];
const r15 = self.r[15];
const cpsr = self.cpsr.raw;
nosuspend stderr.print("{X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} cpsr: {X:0>8} | {X:0>8}:\n", .{ r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, cpsr, opcode }) catch return;
}
};
fn armIdx(opcode: u32) u12 {
return @truncate(u12, opcode >> 20 & 0xFF) << 4 | @truncate(u12, opcode >> 4 & 0xF);
}
fn checkCond(cpsr: *const CPSR, opcode: u32) bool {
// TODO: Should I implement an enum?
return switch (@truncate(u4, opcode >> 28)) {
0x0 => cpsr.z.read(), // EQ - Equal
0x1 => !cpsr.z.read(), // NEQ - Not equal
0x2 => cpsr.c.read(), // CS - Unsigned higher or same
0x3 => !cpsr.c.read(), // CC - Unsigned lower
0x4 => cpsr.n.read(), // MI - Negative
0x5 => !cpsr.n.read(), // PL - Positive or zero
0x6 => cpsr.v.read(), // VS - Overflow
0x7 => !cpsr.v.read(), // VC - No overflow
0x8 => cpsr.c.read() and !cpsr.z.read(), // HI - unsigned higher
0x9 => !cpsr.c.read() and cpsr.z.read(), // LS - unsigned lower or same
0xA => cpsr.n.read() == cpsr.v.read(), // GE - Greater or equal
0xB => cpsr.n.read() != cpsr.v.read(), // LT - Less than
0xC => !cpsr.z.read() and (cpsr.n.read() == cpsr.z.read()), // GT - Greater than
0xD => cpsr.z.read() or (cpsr.n.read() != cpsr.v.read()), // LE - Less than or equal
0xE => true, // AL - Always
0xF => std.debug.panic("[CPU] 0xF is a reserved condition field", .{}),
};
}
fn populate() [0x1000]InstrFn {
return comptime {
@setEvalBranchQuota(0x5000); // TODO: Figure out exact size
var lut = [_]InstrFn{undefinedInstruction} ** 0x1000;
var i: usize = 0;
while (i < lut.len) : (i += 1) {
if (i >> 10 & 0x3 == 0b00) {
const I = i >> 9 & 1 == 1;
const S = i >> 4 & 1 == 1;
const instrKind = i >> 5 & 0xF;
lut[i] = dataProcessing(I, S, instrKind);
}
if (i >> 9 & 0x7 == 0b000 and i >> 3 & 1 == 1 and i & 1 == 1) {
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const I = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
lut[i] = halfAndSignedDataTransfer(P, U, I, W, L);
}
if (i >> 10 & 0x3 == 0b01) {
const I = i >> 9 & 1 == 1;
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const B = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
lut[i] = singleDataTransfer(I, P, U, B, W, L);
}
if (i >> 9 & 0x7 == 0b101) {
const L = i >> 8 & 1 == 1;
lut[i] = branch(L);
}
}
return lut;
};
}
pub const CPSR = extern union {
mode: Bitfield(u32, 0, 5),
t: Bit(u32, 5),
f: Bit(u32, 6),
i: Bit(u32, 7),
v: Bit(u32, 28),
c: Bit(u32, 29),
z: Bit(u32, 30),
n: Bit(u32, 31),
raw: u32,
};
const Mode = enum(u5) {
User = 0b10000,
FIQ = 0b10001,
IRQ = 0b10010,
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
};
fn undefinedInstruction(_: *Arm7tdmi, _: *Bus, opcode: u32) void {
const id = armIdx(opcode);
std.debug.panic("[CPU] {{0x{X:}}} 0x{X:} is an illegal opcode", .{ id, opcode });
}

View File

@@ -1,92 +0,0 @@
const std = @import("std");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const CPSR = @import("../cpu.zig").CPSR;
pub inline fn exec(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
var shift_amt: u8 = undefined;
if (opcode >> 4 & 1 == 1) {
shift_amt = @truncate(u8, cpu.r[opcode >> 8 & 0xF]);
} else {
shift_amt = @truncate(u8, opcode >> 7 & 0x1F);
}
const rm = cpu.r[opcode & 0xF];
if (S) {
return switch (@truncate(u2, opcode >> 5)) {
0b00 => logical_left(&cpu.cpsr, rm, shift_amt),
0b01 => logical_right(&cpu.cpsr, rm, shift_amt),
0b10 => arithmetic_right(&cpu.cpsr, rm, shift_amt),
0b11 => rotate_right(&cpu.cpsr, rm, shift_amt),
};
} else {
var dummy = CPSR{ .raw = 0x0000_0000 };
return switch (@truncate(u2, opcode >> 5)) {
0b00 => logical_left(&dummy, rm, shift_amt),
0b01 => logical_right(&dummy, rm, shift_amt),
0b10 => arithmetic_right(&dummy, rm, shift_amt),
0b11 => rotate_right(&dummy, rm, shift_amt),
};
}
}
pub inline fn logical_left(cpsr: *CPSR, rm: u32, shift_byte: u8) u32 {
const shift_amt = @truncate(u5, shift_byte);
const bit_count: u8 = @typeInfo(u32).Int.bits;
var result: u32 = 0x0000_0000;
if (shift_byte < bit_count) {
// We can perform a well-defined shift here
// FIXME: We assume cpu.r[rs] == 0 and imm_shift == 0 are equivalent
if (shift_amt != 0) {
const carry_bit = @truncate(u5, bit_count - shift_amt);
cpsr.c.write(rm >> carry_bit & 1 == 1);
}
result = rm << shift_amt;
} else if (shift_byte == bit_count) {
// Shifted all bits out, carry bit is bit 0 of rm
cpsr.c.write(rm & 1 == 1);
} else {
// Shifted all bits out, carry bit has also been shifted out
cpsr.c.write(false);
}
return result;
}
pub inline fn logical_right(cpsr: *CPSR, rm: u32, shift_byte: u8) u32 {
const shift_amt = @truncate(u5, shift_byte);
const bit_count: u8 = @typeInfo(u32).Int.bits;
var result: u32 = 0x0000_0000;
if (shift_byte == 0 or shift_byte == bit_count) {
// Actualy LSR #32
cpsr.c.write(rm >> 31 & 1 == 1);
} else if (shift_byte < bit_count) {
// We can perform a well-defined shift
const carry_bit = shift_amt - 1;
cpsr.c.write(rm >> carry_bit & 1 == 1);
result = rm >> shift_amt;
} else {
// All bits have been shifted out, including carry bit
cpsr.c.write(false);
}
return result;
}
pub fn arithmetic_right(_: *CPSR, _: u32, _: u8) u32 {
// @bitCast(u32, @bitCast(i32, r_val) >> @truncate(u5, amount))
std.debug.panic("[BarrelShifter] implement arithmetic shift right", .{});
}
pub fn rotate_right(_: *CPSR, _: u32, _: u8) u32 {
// std.math.rotr(u32, r_val, amount)
std.debug.panic("[BarrelShifter] implement rotate right", .{});
}

