style(bus): refactor several hardware abstractions

This commit is contained in:
Rekai Nyangadzayi Musuka 2022-10-10 10:47:52 -03:00
parent c71e954748
commit 13f6ee8ec4
9 changed files with 266 additions and 258 deletions

View File

@ -403,12 +403,12 @@ pub const Apu = struct {
if (@boolToInt(self.dma_cnt.chA_timer.read()) == tim_id) {
self.chA.updateSample();
if (self.chA.len() <= 15) cpu.bus.dma[1].requestSoundDma(0x0400_00A0);
if (self.chA.len() <= 15) cpu.bus.dma[1].requestAudio(0x0400_00A0);
}
if (@boolToInt(self.dma_cnt.chB_timer.read()) == tim_id) {
self.chB.updateSample();
if (self.chB.len() <= 15) cpu.bus.dma[2].requestSoundDma(0x0400_00A4);
if (self.chB.len() <= 15) cpu.bus.dma[2].requestAudio(0x0400_00A4);
}
}
};

View File

@ -12,6 +12,36 @@ allocator: Allocator,
addr_latch: u32,
pub fn read(self: *Self, comptime T: type, r15: u32, addr: u32) T {
if (r15 < Self.size) {
self.addr_latch = addr;
return self._read(T, addr);
}
log.debug("Rejected read since r15=0x{X:0>8}", .{r15});
return @truncate(T, self._read(T, self.addr_latch + 8));
}
pub fn dbgRead(self: *const Self, comptime T: type, r15: u32, addr: u32) T {
if (r15 < Self.size) return self._read(T, addr);
return @truncate(T, self._read(T, self.addr_latch + 8));
}
/// Read without the GBA safety checks
fn _read(self: *const Self, comptime T: type, addr: u32) T {
const buf = self.buf orelse std.debug.panic("[BIOS] ZBA tried to read {} from 0x{X:0>8} but not BIOS was present", .{ T, addr });
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, buf[addr..][0..@sizeOf(T)]),
else => @compileError("BIOS: Unsupported read width"),
};
}
pub fn write(_: *Self, comptime T: type, addr: u32, value: T) void {
@setCold(true);
log.debug("Tried to write {} 0x{X:} to 0x{X:0>8} ", .{ T, value, addr });
}
pub fn init(allocator: Allocator, maybe_path: ?[]const u8) !Self {
const buf: ?[]u8 = if (maybe_path) |path| blk: {
const file = try std.fs.cwd().openFile(path, .{});
@ -31,34 +61,3 @@ pub fn deinit(self: *Self) void {
if (self.buf) |buf| self.allocator.free(buf);
self.* = undefined;
}
pub fn read(self: *Self, comptime T: type, r15: u32, addr: u32) T {
if (r15 < Self.size) {
self.addr_latch = addr;
return self.uncheckedRead(T, addr);
}
log.debug("Rejected read since r15=0x{X:0>8}", .{r15});
return @truncate(T, self.uncheckedRead(T, self.addr_latch + 8));
}
pub fn dbgRead(self: *const Self, comptime T: type, r15: u32, addr: u32) T {
if (r15 < Self.size) return self.uncheckedRead(T, addr);
return @truncate(T, self.uncheckedRead(T, self.addr_latch + 8));
}
fn uncheckedRead(self: *const Self, comptime T: type, addr: u32) T {
if (self.buf) |buf| {
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, buf[addr..][0..@sizeOf(T)]),
else => @compileError("BIOS: Unsupported read width"),
};
}
std.debug.panic("[BIOS] ZBA tried to read {} from 0x{X:0>8} but not BIOS was present", .{ T, addr });
}
pub fn write(_: *Self, comptime T: type, addr: u32, value: T) void {
@setCold(true);
log.debug("Tried to write {} 0x{X:} to 0x{X:0>8} ", .{ T, value, addr });
}

View File

@ -7,21 +7,6 @@ const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, ewram_size);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.allocator = allocator,
};
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FFFF;
@ -39,3 +24,18 @@ pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void
else => @compileError("EWRAM: Unsupported write width"),
};
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, ewram_size);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.allocator = allocator,
};
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}

