234 Commits

Author SHA1 Message Date
bd02f625a5 feat: upgrade to zig v0.15.1
note: emu crashes for unknown reason
2025-10-12 21:03:32 -05:00
6cacdc7180 chore: add minimum zig version 2025-09-22 18:20:37 -05:00
56ac755a73 fix(ci): disable macOS testing 2024-09-09 04:12:06 -05:00
c5ffa19e06 fix(macos): vendor macOS specific dependency in zgui 2024-09-09 03:48:42 -05:00
2d3c659b85 fix(windows): ensure that SDL is at "SDL.h" instead of "SDL2/SDL.h" 2024-09-09 03:31:55 -05:00
94894fadc6 chore(ci): update to Zig v0.13.0 2024-09-09 02:17:17 -05:00
0e02d9aaab feat: upgrade to Zig v0.13.0 2024-09-09 02:16:31 -05:00
b4830326ff chore: update SDL.zig and zgui 2024-03-22 12:53:11 -05:00
ef93bbe084 ci: resolve ci build errors for the last time i promise 2024-03-06 18:21:00 -06:00
f71aaafe41 ci: get windows and ubuntu builds working again 2024-03-06 17:52:50 -06:00
66192daf6c feat: target Zig v2024.1.0-mach 2024-02-09 01:25:13 -06:00
05b7a9014d chore(ui): don't crash on unexpected scheduler pqueue len 2023-12-20 17:58:42 -06:00
493d7aeede fix(ui): reset, bios load and rom load are properly thread safe 2023-12-20 11:38:58 -06:00
9183e6850d fix: use a mutex to pause emu thread
still not ideal imo
2023-12-15 04:10:51 -06:00
d54202bf8b chore(platform): update opengl impl fns to versions in paoda/turbo 2023-12-15 03:11:16 -06:00
d097dcc2f5 fix(gui): quit when emu thread exits first 2023-12-15 02:49:40 -06:00
203971c91a chore: zba-gdbstub as a git submodule 2023-12-15 02:35:33 -06:00
78b849b6ff feat: look for gba bios in data path 2023-11-23 01:34:51 -06:00
557b90a39f fix: don't insta-crash due to an awful channel impl 2023-11-23 00:50:40 -06:00
dd3158bcfc chore: update zgui 2023-10-07 03:24:11 -05:00
64cd373957 ci: use Zig v0.11.0 2023-08-06 22:44:37 +01:00
64a30b190c chore: update to Zig v0.11.0 2023-08-06 22:42:20 +01:00
f2c728ef44 chore: update documented min zig version 2023-07-17 01:18:02 -05:00
8b4faca80f ci: re-enable zig master builds on CI 2023-07-17 01:11:57 -05:00
f73b096d62 chore: update dependencies 2023-07-17 01:09:54 -05:00
d4b7167e29 chore: simply some zig fmt builtin changes 2023-07-17 01:09:54 -05:00
d96c9c01ff chore: update to latest builtin syntax 2023-07-10 22:09:48 -05:00
954fb279ad chore: move cpu implementation to it's own module
There's a decent amount of Hacks and TODO:s that need revisiting
I should spend a bit of time cleaning up code 😔
2023-06-25 18:56:56 -05:00
5b6650ef34 chore: update README.md 2023-06-21 18:30:19 -05:00
10215d4e99 chore(config): switch toml library
TODO: find a lib that can serialize Zig structs to TOML
2023-06-21 17:59:59 -05:00
e8bc798120 feat(ui): add the option to choose the BIOS 2023-06-19 15:19:43 -05:00
44818a4d5b chore(ci): ensured shared libraries are uploaded w/ executable 2023-06-19 13:04:22 -05:00
07d85628ac chore(ci): try to enable macOS in CI 2023-06-19 12:34:38 -05:00
a8cd510da6 chore: update depdendencies
ZBA now specifically targets Zig v0.11.0-dev.3395+1e7dcaa3a
2023-06-19 12:34:38 -05:00
3040a9f45c fix: update to Zig v0.11.0-dev.3299+34865d693 2023-05-25 15:44:39 -05:00
ccdc2cbad4 chore(ui): rewrite channel implementation 2023-05-23 22:48:58 -05:00
16c3eceffd fix(config): reimplement muting 2023-05-23 17:26:46 -05:00
8f5a0cab9c fix(ui): write silence to audio when emu is paused 2023-05-23 17:05:54 -05:00
79514b0cd0 fix(input): make use of atomic rmw intrinsics when handling input 2023-05-23 03:07:05 -05:00
a048263fd6 chore: make use of std.atomic.spinLoopHint() 2023-05-23 02:42:35 -05:00
d9e09a9cbe fix(ui): remove flickering on ui pause/timeout 2023-05-23 02:24:11 -05:00
2b9a479b96 feat(ui): add timeout for gui spinloop 2023-05-23 02:23:50 -05:00