View File

@@ -1,17 +0,0 @@
const util = @import("../util.zig");
const Bus = @import("../Bus.zig");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const InstrFn = @import("../cpu.zig").InstrFn;
pub fn branch(comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
if (L) {
cpu.r[14] = cpu.r[15] - 4;
}
cpu.r[15] = cpu.fakePC() +% util.u32SignExtend(24, opcode << 2);
}
}.inner;
}

View File

@@ -1,71 +0,0 @@
const std = @import("std");
const BarrelShifter = @import("barrel_shifter.zig");
const Bus = @import("../Bus.zig");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const InstrFn = @import("../cpu.zig").InstrFn;
pub fn dataProcessing(comptime I: bool, comptime S: bool, comptime instrKind: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd = opcode >> 12 & 0xF;
const op1 = opcode >> 16 & 0xF;
var op2: u32 = undefined;
if (I) {
op2 = std.math.rotr(u32, opcode & 0xFF, (opcode >> 8 & 0xF) << 1);
} else {
if (S and rd == 0xF) {
std.debug.panic("[CPU] Data Processing Instruction w/ S set and Rd == 15", .{});
} else {
op2 = BarrelShifter.exec(S, cpu, opcode);
}
}
switch (instrKind) {
0x4 => {
// ADD
var result: u32 = undefined;
const didOverflow = @addWithOverflow(u32, cpu.r[op1], op2, &result);
cpu.r[rd] = result;
if (S and rd != 0xF) {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(didOverflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
}
},
0x8 => {
// TST
const result = cpu.r[op1] & op2;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// Barrel Shifter should always calc CPSR C in TST
if (!S) _ = BarrelShifter.exec(true, cpu, opcode);
},
0xD => {
// MOV
cpu.r[rd] = op2;
if (S and rd != 0xF) {
cpu.cpsr.n.write(op2 >> 31 & 1 == 1);
cpu.cpsr.z.write(op2 == 0);
// C set by Barr0x15el Shifter, V is unnafected
}
},
0xA => {
// CMP
const result = cpu.r[op1] -% op2;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(op2 <= cpu.r[op1]);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
else => std.debug.panic("[CPU] TODO: implement data processing type {}", .{instrKind}),
}
}
}.inner;
}

View File

@@ -1,62 +0,0 @@
const std = @import("std");
const util = @import("../util.zig");
const Bus = @import("../Bus.zig");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const InstrFn = @import("../cpu.zig").InstrFn;
pub fn halfAndSignedDataTransfer(comptime P: bool, comptime U: bool, comptime I: bool, comptime W: bool, comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
const rm = opcode & 0xF;
const imm_offset_high = opcode >> 8 & 0xF;
const base = cpu.r[rn];
var offset: u32 = undefined;
if (I) {
offset = imm_offset_high << 4 | rm;
} else {
offset = cpu.r[rm];
}
const modified_base = if (U) base + offset else base - offset;
var address = if (P) modified_base else base;
if (L) {
switch (@truncate(u2, opcode >> 5)) {
0b00 => {
// SWP
std.debug.panic("[CPU] TODO: Implement SWP", .{});
},
0b01 => {
// LDRH
cpu.r[rd] = bus.read16(address);
},
0b10 => {
// LDRSB
cpu.r[rd] = util.u32SignExtend(8, @as(u32, bus.read8(address)));
std.debug.panic("TODO: Affect the CPSR", .{});
},
0b11 => {
// LDRSH
cpu.r[rd] = util.u32SignExtend(16, @as(u32, bus.read16(address)));
std.debug.panic("TODO: Affect the CPSR", .{});
},
}
} else {
if (opcode >> 5 & 0x01 == 0x01) {
// STRH
bus.write16(address, @truncate(u16, cpu.r[rd]));
} else {
std.debug.panic("[CPU] TODO: Figure out if this is also SWP", .{});
}
}
address = modified_base;
if (W and P or !P) cpu.r[rn] = address;
}
}.inner;
}

View File

@@ -1,64 +0,0 @@
const std = @import("std");
const util = @import("../util.zig");
const BarrelShifter = @import("barrel_shifter.zig");
const Bus = @import("../Bus.zig");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const CPSR = @import("../cpu.zig").CPSR;
const InstrFn = @import("../cpu.zig").InstrFn;
pub fn singleDataTransfer(comptime I: bool, comptime P: bool, comptime U: bool, comptime B: bool, comptime W: bool, comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
const base = cpu.r[rn];
const offset = if (I) registerOffset(cpu, opcode) else opcode & 0xFFF;
const modified_base = if (U) base + offset else base - offset;
var address = if (P) modified_base else base;
if (L) {
if (B) {
// LDRB
cpu.r[rd] = bus.read8(address);
} else {
// LDR
// FIXME: Unsure about how I calculate the boundary offset
cpu.r[rd] = std.math.rotl(u32, bus.read32(address), address % 4);
}
} else {
if (B) {
// STRB
bus.write8(address, @truncate(u8, cpu.r[rd]));
} else {
// STR
const force_aligned = address & 0xFFFF_FFFC;
bus.write32(force_aligned, cpu.r[rd]);
}
}
address = modified_base;
if (W and P or !P) cpu.r[rn] = address;
// TODO: W-bit forces non-privledged mode for the transfer
}
}.inner;
}
fn registerOffset(cpu: *Arm7tdmi, opcode: u32) u32 {
const shift_byte = @truncate(u8, opcode >> 7 & 0x1F);
const rm = cpu.r[opcode & 0xF];
var dummy = CPSR{ .raw = 0x0000_0000 };
return switch (@truncate(u2, opcode >> 5)) {
0b00 => BarrelShifter.logical_left(&dummy, rm, shift_byte),
0b01 => BarrelShifter.logical_right(&dummy, rm, shift_byte),
0b10 => BarrelShifter.arithmetic_right(&dummy, rm, shift_byte),
0b11 => BarrelShifter.rotate_right(&dummy, rm, shift_byte),
};
}

View File

@@ -1,17 +0,0 @@
const Bus = @import("Bus.zig");
const Scheduler = @import("scheduler.zig").Scheduler;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const cycles_per_frame: u64 = 100; // TODO: How many cycles actually?
pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void {
var cycles: u64 = 0;
while (cycles < cycles_per_frame) : (cycles += 1) {
sched.tick += 1;
_ = cpu.step();
while (sched.tick >= sched.nextTimestamp()) {
sched.handleEvent(cpu, bus);
}
}
}