View File

@ -19,78 +19,11 @@ allocator: Allocator,
backup: Backup,
gpio: *Gpio,
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, rom_path: []const u8, save_path: ?[]const u8) !Self {
const file = try std.fs.cwd().openFile(rom_path, .{});
defer file.close();
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
const title = file_buf[0xA0..0xAC].*;
const kind = Backup.guessKind(file_buf);
const device = if (force_rtc) .Rtc else guessDevice(file_buf);
logHeader(file_buf, &title);
return .{
.buf = file_buf,
.allocator = allocator,
.title = title,
.backup = try Backup.init(allocator, kind, title, save_path),
.gpio = try Gpio.init(allocator, cpu, device),
};
}
/// Searches the ROM to see if it can determine whether the ROM it's searching uses
/// any GPIO device, like a RTC for example.
fn guessDevice(buf: []const u8) Gpio.Device.Kind {
// Try to Guess if ROM uses RTC
const needle = "RTC_V"; // I was told SIIRTC_V, though Pokemen Firered (USA) is a false negative
var i: usize = 0;
while ((i + needle.len) < buf.len) : (i += 1) {
if (std.mem.eql(u8, needle, buf[i..(i + needle.len)])) return .Rtc;
}
// TODO: Detect other GPIO devices
return .None;
}
fn logHeader(buf: []const u8, title: *const [12]u8) void {
const code = buf[0xAC..0xB0];
const maker = buf[0xB0..0xB2];
const version = buf[0xBC];
log.info("Title: {s}", .{title});
if (version != 0) log.info("Version: {}", .{version});
log.info("Game Code: {s}", .{code});
if (lookupMaker(maker)) |c| log.info("Maker: {s}", .{c}) else log.info("Maker Code: {s}", .{maker});
}
fn lookupMaker(slice: *const [2]u8) ?[]const u8 {
const id = @as(u16, slice[1]) << 8 | @as(u16, slice[0]);
return switch (id) {
0x3130 => "Nintendo",
else => null,
};
}
inline fn isLarge(self: *const Self) bool {
return self.buf.len > 0x100_0000;
}
pub fn deinit(self: *Self) void {
self.backup.deinit();
self.gpio.deinit(self.allocator);
self.allocator.destroy(self.gpio);
self.allocator.free(self.buf);
self.* = undefined;
}
pub fn read(self: *Self, comptime T: type, address: u32) T {
const addr = address & 0x1FF_FFFF;
if (self.backup.kind == .Eeprom) {
if (self.isLarge()) {
if (self.buf.len > 0x100_0000) { // Large
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
@ -142,11 +75,19 @@ pub fn read(self: *Self, comptime T: type, address: u32) T {
};
}
inline fn get(self: *const Self, i: u32) u8 {
@setRuntimeSafety(false);
if (i < self.buf.len) return self.buf[i];
const lhs = i >> 1 & 0xFFFF;
return @truncate(u8, lhs >> 8 * @truncate(u5, i & 1));
}
pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
const addr = address & 0x1FF_FFFF;
if (self.backup.kind == .Eeprom) {
if (self.isLarge()) {
if (self.buf.len > 0x100_0000) { // Large
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
@ -161,6 +102,35 @@ pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
}
}
if (self.gpio.cnt == 1) {
// GPIO Can be read from
// We assume that this will only be true when a ROM actually does want something from GPIO
switch (T) {
u32 => switch (address) {
// TODO: Do I even need to implement these?
0x0800_00C4 => std.debug.panic("Handle 32-bit GPIO Data/Direction Reads", .{}),
0x0800_00C6 => std.debug.panic("Handle 32-bit GPIO Direction/Control Reads", .{}),
0x0800_00C8 => std.debug.panic("Handle 32-bit GPIO Control Reads", .{}),
else => {},
},
u16 => switch (address) {
// FIXME: What do 16-bit GPIO Reads look like?
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
else => {},
},
u8 => switch (address) {
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
else => {},
},
else => @compileError("GamePak[GPIO]: Unsupported read width"),
}
}
return switch (T) {
u32 => (@as(T, self.get(addr + 3)) << 24) | (@as(T, self.get(addr + 2)) << 16) | (@as(T, self.get(addr + 1)) << 8) | (@as(T, self.get(addr))),
u16 => (@as(T, self.get(addr + 1)) << 8) | @as(T, self.get(addr)),
@ -175,7 +145,7 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
if (self.backup.kind == .Eeprom) {
const bit = @truncate(u1, value);
if (self.isLarge()) {
if (self.buf.len > 0x100_0000) { // Large
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
@ -213,12 +183,59 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
}
}
fn get(self: *const Self, i: u32) u8 {
@setRuntimeSafety(false);
if (i < self.buf.len) return self.buf[i];
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, rom_path: []const u8, save_path: ?[]const u8) !Self {
const file = try std.fs.cwd().openFile(rom_path, .{});
defer file.close();
const lhs = i >> 1 & 0xFFFF;
return @truncate(u8, lhs >> 8 * @truncate(u5, i & 1));
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
const title = file_buf[0xA0..0xAC].*;
const kind = Backup.guessKind(file_buf);
const device = if (force_rtc) .Rtc else guessDevice(file_buf);
logHeader(file_buf, &title);
return .{
.buf = file_buf,
.allocator = allocator,
.title = title,
.backup = try Backup.init(allocator, kind, title, save_path),
.gpio = try Gpio.init(allocator, cpu, device),
};
}
pub fn deinit(self: *Self) void {
self.backup.deinit();
self.gpio.deinit(self.allocator);
self.allocator.destroy(self.gpio);
self.allocator.free(self.buf);
self.* = undefined;
}
/// Searches the ROM to see if it can determine whether the ROM it's searching uses
/// any GPIO device, like a RTC for example.
fn guessDevice(buf: []const u8) Gpio.Device.Kind {
// Try to Guess if ROM uses RTC
const needle = "RTC_V"; // I was told SIIRTC_V, though Pokemen Firered (USA) is a false negative
var i: usize = 0;
while ((i + needle.len) < buf.len) : (i += 1) {
if (std.mem.eql(u8, needle, buf[i..(i + needle.len)])) return .Rtc;
}
// TODO: Detect other GPIO devices
return .None;
}
fn logHeader(buf: []const u8, title: *const [12]u8) void {
const code = buf[0xAC..0xB0];
const maker = buf[0xB0..0xB2];
const version = buf[0xBC];
log.info("Title: {s}", .{title});
if (version != 0) log.info("Version: {}", .{version});
log.info("Game Code: {s}", .{code});
log.info("Maker Code: {s}", .{maker});
}
test "OOB Access" {