21295b8d03 feat(ui): implement pausing 2023-05-23 01:39:06 -05:00
89671f767e chore: update dependencies 2023-05-21 11:30:59 -05:00
a92598d17d feat(platform): implement OS window resizing 2023-05-12 01:47:15 -05:00
c677957725 chore: update min ver. to v0.11.0-dev.2934+1b432072b 2023-05-02 00:09:46 -05:00
a5e636d9c5 chore(gui): namespace the majority of interactions w/ OpenGL 2023-04-25 00:32:03 -05:00
f6527da948 fix: respond to change in GeneralPurposeAllocator's deinit fn signature 2023-04-24 21:50:49 -05:00
53fb1d163b fix(cpu): respond to latest changes to comptime semantics 2023-04-13 22:14:47 -05:00
df005d7fb6 chore(build): update to latest zig changes 2023-04-13 22:14:31 -05:00
3c619df3dc fix(imgui): handle valid ROM titles which happen to be empty 2023-04-06 03:08:07 -05:00
13f5e7a480 feat(gui): add palette viewer 2023-04-05 01:18:36 -05:00
8519187d9b chore(gui): add ability to close imgui windows
also list dependencies (TODO: add hyperlinks)
2023-04-04 21:11:08 -05:00
a66428f24e chore: update dependencies 2023-04-02 21:05:45 -05:00
1d8b21d6b4 fix: reimplement grabbing ROM title if provided via cmd arg 2023-03-27 16:22:07 -05:00
b879c76510 chore: update zgui 2023-03-26 23:23:34 -05:00
0dbba2fb9a chore: update to 0.11.0-dev.2168+322ace70f 2023-03-26 23:23:34 -05:00
49b0620c48 style(imgui): use orelse instead of if () || 2023-03-17 11:34:38 -05:00
a6a9e3ac72 chore(imgui): change size of histogram 2023-03-17 11:26:14 -05:00
aeefff86f8 chore: update dependencies 2023-03-16 00:27:08 -05:00
91aa98eef7 chore: copy array instead of calling memcpy 2023-03-11 00:30:34 -06:00
f3b6c4f3fe Merge branch 'ci-suffering' 2023-03-11 00:29:56 -06:00
5aa5ac2a8b ci: update github actions config 2023-03-11 00:09:14 -06:00
b1827ccea0 Merge pull request 'Add a GUI to ZBA' (#7) from imgui into main
Reviewed-on: #7
2023-03-11 03:18:14 +00:00
2629d15e2f feat: don't require path to ROM in CLI 2023-03-10 21:16:06 -06:00
c7b62d3202 chore: dynamically update window title on ROM replace 2023-03-10 20:41:49 -06:00
85ec9a84c4 chore: add screenshot to README.md 2023-03-10 19:37:28 -06:00
5adbc354d6 feat: replace Gamepak 2023-03-10 02:50:31 -06:00
f8477714ae feat: implement resetting 2023-03-10 02:28:03 -06:00
bd872ee1c0 fix: drop select atomics in favour of a thread-safe channel 2023-03-10 02:02:34 -06:00
11eae091db chore: introduce zba-util
In an effort to reuse code between zba and zba-gdbstub, move common util
code (like the SPSC Channel I implemented in this commit) in a new lib
2023-03-10 00:05:31 -06:00
72b702cb21 fix: handle null GBA ROM titles when passing to imgui 2023-03-04 18:02:12 -06:00
d985eac0fc tmp: implement mechanisms for a emu reset fn (currently crashes) 2023-02-23 23:49:56 -06:00
3fff4fd742 chore: move imgui-specific code to its own file 2023-02-23 18:25:05 -06:00
e90d5a17ba fix: ensure code builds + works
the gdbstub branch got merged into main, rebasing on top of main led to
a bunch of merge conflicts that had to be resolved. Unfortunately some
things got missed, and this commit covers the immediate problems that
the rebase caused
2023-02-23 17:27:42 -06:00
54143332ab chore: update for loop in RingBuffer impl 2023-02-23 17:27:42 -06:00
baa3fb7905 chore: update gui libs to latest zig master 2023-02-23 17:27:42 -06:00
57c7437f77 chore: add gui deps to README.md 2023-02-23 17:27:42 -06:00
eef5a238a0 chore: update nfd-zig
respond to build.zig changes in zig master
2023-02-23 17:27:42 -06:00
6048458f9b feat: implement menu bar + add file picker dep 2023-02-23 17:27:42 -06:00
ff609c85ba feat: show game title as imgui screen title 2023-02-23 17:27:42 -06:00
3e98f4053a chore: update zgui 2023-02-23 17:27:42 -06:00
1d601dba39 feat: add scheduler ui 2023-02-23 17:27:42 -06:00