View File

@@ -1,83 +1,200 @@
const std = @import("std");
const SDL = @import("sdl2");
const builtin = @import("builtin");
const known_folders = @import("known_folders");
const clap = @import("clap");
const emu = @import("emu.zig");
const Bus = @import("Bus.zig");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Scheduler = @import("scheduler.zig").Scheduler;
const config = @import("config.zig");
const emu = @import("core/emu.zig");
const buf_pitch = @import("ppu.zig").buf_pitch;
const Gui = @import("platform.zig").Gui;
const Bus = @import("core/Bus.zig");
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Scheduler = @import("core/scheduler.zig").Scheduler;
const FilePaths = @import("util.zig").FilePaths;
const FpsTracker = @import("util.zig").FpsTracker;
const Allocator = std.mem.Allocator;
const Atomic = std.atomic.Atomic;
pub fn main() anyerror!void {
// Allocator for Emulator + CLI Aruments
const log = std.log.scoped(.Cli);
const width = @import("core/ppu.zig").width;
const height = @import("core/ppu.zig").height;
pub const log_level = if (builtin.mode != .Debug) .info else std.log.default_level;
// CLI Arguments + Help Text
const params = clap.parseParamsComptime(
\\-h, --help Display this help and exit.
\\-s, --skip Skip BIOS.
\\-b, --bios <str> Optional path to a GBA BIOS ROM.
\\ --gdb Run ZBA from the context of a GDB Server
\\<str> Path to the GBA GamePak ROM.
\\
);
pub fn main() void {
// Main Allocator for ZBA
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
const alloc = gpa.allocator();
defer std.debug.assert(!gpa.deinit());
// Handle CLI Arguments
const args = try std.process.argsAlloc(alloc);
defer std.process.argsFree(alloc, args);
const allocator = gpa.allocator();
const zba_args: []const []const u8 = args[1..];
// Determine the Data Directory (stores saves)
const data_path = blk: {
const result = known_folders.getPath(allocator, .data);
const option = result catch |e| exitln("interrupted while determining the data folder: {}", .{e});
const path = option orelse exitln("no valid data folder found", .{});
ensureDataDirsExist(path) catch |e| exitln("failed to create folders under \"{s}\": {}", .{ path, e });
if (zba_args.len == 0) {
std.log.err("Expected PATH to Gameboy Advance ROM as a CLI argument", .{});
return;
} else if (zba_args.len > 1) {
std.log.err("Too many CLI arguments were provided", .{});
return;
}
break :blk path;
};
defer allocator.free(data_path);
// Initialize Emulator
var scheduler = Scheduler.init(alloc);
// Determine the Config Directory
const config_path = blk: {
const result = known_folders.getPath(allocator, .roaming_configuration);
const option = result catch |e| exitln("interreupted while determining the config folder: {}", .{e});
const path = option orelse exitln("no valid config folder found", .{});
ensureConfigDirExists(path) catch |e| exitln("failed to create required folder \"{s}\": {}", .{ path, e });
break :blk path;
};
defer allocator.free(config_path);
// Parse CLI
const result = clap.parse(clap.Help, &params, clap.parsers.default, .{}) catch |e| exitln("failed to parse cli: {}", .{e});
defer result.deinit();
// TODO: Move config file to XDG Config directory?
const cfg_file_path = configFilePath(allocator, config_path) catch |e| exitln("failed to ready config file for access: {}", .{e});
defer allocator.free(cfg_file_path);
config.load(allocator, cfg_file_path) catch |e| exitln("failed to load config file: {}", .{e});
const paths = handleArguments(allocator, data_path, &result) catch |e| exitln("failed to handle cli arguments: {}", .{e});
defer if (paths.save) |path| allocator.free(path);
const log_file = if (config.config().debug.cpu_trace) blk: {
break :blk std.fs.cwd().createFile("zba.log", .{}) catch |e| exitln("failed to create trace log file: {}", .{e});
} else null;
defer if (log_file) |file| file.close();
// TODO: Take Emulator Init Code out of main.zig
var scheduler = Scheduler.init(allocator);
defer scheduler.deinit();
var bus = try Bus.init(alloc, &scheduler, zba_args[0]);
var bus: Bus = undefined;
var cpu = Arm7tdmi.init(&scheduler, &bus, log_file);
bus.init(allocator, &scheduler, &cpu, paths) catch |e| exitln("failed to init zba bus: {}", .{e});
defer bus.deinit();
var cpu = Arm7tdmi.init(&scheduler, &bus);
cpu.skipBios();
if (config.config().guest.skip_bios or result.args.skip or paths.bios == null) {
cpu.fastBoot();
}
// Initialize SDL
const status = SDL.SDL_Init(SDL.SDL_INIT_VIDEO | SDL.SDL_INIT_EVENTS | SDL.SDL_INIT_AUDIO);
if (status < 0) sdlPanic();
defer SDL.SDL_Quit();
var quit = Atomic(bool).init(false);
var gui = Gui.init(&bus.pak.title, &bus.apu, width, height) catch |e| exitln("failed to init gui: {}", .{e});
defer gui.deinit();
var window = SDL.SDL_CreateWindow(
"Gameboy Advance Emulator",
SDL.SDL_WINDOWPOS_CENTERED,
SDL.SDL_WINDOWPOS_CENTERED,
240 * 3,
160 * 3,
SDL.SDL_WINDOW_SHOWN,
) orelse sdlPanic();
defer SDL.SDL_DestroyWindow(window);
if (result.args.gdb) {
const Server = @import("gdbstub").Server;
const EmuThing = @import("core/emu.zig").EmuThing;
var renderer = SDL.SDL_CreateRenderer(window, -1, SDL.SDL_RENDERER_ACCELERATED) orelse sdlPanic();
defer SDL.SDL_DestroyRenderer(renderer);
var wrapper = EmuThing.init(&cpu, &scheduler);
var emulator = wrapper.interface(allocator);
defer emulator.deinit();
const texture = SDL.SDL_CreateTexture(renderer, SDL.SDL_PIXELFORMAT_BGR555, SDL.SDL_TEXTUREACCESS_STREAMING, 240, 160) orelse sdlPanic();
defer SDL.SDL_DestroyTexture(texture);
log.info("Ready to connect", .{});
emu_loop: while (true) {
emu.runFrame(&scheduler, &cpu, &bus);
var server = Server.init(emulator) catch |e| exitln("failed to init gdb server: {}", .{e});
defer server.deinit(allocator);
var event: SDL.SDL_Event = undefined;
_ = SDL.SDL_PollEvent(&event);
log.info("Starting GDB Server Thread", .{});
switch (event.type) {
SDL.SDL_QUIT => break :emu_loop,
else => {},
}
const thread = std.Thread.spawn(.{}, Server.run, .{ &server, allocator, &quit }) catch |e| exitln("gdb server thread crashed: {}", .{e});
defer thread.join();
const buf_ptr = bus.ppu.frame_buf.ptr;
_ = SDL.SDL_UpdateTexture(texture, null, buf_ptr, buf_pitch);
_ = SDL.SDL_RenderCopy(renderer, texture, null, null);
SDL.SDL_RenderPresent(renderer);
gui.run(.{
.cpu = &cpu,
.scheduler = &scheduler,
.quit = &quit,
}) catch |e| exitln("main thread panicked: {}", .{e});
} else {
var tracker = FpsTracker.init();
const thread = std.Thread.spawn(.{}, emu.run, .{ &quit, &scheduler, &cpu, &tracker }) catch |e| exitln("emu thread panicked: {}", .{e});
defer thread.join();
gui.run(.{
.cpu = &cpu,
.scheduler = &scheduler,
.tracker = &tracker,
.quit = &quit,
}) catch |e| exitln("main thread panicked: {}", .{e});
}
}
fn sdlPanic() noreturn {
const str = @as(?[*:0]const u8, SDL.SDL_GetError()) orelse "unknown error";
@panic(std.mem.sliceTo(str, 0));
fn handleArguments(allocator: Allocator, data_path: []const u8, result: *const clap.Result(clap.Help, &params, clap.parsers.default)) !FilePaths {
const rom_path = romPath(result);
log.info("ROM path: {s}", .{rom_path});
const bios_path = result.args.bios;
if (bios_path) |path| log.info("BIOS path: {s}", .{path}) else log.warn("No BIOS provided", .{});
const save_path = try std.fs.path.join(allocator, &[_][]const u8{ data_path, "zba", "save" });
log.info("Save path: {s}", .{save_path});
return .{
.rom = rom_path,
.bios = bios_path,
.save = save_path,
};
}
fn configFilePath(allocator: Allocator, config_path: []const u8) ![]const u8 {
const path = try std.fs.path.join(allocator, &[_][]const u8{ config_path, "zba", "config.toml" });
errdefer allocator.free(path);
// We try to create the file exclusively, meaning that we err out if the file already exists.
// All we care about is a file being there so we can just ignore that error in particular and
// continue down the happy pathj
std.fs.accessAbsolute(path, .{}) catch |e| {
if (e != error.FileNotFound) return e;
const config_file = std.fs.createFileAbsolute(path, .{}) catch |err| exitln("failed to create \"{s}\": {}", .{ path, err });
defer config_file.close();
try config_file.writeAll(@embedFile("../example.toml"));
};
return path;
}
fn ensureDataDirsExist(data_path: []const u8) !void {
var dir = try std.fs.openDirAbsolute(data_path, .{});
defer dir.close();
// Will recursively create directories
try dir.makePath("zba" ++ std.fs.path.sep_str ++ "save");
}
fn ensureConfigDirExists(config_path: []const u8) !void {
var dir = try std.fs.openDirAbsolute(config_path, .{});
defer dir.close();
try dir.makePath("zba");
}
fn romPath(result: *const clap.Result(clap.Help, &params, clap.parsers.default)) []const u8 {
return switch (result.positionals.len) {
1 => result.positionals[0],
0 => exitln("ZBA requires a path to a GamePak ROM", .{}),
else => exitln("ZBA received too many positional arguments.", .{}),
};
}
fn exitln(comptime format: []const u8, args: anytype) noreturn {
const stderr = std.io.getStdErr().writer();
stderr.print(format, args) catch {}; // Just exit already...
stderr.writeByte('\n') catch {};
std.os.exit(1);
}