View File

@ -7,21 +7,6 @@ const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, iwram_size);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.allocator = allocator,
};
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x7FFF;
@ -39,3 +24,18 @@ pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void
else => @compileError("IWRAM: Unsupported write width"),
};
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, iwram_size);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.allocator = allocator,
};
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}

View File

@ -40,48 +40,48 @@ pub fn write(comptime T: type, dma: *DmaTuple, addr: u32, value: T) void {
switch (T) {
u32 => switch (byte) {
0xB0 => dma.*[0].setSad(value),
0xB4 => dma.*[0].setDad(value),
0xB8 => dma.*[0].setCnt(value),
0xBC => dma.*[1].setSad(value),
0xC0 => dma.*[1].setDad(value),
0xC4 => dma.*[1].setCnt(value),
0xC8 => dma.*[2].setSad(value),
0xCC => dma.*[2].setDad(value),
0xD0 => dma.*[2].setCnt(value),
0xD4 => dma.*[3].setSad(value),
0xD8 => dma.*[3].setDad(value),
0xDC => dma.*[3].setCnt(value),
0xB0 => dma.*[0].setDmasad(value),
0xB4 => dma.*[0].setDmadad(value),
0xB8 => dma.*[0].setDmacnt(value),
0xBC => dma.*[1].setDmasad(value),
0xC0 => dma.*[1].setDmadad(value),
0xC4 => dma.*[1].setDmacnt(value),
0xC8 => dma.*[2].setDmasad(value),
0xCC => dma.*[2].setDmadad(value),
0xD0 => dma.*[2].setDmacnt(value),
0xD4 => dma.*[3].setDmasad(value),
0xD8 => dma.*[3].setDmadad(value),
0xDC => dma.*[3].setDmacnt(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (byte) {
0xB0 => dma.*[0].setSad(setU32L(dma.*[0].sad, value)),
0xB2 => dma.*[0].setSad(setU32H(dma.*[0].sad, value)),
0xB4 => dma.*[0].setDad(setU32L(dma.*[0].dad, value)),
0xB6 => dma.*[0].setDad(setU32H(dma.*[0].dad, value)),
0xB8 => dma.*[0].setCntL(value),
0xBA => dma.*[0].setCntH(value),
0xB0 => dma.*[0].setDmasad(setU32L(dma.*[0].sad, value)),
0xB2 => dma.*[0].setDmasad(setU32H(dma.*[0].sad, value)),
0xB4 => dma.*[0].setDmadad(setU32L(dma.*[0].dad, value)),
0xB6 => dma.*[0].setDmadad(setU32H(dma.*[0].dad, value)),
0xB8 => dma.*[0].setDmacntL(value),
0xBA => dma.*[0].setDmacntH(value),
0xBC => dma.*[1].setSad(setU32L(dma.*[1].sad, value)),
0xBE => dma.*[1].setSad(setU32H(dma.*[1].sad, value)),
0xC0 => dma.*[1].setDad(setU32L(dma.*[1].dad, value)),
0xC2 => dma.*[1].setDad(setU32H(dma.*[1].dad, value)),
0xC4 => dma.*[1].setCntL(value),
0xC6 => dma.*[1].setCntH(value),
0xBC => dma.*[1].setDmasad(setU32L(dma.*[1].sad, value)),
0xBE => dma.*[1].setDmasad(setU32H(dma.*[1].sad, value)),
0xC0 => dma.*[1].setDmadad(setU32L(dma.*[1].dad, value)),
0xC2 => dma.*[1].setDmadad(setU32H(dma.*[1].dad, value)),
0xC4 => dma.*[1].setDmacntL(value),
0xC6 => dma.*[1].setDmacntH(value),
0xC8 => dma.*[2].setSad(setU32L(dma.*[2].sad, value)),
0xCA => dma.*[2].setSad(setU32H(dma.*[2].sad, value)),
0xCC => dma.*[2].setDad(setU32L(dma.*[2].dad, value)),
0xCE => dma.*[2].setDad(setU32H(dma.*[2].dad, value)),
0xD0 => dma.*[2].setCntL(value),
0xD2 => dma.*[2].setCntH(value),
0xC8 => dma.*[2].setDmasad(setU32L(dma.*[2].sad, value)),