343
src/platform.zig Normal file
View File

@@ -0,0 +1,343 @@
const std = @import("std");
const SDL = @import("sdl2");
const gl = @import("gl");
const emu = @import("core/emu.zig");
const config = @import("config.zig");
const Apu = @import("core/apu.zig").Apu;
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Scheduler = @import("core/scheduler.zig").Scheduler;
const FpsTracker = @import("util.zig").FpsTracker;
const gba_width = @import("core/ppu.zig").width;
const gba_height = @import("core/ppu.zig").height;
pub const sample_rate = 1 << 15;
pub const sample_format = SDL.AUDIO_U16;
const default_title = "ZBA";
pub const Gui = struct {
const Self = @This();
const SDL_GLContext = *anyopaque; // SDL.SDL_GLContext is a ?*anyopaque
const log = std.log.scoped(.Gui);
// zig fmt: off
const vertices: [32]f32 = [_]f32{
// Positions // Colours // Texture Coords
1.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, // Top Right
1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, // Bottom Right
-1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, // Bottom Left
-1.0, -1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, // Top Left
};
const indices: [6]u32 = [_]u32{
0, 1, 3, // First Triangle
1, 2, 3, // Second Triangle
};
// zig fmt: on
window: *SDL.SDL_Window,
ctx: SDL_GLContext,
title: []const u8,
audio: Audio,
program_id: gl.GLuint,
pub fn init(title: *const [12]u8, apu: *Apu, width: i32, height: i32) !Self {
if (SDL.SDL_Init(SDL.SDL_INIT_VIDEO | SDL.SDL_INIT_EVENTS | SDL.SDL_INIT_AUDIO) < 0) panic();
if (SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_PROFILE_MASK, SDL.SDL_GL_CONTEXT_PROFILE_CORE) < 0) panic();
if (SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_MAJOR_VERSION, 3) < 0) panic();
if (SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_MAJOR_VERSION, 3) < 0) panic();
const win_scale = @intCast(c_int, config.config().host.win_scale);
const window = SDL.SDL_CreateWindow(
default_title,
SDL.SDL_WINDOWPOS_CENTERED,
SDL.SDL_WINDOWPOS_CENTERED,
@as(c_int, width * win_scale),
@as(c_int, height * win_scale),
SDL.SDL_WINDOW_OPENGL | SDL.SDL_WINDOW_SHOWN,
) orelse panic();
const ctx = SDL.SDL_GL_CreateContext(window) orelse panic();
if (SDL.SDL_GL_MakeCurrent(window, ctx) < 0) panic();
gl.load(ctx, Self.glGetProcAddress) catch {};
if (SDL.SDL_GL_SetSwapInterval(@boolToInt(config.config().host.vsync)) < 0) panic();
const program_id = try compileShaders();
return Self{
.window = window,
.title = std.mem.sliceTo(title, 0),
.ctx = ctx,
.program_id = program_id,
.audio = Audio.init(apu),
};
}
fn compileShaders() !gl.GLuint {
// TODO: Panic on Shader Compiler Failure + Error Message
const vert_shader = @embedFile("shader/pixelbuf.vert");
const frag_shader = @embedFile("shader/pixelbuf.frag");
const vs = gl.createShader(gl.VERTEX_SHADER);
defer gl.deleteShader(vs);
gl.shaderSource(vs, 1, &[_][*c]const u8{vert_shader}, 0);
gl.compileShader(vs);
if (!shader.didCompile(vs)) return error.VertexCompileError;
const fs = gl.createShader(gl.FRAGMENT_SHADER);
defer gl.deleteShader(fs);
gl.shaderSource(fs, 1, &[_][*c]const u8{frag_shader}, 0);
gl.compileShader(fs);
if (!shader.didCompile(fs)) return error.FragmentCompileError;
const program = gl.createProgram();
gl.attachShader(program, vs);
gl.attachShader(program, fs);
gl.linkProgram(program);
return program;
}
// Returns the VAO ID since it's used in run()
fn generateBuffers() struct { c_uint, c_uint, c_uint } {
var vao_id: c_uint = undefined;
var vbo_id: c_uint = undefined;
var ebo_id: c_uint = undefined;
gl.genVertexArrays(1, &vao_id);
gl.genBuffers(1, &vbo_id);
gl.genBuffers(1, &ebo_id);
gl.bindVertexArray(vao_id);
gl.bindBuffer(gl.ARRAY_BUFFER, vbo_id);
gl.bufferData(gl.ARRAY_BUFFER, @sizeOf(@TypeOf(vertices)), &vertices, gl.STATIC_DRAW);
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, ebo_id);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, @sizeOf(@TypeOf(indices)), &indices, gl.STATIC_DRAW);
// Position
gl.vertexAttribPointer(0, 3, gl.FLOAT, gl.FALSE, 8 * @sizeOf(f32), @intToPtr(?*anyopaque, 0)); // lmao
gl.enableVertexAttribArray(0);
// Colour
gl.vertexAttribPointer(1, 3, gl.FLOAT, gl.FALSE, 8 * @sizeOf(f32), @intToPtr(?*anyopaque, (3 * @sizeOf(f32))));
gl.enableVertexAttribArray(1);
// Texture Coord
gl.vertexAttribPointer(2, 2, gl.FLOAT, gl.FALSE, 8 * @sizeOf(f32), @intToPtr(?*anyopaque, (6 * @sizeOf(f32))));
gl.enableVertexAttribArray(2);
return .{ vao_id, vbo_id, ebo_id };
}
fn generateTexture(buf: []const u8) c_uint {
var tex_id: c_uint = undefined;
gl.genTextures(1, &tex_id);
gl.bindTexture(gl.TEXTURE_2D, tex_id);
// gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
// gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gba_width, gba_height, 0, gl.RGBA, gl.UNSIGNED_INT_8_8_8_8, buf.ptr);
// gl.generateMipmap(gl.TEXTURE_2D); // TODO: Remove?
return tex_id;
}
const RunOptions = struct {
quit: *std.atomic.Atomic(bool),
tracker: ?*FpsTracker = null,
cpu: *Arm7tdmi,
scheduler: *Scheduler,
};
pub fn run(self: *Self, opt: RunOptions) !void {
const cpu = opt.cpu;
const tracker = opt.tracker;
const quit = opt.quit;
var buffer_ids = Self.generateBuffers();
defer {
gl.deleteBuffers(1, &buffer_ids[2]); // EBO
gl.deleteBuffers(1, &buffer_ids[1]); // VBO
gl.deleteVertexArrays(1, &buffer_ids[0]); // VAO
}
const vao_id = buffer_ids[0];
const tex_id = Self.generateTexture(cpu.bus.ppu.framebuf.get(.Renderer));
defer gl.deleteTextures(1, &tex_id);
var title_buf: [0x100]u8 = undefined;
emu_loop: while (true) {
var event: SDL.SDL_Event = undefined;
// This might be true if the emu is running via a gdbstub server
// and the gdb stub exits first
if (quit.load(.Monotonic)) break :emu_loop;
while (SDL.SDL_PollEvent(&event) != 0) {
switch (event.type) {
SDL.SDL_QUIT => break :emu_loop,
SDL.SDL_KEYDOWN => {
const key_code = event.key.keysym.sym;
var keyinput = cpu.bus.io.keyinput.load(.Monotonic);
switch (key_code) {
SDL.SDLK_UP => keyinput.up.unset(),
SDL.SDLK_DOWN => keyinput.down.unset(),
SDL.SDLK_LEFT => keyinput.left.unset(),
SDL.SDLK_RIGHT => keyinput.right.unset(),
SDL.SDLK_x => keyinput.a.unset(),
SDL.SDLK_z => keyinput.b.unset(),
SDL.SDLK_a => keyinput.shoulder_l.unset(),
SDL.SDLK_s => keyinput.shoulder_r.unset(),
SDL.SDLK_RETURN => keyinput.start.unset(),
SDL.SDLK_RSHIFT => keyinput.select.unset(),
else => {},
}
cpu.bus.io.keyinput.store(keyinput.raw, .Monotonic);
},
SDL.SDL_KEYUP => {
const key_code = event.key.keysym.sym;
var keyinput = cpu.bus.io.keyinput.load(.Monotonic);
switch (key_code) {
SDL.SDLK_UP => keyinput.up.set(),
SDL.SDLK_DOWN => keyinput.down.set(),
SDL.SDLK_LEFT => keyinput.left.set(),
SDL.SDLK_RIGHT => keyinput.right.set(),
SDL.SDLK_x => keyinput.a.set(),
SDL.SDLK_z => keyinput.b.set(),
SDL.SDLK_a => keyinput.shoulder_l.set(),
SDL.SDLK_s => keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => keyinput.start.set(),
SDL.SDLK_RSHIFT => keyinput.select.set(),
SDL.SDLK_i => {
comptime std.debug.assert(sample_format == SDL.AUDIO_U16);
log.err("Sample Count: {}", .{@intCast(u32, SDL.SDL_AudioStreamAvailable(cpu.bus.apu.stream)) / (2 * @sizeOf(u16))});
},
// SDL.SDLK_j => log.err("Scheduler Capacity: {} | Scheduler Event Count: {}", .{ scheduler.queue.capacity(), scheduler.queue.count() }),
SDL.SDLK_k => {},
else => {},
}
cpu.bus.io.keyinput.store(keyinput.raw, .Monotonic);
},
else => {},
}
}
// Emulator has an internal Double Buffer
const framebuf = cpu.bus.ppu.framebuf.get(.Renderer);
gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, gba_width, gba_height, gl.RGBA, gl.UNSIGNED_INT_8_8_8_8, framebuf.ptr);
gl.useProgram(self.program_id);
gl.bindVertexArray(vao_id);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_INT, null);
SDL.SDL_GL_SwapWindow(self.window);
if (tracker) |t| {
const dyn_title = std.fmt.bufPrintZ(&title_buf, "ZBA | {s} [Emu: {}fps] ", .{ self.title, t.value() }) catch unreachable;
SDL.SDL_SetWindowTitle(self.window, dyn_title.ptr);
}
}
quit.store(true, .Monotonic); // Terminate Emulator Thread
}
pub fn deinit(self: *Self) void {
self.audio.deinit();
gl.deleteProgram(self.program_id);
SDL.SDL_GL_DeleteContext(self.ctx);
SDL.SDL_DestroyWindow(self.window);
SDL.SDL_Quit();
self.* = undefined;
}
fn glGetProcAddress(ctx: SDL.SDL_GLContext, proc: [:0]const u8) ?*anyopaque {
_ = ctx;
return SDL.SDL_GL_GetProcAddress(proc.ptr);
}
};
const Audio = struct {
const Self = @This();
const log = std.log.scoped(.PlatformAudio);
device: SDL.SDL_AudioDeviceID,
fn init(apu: *Apu) Self {
var have: SDL.SDL_AudioSpec = undefined;
var want: SDL.SDL_AudioSpec = std.mem.zeroes(SDL.SDL_AudioSpec);
want.freq = sample_rate;
want.format = sample_format;
want.channels = 2;
want.samples = 0x100;
want.callback = Self.callback;
want.userdata = apu;
std.debug.assert(sample_format == SDL.AUDIO_U16);
log.info("Host Sample Rate: {}Hz, Host Format: SDL.AUDIO_U16", .{sample_rate});
const device = SDL.SDL_OpenAudioDevice(null, 0, &want, &have, 0);
if (device == 0) panic();
if (!config.config().host.mute) {
SDL.SDL_PauseAudioDevice(device, 0); // Unpause Audio
log.info("Unpaused Device", .{});
}
return .{ .device = device };
}
fn deinit(self: *Self) void {
SDL.SDL_CloseAudioDevice(self.device);
self.* = undefined;
}
export fn callback(userdata: ?*anyopaque, stream: [*c]u8, len: c_int) void {
const T = *Apu;
const apu = @ptrCast(T, @alignCast(@alignOf(T), userdata));
_ = SDL.SDL_AudioStreamGet(apu.stream, stream, len);
}
};
const shader = struct {
const Kind = enum { vertex, fragment };
const log = std.log.scoped(.Shader);
fn didCompile(id: gl.GLuint) bool {
var success: gl.GLint = undefined;
gl.getShaderiv(id, gl.COMPILE_STATUS, &success);
if (success == 0) err(id);
return success == 1;
}
fn err(id: gl.GLuint) void {
const buf_len = 512;
var error_msg: [buf_len]u8 = undefined;
gl.getShaderInfoLog(id, buf_len, 0, &error_msg);
log.err("{s}", .{std.mem.sliceTo(&error_msg, 0)});
}
};
fn panic() noreturn {
const str = @as(?[*:0]const u8, SDL.SDL_GetError()) orelse "unknown error";
@panic(std.mem.sliceTo(str, 0));
}