0xCA => dma.*[2].setDmasad(setU32H(dma.*[2].sad, value)),
0xCC => dma.*[2].setDmadad(setU32L(dma.*[2].dad, value)),
0xCE => dma.*[2].setDmadad(setU32H(dma.*[2].dad, value)),
0xD0 => dma.*[2].setDmacntL(value),
0xD2 => dma.*[2].setDmacntH(value),
0xD4 => dma.*[3].setSad(setU32L(dma.*[3].sad, value)),
0xD6 => dma.*[3].setSad(setU32H(dma.*[3].sad, value)),
0xD8 => dma.*[3].setDad(setU32L(dma.*[3].dad, value)),
0xDA => dma.*[3].setDad(setU32H(dma.*[3].dad, value)),
0xDC => dma.*[3].setCntL(value),
0xDE => dma.*[3].setCntH(value),
0xD4 => dma.*[3].setDmasad(setU32L(dma.*[3].sad, value)),
0xD6 => dma.*[3].setDmasad(setU32H(dma.*[3].sad, value)),
0xD8 => dma.*[3].setDmadad(setU32L(dma.*[3].dad, value)),
0xDA => dma.*[3].setDmadad(setU32H(dma.*[3].dad, value)),
0xDC => dma.*[3].setDmacntL(value),
0xDE => dma.*[3].setDmacntH(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
@ -110,15 +110,12 @@ fn DmaController(comptime id: u2) type {
cnt: DmaControl,
/// Internal. Currrent Source Address
_sad: u32,
sad_latch: u32,
/// Internal. Current Destination Address
_dad: u32,
dad_latch: u32,
/// Internal. Word Count
_word_count: if (id == 3) u16 else u14,
// Internal. FIFO Word Count
_fifo_word_count: u8,
/// Some DMA Transfers are enabled during Hblank / VBlank and / or
/// have delays. Thefore bit 15 of DMACNT isn't actually something
/// we can use to control when we do or do not execute a step in a DMA Transfer
@ -132,33 +129,32 @@ fn DmaController(comptime id: u2) type {
.cnt = .{ .raw = 0x000 },
// Internals
._sad = 0,
._dad = 0,
.sad_latch = 0,
.dad_latch = 0,
._word_count = 0,
._fifo_word_count = 4,
.in_progress = false,
};
}
pub fn setSad(self: *Self, addr: u32) void {
pub fn setDmasad(self: *Self, addr: u32) void {
self.sad = addr & sad_mask;
}
pub fn setDad(self: *Self, addr: u32) void {
pub fn setDmadad(self: *Self, addr: u32) void {
self.dad = addr & dad_mask;
}
pub fn setCntL(self: *Self, halfword: u16) void {
pub fn setDmacntL(self: *Self, halfword: u16) void {
self.word_count = @truncate(@TypeOf(self.word_count), halfword);
}
pub fn setCntH(self: *Self, halfword: u16) void {
pub fn setDmacntH(self: *Self, halfword: u16) void {
const new = DmaControl{ .raw = halfword };
if (!self.cnt.enabled.read() and new.enabled.read()) {
// Reload Internals on Rising Edge.
self._sad = self.sad;
self._dad = self.dad;
self.sad_latch = self.sad;
self.dad_latch = self.dad;
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
// Only a Start Timing of 00 has a DMA Transfer immediately begin
@ -168,15 +164,15 @@ fn DmaController(comptime id: u2) type {
self.cnt.raw = halfword;
}
pub fn setCnt(self: *Self, word: u32) void {
self.setCntL(@truncate(u16, word));
self.setCntH(@truncate(u16, word >> 16));
pub fn setDmacnt(self: *Self, word: u32) void {
self.setDmacntL(@truncate(u16, word));
self.setDmacntH(@truncate(u16, word >> 16));
}
pub fn step(self: *Self, cpu: *Arm7tdmi) void {
const is_fifo = (id == 1 or id == 2) and self.cnt.start_timing.read() == 0b11;
const sad_adj = Self.adjustment(self.cnt.sad_adj.read());