View File

@@ -1,130 +0,0 @@
const std = @import("std");
const EventKind = @import("scheduler.zig").EventKind;
const Io = @import("bus/io.zig").Io;
const Scheduler = @import("scheduler.zig").Scheduler;
const Allocator = std.mem.Allocator;
const width = 240;
const height = 160;
pub const buf_pitch = width * @sizeOf(u16);
const buf_len = buf_pitch * height;
pub const Ppu = struct {
vram: Vram,
palette: Palette,
sched: *Scheduler,
frame_buf: []u8,
alloc: Allocator,
pub fn init(alloc: Allocator, sched: *Scheduler) !@This() {
// Queue first Hblank
sched.push(.{ .kind = .Draw, .tick = sched.tick + 240 * 4 });
return @This(){
.vram = try Vram.init(alloc),
.palette = try Palette.init(alloc),
.sched = sched,
.frame_buf = try alloc.alloc(u8, buf_len),
.alloc = alloc,
};
}
pub fn deinit(self: @This()) void {
self.alloc.free(self.frame_buf);
self.vram.deinit();
self.palette.deinit();
}
pub fn drawScanline(self: *@This(), io: *const Io) void {
const bg_mode = io.dispcnt.bg_mode.read();
const scanline = io.vcount.scanline.read();
switch (bg_mode) {
0x3 => {
// Mode 3
const start = buf_pitch * @as(usize, scanline);
const end = start + buf_pitch;
std.mem.copy(u8, self.frame_buf[start..end], self.vram.buf[start..end]);
},
else => std.debug.panic("[PPU] TODO: Implement BG Mode {}", .{bg_mode}),
}
}
};
const Palette = struct {
buf: []u8,
alloc: Allocator,
fn init(alloc: Allocator) !@This() {
return @This(){
.buf = try alloc.alloc(u8, 0x400),
.alloc = alloc,
};
}
fn deinit(self: @This()) void {
self.alloc.free(self.buf);
}
pub inline fn get32(self: *const @This(), idx: usize) u32 {
return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx));
}
pub inline fn set32(self: *@This(), idx: usize, word: u32) void {
self.set16(idx + 2, @truncate(u16, word >> 16));
self.set16(idx, @truncate(u16, word));
}
pub inline fn get16(self: *const @This(), idx: usize) u16 {
return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]);
}
pub inline fn set16(self: *@This(), idx: usize, halfword: u16) void {
self.buf[idx + 1] = @truncate(u8, halfword >> 8);
self.buf[idx] = @truncate(u8, halfword);
}
pub inline fn get8(self: *const @This(), idx: usize) u8 {
return self.buf[idx];
}
};
const Vram = struct {
buf: []u8,
alloc: Allocator,
fn init(alloc: Allocator) !@This() {
return @This(){
.buf = try alloc.alloc(u8, 0x18000),
.alloc = alloc,
};
}
fn deinit(self: @This()) void {
self.alloc.free(self.buf);
}
pub inline fn get32(self: *const @This(), idx: usize) u32 {
return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx));
}
pub inline fn set32(self: *@This(), idx: usize, word: u32) void {
self.set16(idx + 2, @truncate(u16, word >> 16));
self.set16(idx, @truncate(u16, word));
}
pub inline fn get16(self: *const @This(), idx: usize) u16 {
return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]);
}
pub inline fn set16(self: *@This(), idx: usize, halfword: u16) void {
self.buf[idx + 1] = @truncate(u8, halfword >> 8);
self.buf[idx] = @truncate(u8, halfword);
}
pub inline fn get8(self: *const @This(), idx: usize) u8 {
return self.buf[idx];
}
};

View File

@@ -1,113 +0,0 @@
const std = @import("std");
const Bus = @import("Bus.zig");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Order = std.math.Order;
const PriorityQueue = std.PriorityQueue;
const Allocator = std.mem.Allocator;
pub const Scheduler = struct {
tick: u64,
queue: PriorityQueue(Event, void, lessThan),
pub fn init(alloc: Allocator) @This() {
var scheduler = Scheduler{ .tick = 0, .queue = PriorityQueue(Event, void, lessThan).init(alloc, {}) };
scheduler.queue.add(.{
.kind = EventKind.HeatDeath,
.tick = std.math.maxInt(u64),
}) catch unreachable;
return scheduler;
}
pub fn deinit(self: @This()) void {
self.queue.deinit();
}
pub fn handleEvent(self: *@This(), _: *Arm7tdmi, bus: *Bus) void {
const should_handle = if (self.queue.peek()) |e| self.tick >= e.tick else false;
if (should_handle) {
const event = self.queue.remove();
switch (event.kind) {
.HeatDeath => {
std.debug.panic("[Scheduler] Somehow, a u64 overflowed", .{});
},
.HBlank => {
// The End of a Hblank
const scanline = bus.io.vcount.scanline.read();
const new_scanline = scanline + 1;
// TODO: Should this be done @ end of Draw instead of end of Hblank?
bus.ppu.drawScanline(&bus.io);
bus.io.vcount.scanline.write(new_scanline);
bus.io.dispstat.hblank.unset();
if (new_scanline < 160) {
// Transitioning to another Draw
self.push(.{ .kind = .Draw, .tick = self.tick + (240 * 4) });
} else {
// Transitioning to a Vblank
bus.io.dispstat.vblank.set();
self.push(.{ .kind = .VBlank, .tick = self.tick + 68 * (308 * 4) });
}
},
.Draw => {
// The end of a Draw
// Transitioning to a Hblank
bus.io.dispstat.hblank.set();
self.push(.{ .kind = .HBlank, .tick = self.tick + (68 * 4) });
},
.VBlank => {
// The end of a Vblank
const scanline = bus.io.vcount.scanline.read();
const new_scanline = scanline + 1;
bus.io.vcount.scanline.write(new_scanline);
if (new_scanline < 228) {
// Transition to another Vblank
self.push(.{ .kind = .VBlank, .tick = self.tick + 68 * (308 * 4) });
} else {
// Transition to another Draw
bus.io.vcount.scanline.write(0); // Reset Scanline
bus.io.dispstat.vblank.unset();
self.push(.{ .kind = .Draw, .tick = self.tick + (240 * 4) });
}
},
}
}
}
pub inline fn push(self: *@This(), event: Event) void {
self.queue.add(event) catch unreachable;
}
pub inline fn nextTimestamp(self: *@This()) u64 {
if (self.queue.peek()) |e| {
return e.tick;
} else unreachable;
}
};
pub const Event = struct {
kind: EventKind,
tick: u64,
};
fn lessThan(_: void, a: Event, b: Event) Order {
return std.math.order(a.tick, b.tick);
}
pub const EventKind = enum {
HeatDeath,
HBlank,
VBlank,
Draw,
};

25
src/shader/pixelbuf.frag Normal file
View File

@@ -0,0 +1,25 @@
#version 330 core
out vec4 frag_color;
in vec3 color;
in vec2 uv;
uniform sampler2D screen;
void main() {
// https://near.sh/video/color-emulation
// Thanks to Talarubi + Near for the Colour Correction
// Thanks to fleur + mattrb for the Shader Impl
vec4 color = texture(screen, uv);
color.rgb = pow(color.rgb, vec3(4.0)); // LCD Gamma
frag_color = vec4(
pow(vec3(
0 * color.b + 50 * color.g + 255 * color.r,
30 * color.b + 230 * color.g + 10 * color.r,
220 * color.b + 10 * color.g + 50 * color.r
) / 255, vec3(1.0 / 2.2)), // Out Gamma
1.0);
}

13
src/shader/pixelbuf.vert Normal file
View File

@@ -0,0 +1,13 @@
#version 330 core
layout (location = 0) in vec3 pos;
layout (location = 1) in vec3 in_color;
layout (location = 2) in vec2 in_uv;
out vec3 color;
out vec2 uv;
void main() {
color = in_color;
uv = in_uv;
gl_Position = vec4(pos, 1.0);
}

View File

@@ -1,29 +1,319 @@
const std = @import("std");
const builtin = @import("builtin");
const config = @import("config.zig");
pub fn signExtend(comptime T: type, comptime bits: usize, value: anytype) T {
const ValT = comptime @TypeOf(value);
comptime std.debug.assert(isInteger(ValT));
comptime std.debug.assert(isSigned(ValT));
const Log2Int = std.math.Log2Int;
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const value_bits = @typeInfo(ValT).Int.bits;
comptime std.debug.assert(value_bits >= bits);
const Allocator = std.mem.Allocator;
const bit_diff = value_bits - bits;
// Sign-Extend value of type `T` to type `U`
pub fn sext(comptime T: type, comptime U: type, value: T) T {
// U must have less bits than T
comptime std.debug.assert(@typeInfo(U).Int.bits <= @typeInfo(T).Int.bits);
// (1 << bits) -1 is a mask that will take values like 0x100 and make them 0xFF
// value & mask so that only the relevant bits are sign extended
// therefore, value & ((1 << bits) - 1) is the isolation of the relevant bits
return ((value & ((1 << bits) - 1)) << bit_diff) >> bit_diff;
const iT = std.meta.Int(.signed, @typeInfo(T).Int.bits);
const ExtU = if (@typeInfo(U).Int.signedness == .unsigned) T else iT;
const shift_amt = @intCast(Log2Int(T), @typeInfo(T).Int.bits - @typeInfo(U).Int.bits);
return @bitCast(T, @bitCast(iT, @as(ExtU, @truncate(U, value)) << shift_amt) >> shift_amt);
}
pub fn u32SignExtend(comptime bits: usize, value: u32) u32 {
return @bitCast(u32, signExtend(i32, bits, @bitCast(i32, value)));
/// See https://godbolt.org/z/W3en9Eche
pub inline fn rotr(comptime T: type, x: T, r: anytype) T {
if (@typeInfo(T).Int.signedness == .signed)
@compileError("cannot rotate signed integer");
const ar = @intCast(Log2Int(T), @mod(r, @typeInfo(T).Int.bits));
return x >> ar | x << (1 +% ~ar);
}
fn isInteger(comptime T: type) bool {
return @typeInfo(T) == .Int;
pub const FpsTracker = struct {
const Self = @This();
fps: u32,
count: std.atomic.Atomic(u32),
timer: std.time.Timer,
pub fn init() Self {
return .{
.fps = 0,
.count = std.atomic.Atomic(u32).init(0),
.timer = std.time.Timer.start() catch unreachable,
};
}
pub fn tick(self: *Self) void {
_ = self.count.fetchAdd(1, .Monotonic);
}
pub fn value(self: *Self) u32 {
if (self.timer.read() >= std.time.ns_per_s) {
self.fps = self.count.swap(0, .Monotonic);
self.timer.reset();
}
return self.fps;
}
};
pub fn intToBytes(comptime T: type, value: anytype) [@sizeOf(T)]u8 {
comptime std.debug.assert(@typeInfo(T) == .Int);
var result: [@sizeOf(T)]u8 = undefined;
var i: Log2Int(T) = 0;
while (i < result.len) : (i += 1) result[i] = @truncate(u8, value >> i * @bitSizeOf(u8));
return result;
}
fn isSigned(comptime T: type) bool {
return @typeInfo(T).Int.signedness == .signed;
/// Creates a copy of a title with all Filesystem-invalid characters replaced
///
/// e.g. POKEPIN R/S to POKEPIN R_S
pub fn escape(title: [12]u8) [12]u8 {
var ret: [12]u8 = title;
//TODO: Add more replacements
std.mem.replaceScalar(u8, &ret, '/', '_');
std.mem.replaceScalar(u8, &ret, '\\', '_');
return ret;
}
pub const FilePaths = struct {
rom: []const u8,
bios: ?[]const u8,
save: ?[]const u8,
};
pub const io = struct {
pub const read = struct {
pub fn todo(comptime log: anytype, comptime format: []const u8, args: anytype) u8 {
log.debug(format, args);
return 0;
}
pub fn undef(comptime T: type, comptime log: anytype, comptime format: []const u8, args: anytype) ?T {
@setCold(true);
const unhandled_io = config.config().debug.unhandled_io;
log.warn(format, args);
if (builtin.mode == .Debug and !unhandled_io) std.debug.panic("TODO: Implement I/O Register", .{});
return null;
}
pub fn err(comptime T: type, comptime log: anytype, comptime format: []const u8, args: anytype) ?T {
@setCold(true);
log.err(format, args);
return null;
}
};
pub const write = struct {
pub fn undef(log: anytype, comptime format: []const u8, args: anytype) void {
const unhandled_io = config.config().debug.unhandled_io;
log.warn(format, args);
if (builtin.mode == .Debug and !unhandled_io) std.debug.panic("TODO: Implement I/O Register", .{});
}
};
};
pub const Logger = struct {
const Self = @This();
const FmtArgTuple = std.meta.Tuple(&.{ u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32 });
buf: std.io.BufferedWriter(4096 << 2, std.fs.File.Writer),
pub fn init(file: std.fs.File) Self {