const dad_adj = if (is_fifo) .Fixed else Self.adjustment(self.cnt.dad_adj.read());
const sad_adj = @intToEnum(Adjustment, self.cnt.sad_adj.read());
const dad_adj = if (is_fifo) .Fixed else @intToEnum(Adjustment, self.cnt.dad_adj.read());
const transfer_type = is_fifo or self.cnt.transfer_type.read();
const offset: u32 = if (transfer_type) @sizeOf(u32) else @sizeOf(u16);
@ -184,22 +180,22 @@ fn DmaController(comptime id: u2) type {
const mask = if (transfer_type) ~@as(u32, 3) else ~@as(u32, 1);
if (transfer_type) {
cpu.bus.write(u32, self._dad & mask, cpu.bus.read(u32, self._sad & mask));
cpu.bus.write(u32, self.dad_latch & mask, cpu.bus.read(u32, self.sad_latch & mask));
} else {
cpu.bus.write(u16, self._dad & mask, cpu.bus.read(u16, self._sad & mask));
cpu.bus.write(u16, self.dad_latch & mask, cpu.bus.read(u16, self.sad_latch & mask));
}
switch (sad_adj) {
.Increment => self._sad +%= offset,
.Decrement => self._sad -%= offset,
// TODO: Is just ignoring this ok?
.Increment => self.sad_latch +%= offset,
.Decrement => self.sad_latch -%= offset,
// FIXME: Is just ignoring this ok?
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
.Fixed => {},
}
switch (dad_adj) {
.Increment, .IncrementReload => self._dad +%= offset,
.Decrement => self._dad -%= offset,
.Increment, .IncrementReload => self.dad_latch +%= offset,
.Decrement => self.dad_latch -%= offset,
.Fixed => {},
}
@ -227,7 +223,7 @@ fn DmaController(comptime id: u2) type {
}
}
pub fn pollBlankingDma(self: *Self, comptime kind: DmaKind) void {
fn poll(self: *Self, comptime kind: DmaKind) void {
if (self.in_progress) return; // If there's an ongoing DMA Transfer, exit early
// No ongoing DMA Transfer, We want to check if we should repeat an existing one
@ -243,11 +239,11 @@ fn DmaController(comptime id: u2) type {
// Reload internal DAD latch if we are in IncrementRelaod
if (self.in_progress) {
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
if (Self.adjustment(self.cnt.dad_adj.read()) == .IncrementReload) self._dad = self.dad;
if (@intToEnum(Adjustment, self.cnt.dad_adj.read()) == .IncrementReload) self.dad_latch = self.dad;
}
}
pub fn requestSoundDma(self: *Self, _: u32) void {
pub fn requestAudio(self: *Self, _: u32) void {
comptime std.debug.assert(id == 1 or id == 2);
if (self.in_progress) return; // APU must wait their turn
@ -259,23 +255,19 @@ fn DmaController(comptime id: u2) type {
// We Assume DMACNT_L is set to 4
// FIXME: Safe to just assume whatever DAD is set to is the FIFO Address?
// self._dad = fifo_addr;
// self.dad_latch = fifo_addr;
self.cnt.repeat.set();
self._word_count = 4;
self.in_progress = true;
}
fn adjustment(idx: u2) Adjustment {
return std.meta.intToEnum(Adjustment, idx) catch unreachable;
}
};
}
pub fn pollBlankingDma(bus: *Bus, comptime kind: DmaKind) void {
bus.dma[0].pollBlankingDma(kind);
bus.dma[1].pollBlankingDma(kind);
bus.dma[2].pollBlankingDma(kind);
bus.dma[3].pollBlankingDma(kind);
pub fn pollDmaOnBlank(bus: *Bus, comptime kind: DmaKind) void {
bus.dma[0].poll(kind);
bus.dma[1].poll(kind);
bus.dma[2].poll(kind);
bus.dma[3].poll(kind);
}
const Adjustment = enum(u2) {