return .{
.buf = .{ .unbuffered_writer = file.writer() },
};
}
pub fn print(self: *Self, comptime format: []const u8, args: anytype) !void {
try self.buf.writer().print(format, args);
try self.buf.flush(); // FIXME: On panics, whatever is in the buffer isn't written to file
}
pub fn mgbaLog(self: *Self, cpu: *const Arm7tdmi, opcode: u32) void {
const fmt_base = "{X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} cpsr: {X:0>8} | ";
const thumb_fmt = fmt_base ++ "{X:0>4}:\n";
const arm_fmt = fmt_base ++ "{X:0>8}:\n";
if (cpu.cpsr.t.read()) {
if (opcode >> 11 == 0x1E) {
// Instruction 1 of a BL Opcode, print in ARM mode
const low = cpu.bus.dbgRead(u16, cpu.r[15] - 2);
const bl_opcode = @as(u32, opcode) << 16 | low;
self.print(arm_fmt, Self.fmtArgs(cpu, bl_opcode)) catch @panic("failed to write to log file");
} else {
self.print(thumb_fmt, Self.fmtArgs(cpu, opcode)) catch @panic("failed to write to log file");
}
} else {
self.print(arm_fmt, Self.fmtArgs(cpu, opcode)) catch @panic("failed to write to log file");
}
}
fn fmtArgs(cpu: *const Arm7tdmi, opcode: u32) FmtArgTuple {
return .{
cpu.r[0],
cpu.r[1],
cpu.r[2],
cpu.r[3],
cpu.r[4],
cpu.r[5],
cpu.r[6],
cpu.r[7],
cpu.r[8],
cpu.r[9],
cpu.r[10],
cpu.r[11],
cpu.r[12],
cpu.r[13],
cpu.r[14],
cpu.r[15] - if (cpu.cpsr.t.read()) 2 else @as(u32, 4),
cpu.cpsr.raw,
opcode,
};
}
};
pub const audio = struct {
const _io = @import("core/bus/io.zig");
const ToneSweep = @import("core/apu/ToneSweep.zig");
const Tone = @import("core/apu/Tone.zig");
const Wave = @import("core/apu/Wave.zig");
const Noise = @import("core/apu/Noise.zig");
pub const length = struct {
const FrameSequencer = @import("core/apu.zig").FrameSequencer;
/// Update State of Ch1, Ch2 and Ch3 length timer
pub fn update(comptime T: type, self: *T, fs: *const FrameSequencer, nrx34: _io.Frequency) void {
comptime std.debug.assert(T == ToneSweep or T == Tone or T == Wave);
// Write to NRx4 when FS's next step is not one that clocks the length counter
if (!fs.isLengthNext()) {
// If length_enable was disabled but is now enabled and length timer is not 0 already,
// decrement the length timer
if (!self.freq.length_enable.read() and nrx34.length_enable.read() and self.len_dev.timer != 0) {
self.len_dev.timer -= 1;
// If Length Timer is now 0 and trigger is clear, disable the channel
if (self.len_dev.timer == 0 and !nrx34.trigger.read()) self.enabled = false;
}
}
}
pub const ch4 = struct {
/// update state of ch4 length timer
pub fn update(self: *Noise, fs: *const FrameSequencer, nr44: _io.NoiseControl) void {
// Write to NRx4 when FS's next step is not one that clocks the length counter
if (!fs.isLengthNext()) {
// If length_enable was disabled but is now enabled and length timer is not 0 already,
// decrement the length timer
if (!self.cnt.length_enable.read() and nr44.length_enable.read() and self.len_dev.timer != 0) {
self.len_dev.timer -= 1;
// If Length Timer is now 0 and trigger is clear, disable the channel
if (self.len_dev.timer == 0 and !nr44.trigger.read()) self.enabled = false;
}
}
}
};
};
};
/// Sets a quarter (8) of the bits of the u32 `left` to the value of u8 `right`
pub inline fn setQuart(left: u32, addr: u8, right: u8) u32 {
const offset = @truncate(u2, addr);
return switch (offset) {
0b00 => (left & 0xFFFF_FF00) | right,
0b01 => (left & 0xFFFF_00FF) | @as(u32, right) << 8,
0b10 => (left & 0xFF00_FFFF) | @as(u32, right) << 16,
0b11 => (left & 0x00FF_FFFF) | @as(u32, right) << 24,
};
}
/// Calculates the correct shift offset for an aligned/unaligned u8 read
///
/// TODO: Support u16 reads of u32 values?
pub inline fn getHalf(byte: u8) u4 {
return @truncate(u4, byte & 1) << 3;
}
pub inline fn setHalf(comptime T: type, left: T, addr: u8, right: HalfInt(T)) T {
const offset = @truncate(u1, addr >> if (T == u32) 1 else 0);
return switch (T) {
u32 => switch (offset) {
0b0 => (left & 0xFFFF_0000) | right,
0b1 => (left & 0x0000_FFFF) | @as(u32, right) << 16,
},
u16 => switch (offset) {
0b0 => (left & 0xFF00) | right,
0b1 => (left & 0x00FF) | @as(u16, right) << 8,
},
else => @compileError("unsupported type"),
};
}
/// The Integer type which corresponds to T with exactly half the amount of bits
fn HalfInt(comptime T: type) type {
const type_info = @typeInfo(T);
comptime std.debug.assert(type_info == .Int); // Type must be an integer
comptime std.debug.assert(type_info.Int.bits % 2 == 0); // Type must have an even amount of bits
return std.meta.Int(type_info.Int.signedness, type_info.Int.bits >> 1);
}
/// Double Buffering Implementation
pub const FrameBuffer = struct {
const Self = @This();
layers: [2][]u8,
buf: []u8,
current: u1,
allocator: Allocator,
// TODO: Rename
const Device = enum { Emulator, Renderer };
pub fn init(allocator: Allocator, comptime len: comptime_int) !Self {
const buf = try allocator.alloc(u8, len * 2);
std.mem.set(u8, buf, 0);
return .{
// Front and Back Framebuffers
.layers = [_][]u8{ buf[0..][0..len], buf[len..][0..len] },
.buf = buf,
.current = 0,
.allocator = allocator,
};
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub fn swap(self: *Self) void {
self.current = ~self.current;
}
pub fn get(self: *Self, comptime dev: Device) []u8 {
return self.layers[if (dev == .Emulator) self.current else ~self.current];
}
};