View File

@ -19,20 +19,20 @@ pub fn read(comptime T: type, tim: *const TimerTuple, addr: u32) ?T {
return switch (T) {
u32 => switch (nybble) {
0x0 => @as(T, tim.*[0].cnt.raw) << 16 | tim.*[0].getCntL(),
0x4 => @as(T, tim.*[1].cnt.raw) << 16 | tim.*[1].getCntL(),
0x8 => @as(T, tim.*[2].cnt.raw) << 16 | tim.*[2].getCntL(),
0xC => @as(T, tim.*[3].cnt.raw) << 16 | tim.*[3].getCntL(),
0x0 => @as(T, tim.*[0].cnt.raw) << 16 | tim.*[0].timcntL(),
0x4 => @as(T, tim.*[1].cnt.raw) << 16 | tim.*[1].timcntL(),
0x8 => @as(T, tim.*[2].cnt.raw) << 16 | tim.*[2].timcntL(),
0xC => @as(T, tim.*[3].cnt.raw) << 16 | tim.*[3].timcntL(),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (nybble) {
0x0 => tim.*[0].getCntL(),
0x0 => tim.*[0].timcntL(),
0x2 => tim.*[0].cnt.raw,
0x4 => tim.*[1].getCntL(),
0x4 => tim.*[1].timcntL(),
0x6 => tim.*[1].cnt.raw,
0x8 => tim.*[2].getCntL(),
0x8 => tim.*[2].timcntL(),
0xA => tim.*[2].cnt.raw,
0xC => tim.*[3].getCntL(),
0xC => tim.*[3].timcntL(),
0xE => tim.*[3].cnt.raw,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
@ -46,21 +46,21 @@ pub fn write(comptime T: type, tim: *TimerTuple, addr: u32, value: T) void {
return switch (T) {
u32 => switch (nybble) {
0x0 => tim.*[0].setCnt(value),
0x4 => tim.*[1].setCnt(value),
0x8 => tim.*[2].setCnt(value),
0xC => tim.*[3].setCnt(value),
0x0 => tim.*[0].setTimcnt(value),
0x4 => tim.*[1].setTimcnt(value),
0x8 => tim.*[2].setTimcnt(value),
0xC => tim.*[3].setTimcnt(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (nybble) {
0x0 => tim.*[0].setCntL(value),
0x2 => tim.*[0].setCntH(value),
0x4 => tim.*[1].setCntL(value),
0x6 => tim.*[1].setCntH(value),
0x8 => tim.*[2].setCntL(value),
0xA => tim.*[2].setCntH(value),
0xC => tim.*[3].setCntL(value),
0xE => tim.*[3].setCntH(value),
0x0 => tim.*[0].setTimcntL(value),
0x2 => tim.*[0].setTimcntH(value),
0x4 => tim.*[1].setTimcntL(value),
0x6 => tim.*[1].setTimcntH(value),
0x8 => tim.*[2].setTimcntL(value),
0xA => tim.*[2].setTimcntH(value),
0xC => tim.*[3].setTimcntL(value),
0xE => tim.*[3].setTimcntH(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
@ -72,13 +72,13 @@ fn Timer(comptime id: u2) type {
return struct {
const Self = @This();
/// Read Only, Internal. Please use self.getCntL()
/// Read Only, Internal. Please use self.timcntL()
_counter: u16,
/// Write Only, Internal. Please use self.setCntL()
/// Write Only, Internal. Please use self.setTimcntL()
_reload: u16,
/// Write Only, Internal. Please use self.setCntH()
/// Write Only, Internal. Please use self.setTimcntH()
cnt: TimerControl,
/// Internal.
@ -97,26 +97,26 @@ fn Timer(comptime id: u2) type {
};
}
/// TIMCNT_L
pub fn getCntL(self: *const Self) u16 {
/// TIMCNT_L Getter
pub fn timcntL(self: *const Self) u16 {
if (self.cnt.cascade.read() or !self.cnt.enabled.read()) return self._counter;
return self._counter +% @truncate(u16, (self.sched.now() - self._start_timestamp) / self.frequency());
}
/// TIMCNT_L
pub fn setCntL(self: *Self, halfword: u16) void {
/// TIMCNT_L Setter
pub fn setTimcntL(self: *Self, halfword: u16) void {
self._reload = halfword;
}
/// TIMCNT_L & TIMCNT_H
pub fn setCnt(self: *Self, word: u32) void {
self.setCntL(@truncate(u16, word));
self.setCntH(@truncate(u16, word >> 16));
pub fn setTimcnt(self: *Self, word: u32) void {
self.setTimcntL(@truncate(u16, word));
self.setTimcntH(@truncate(u16, word >> 16));
}
/// TIMCNT_H
pub fn setCntH(self: *Self, halfword: u16) void {
pub fn setTimcntH(self: *Self, halfword: u16) void {
const new = TimerControl{ .raw = halfword };
// If Timer happens to be enabled, It will either be resheduled or disabled
@ -132,12 +132,12 @@ fn Timer(comptime id: u2) type {
if (!self.cnt.enabled.read() and new.enabled.read()) self._counter = self._reload;
// If Timer is enabled and we're not cascading, we need to schedule an overflow event
if (new.enabled.read() and !new.cascade.read()) self.scheduleOverflow(0);
if (new.enabled.read() and !new.cascade.read()) self.rescheduleTimerExpire(0);
self.cnt.raw = halfword;
}
pub fn handleOverflow(self: *Self, cpu: *Arm7tdmi, late: u64) void {
pub fn onTimerExpire(self: *Self, cpu: *Arm7tdmi, late: u64) void {
// Fire IRQ if enabled
const io = &cpu.bus.io;
@ -161,15 +161,15 @@ fn Timer(comptime id: u2) type {
switch (id) {
0 => if (cpu.bus.tim[1].cnt.cascade.read()) {
cpu.bus.tim[1]._counter +%= 1;
if (cpu.bus.tim[1]._counter == 0) cpu.bus.tim[1].handleOverflow(cpu, late);
if (cpu.bus.tim[1]._counter == 0) cpu.bus.tim[1].onTimerExpire(cpu, late);
},
1 => if (cpu.bus.tim[2].cnt.cascade.read()) {
cpu.bus.tim[2]._counter +%= 1;
if (cpu.bus.tim[2]._counter == 0) cpu.bus.tim[2].handleOverflow(cpu, late);
if (cpu.bus.tim[2]._counter == 0) cpu.bus.tim[2].onTimerExpire(cpu, late);
},
2 => if (cpu.bus.tim[3].cnt.cascade.read()) {
cpu.bus.tim[3]._counter +%= 1;
if (cpu.bus.tim[3]._counter == 0) cpu.bus.tim[3].handleOverflow(cpu, late);
if (cpu.bus.tim[3]._counter == 0) cpu.bus.tim[3].onTimerExpire(cpu, late);
},
3 => {}, // There is no Timer for TIM3 to "cascade" to,
}
@ -177,11 +177,11 @@ fn Timer(comptime id: u2) type {
// Reschedule Timer if we're not cascading
if (!self.cnt.cascade.read()) {
self._counter = self._reload;
self.scheduleOverflow(late);
self.rescheduleTimerExpire(late);
}
}
fn scheduleOverflow(self: *Self, late: u64) void {
fn rescheduleTimerExpire(self: *Self, late: u64) void {
const when = (@as(u64, 0x10000) - self._counter) * self.frequency();
self._start_timestamp = self.sched.now();

View File

@ -10,7 +10,7 @@ const Bitfield = @import("bitfield").Bitfield;
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.PPU);
const pollBlankingDma = @import("bus/dma.zig").pollBlankingDma;
const pollDmaOnBlank = @import("bus/dma.zig").pollDmaOnBlank;
/// This is used to generate byuu / Talurabi's Color Correction algorithm
const COLOUR_LUT = genColourLut();
@ -572,7 +572,7 @@ pub const Ppu = struct {
// See if HBlank DMA is present and not enabled
if (!self.dispstat.vblank.read())
pollBlankingDma(cpu.bus, .HBlank);
pollDmaOnBlank(cpu.bus, .HBlank);
self.dispstat.hblank.set();
self.sched.push(.HBlank, 68 * 4 -| late);
@ -614,7 +614,7 @@ pub const Ppu = struct {
self.aff_bg[1].latchRefPoints();
// See if Vblank DMA is present and not enabled
pollBlankingDma(cpu.bus, .VBlank);
pollDmaOnBlank(cpu.bus, .VBlank);
}
if (scanline == 227) self.dispstat.vblank.unset();

View File

@ -47,10 +47,10 @@ pub const Scheduler = struct {
},
.TimerOverflow => |id| {
switch (id) {
0 => cpu.bus.tim[0].handleOverflow(cpu, late),
1 => cpu.bus.tim[1].handleOverflow(cpu, late),
2 => cpu.bus.tim[2].handleOverflow(cpu, late),
3 => cpu.bus.tim[3].handleOverflow(cpu, late),
0 => cpu.bus.tim[0].onTimerExpire(cpu, late),
1 => cpu.bus.tim[1].onTimerExpire(cpu, late),
2 => cpu.bus.tim[2].onTimerExpire(cpu, late),
3 => cpu.bus.tim[3].onTimerExpire(cpu, late),
}
},
.ApuChannel => |id| {