a8fac5f3c6 feat: pause emu when UI reads emu state 2023-02-23 17:27:42 -06:00
ae78588b80 feat: implement ui for register, interrupt 2023-02-23 17:27:42 -06:00
fe6fc0e517 feat: add system information window 2023-02-23 17:27:42 -06:00
3dcc4cb385 fix: update zgui to work with sdl2 vcpkg package 2023-02-23 17:27:42 -06:00
5e94cbfbea feat: add imgui support using zgui 2023-02-23 17:27:42 -06:00
3b13102abb ci: ensure that submodules are updated recursively 2023-02-23 17:26:59 -06:00
7234ecab37 Merge pull request 'Implement a GDBSTUB Server' (#6) from gdbstub into main
Reviewed-on: #6
2023-02-23 22:18:26 +00:00
ddf4599162 chore: update dependencies 2023-02-23 02:45:59 -06:00
01f5410180 feat: allow gui and gdbstub to run in parallel 2023-02-23 02:40:24 -06:00
49706842af fix: run more than just the CPU when stepping via gdb 2023-02-23 02:40:24 -06:00
2798a90d83 chore: update zba-gdbstub to zig master 2023-02-23 02:40:24 -06:00
518b868249 feat: respond to API changes for software bkpts 2023-02-23 02:40:24 -06:00
755115660b feat: allow gdb writes to certain mem regions 2023-02-23 02:40:24 -06:00
6709f8c551 chore: update gdbstub lib 2023-02-23 02:40:24 -06:00
1f3cdd9513 feat: add gdb support to zba 2023-02-23 02:40:24 -06:00
65af6aa499 feat: add gdbstub library 2023-02-23 02:40:23 -06:00
024151a5c1 chore: update to latest zig master 2023-02-22 14:46:46 -06:00
e380af7056 chore: use a more efficient decimal->bcd algorithm
This will not improve perf in any way because this code only gets run
one time a second orz
2023-02-21 23:22:42 -06:00
e654abfd1d ci: don't assume any cpu features 2023-02-18 23:52:51 -06:00
3510a6cff8 chore: drop macOS support
CI is currently broken and I don't have the $$$ for macOS
2023-02-18 23:34:59 -06:00
3fb351e762 chore: update SDL.zig 2023-02-17 00:05:42 -06:00
a11b96b84e chore: update minimum zig version 2023-02-07 17:52:16 -06:00
c3be1c0a67 chore: update to latest zig build system
I feel like I'm misusing addAnonymousModule
2023-02-07 16:00:06 -06:00
fdf7399e52 chore: update README.md 2023-02-04 19:30:05 -06:00
ed8155139a chore: update CI 2023-02-04 18:22:50 -06:00
8112b1aab2 chore: update zig to latest master 2023-02-04 18:15:10 -06:00
c0e583d20d fix: resolve off-by-one error in str addr when r15 is involved
I seem to have made up this rule (I was thinking about when r15 was
a source register). `rn` is the destination register.... whoops
2023-01-29 08:58:41 -06:00
3f72367aaf chore: remove .vscode folder 2023-01-21 19:01:44 -06:00
c27f487bf0 chore: update dependencies 2023-01-16 02:57:50 -06:00
ae3bb94036 fix(ppu): draw file select sprites in amazing mirror 2023-01-08 01:36:58 -06:00
ddc54e2977 fix: ignore missing opengl proc addresses
is this really a fix? the error never happens with mach-glfw
2023-01-01 15:56:18 -06:00
ed49d7c460 chore: update lib/gl.zig 2023-01-01 13:41:53 -06:00
59baa14bde Merge branch 'main' of ssh://musuka.dev:2222/paoda/zba 2022-12-30 19:47:24 -06:00
6bf1c44961 chore: refactor sprite rendering code 2022-12-30 19:47:01 -06:00
94702b9b51 chore: update min zig version 2022-12-28 16:26:51 -06:00
0f148507e4 fix: respond to @addWithOverflow changes in latest zig 2022-12-28 15:20:44 -06:00
0cec779545 chore: misc style changes 2022-12-28 07:29:07 -06:00
1ecbbc7d29 chore: cleanup BIOS struct init code 2022-12-27 06:42:06 -06:00
caaa60d1a8 fix: rotate unaligned reads on BIOS open-bus 2022-12-27 06:25:12 -06:00
39d50466c9 chore: update min zig version 2022-12-22 13:21:59 -06:00
5a452d85c1 feat: update dependencies 2022-12-21 00:24:55 -06:00
4326ae7a0a fix: resolve broken affine bg in mario kart 2022-12-18 08:59:19 -04:00
905c4448d0 feat: kind-of account for 1/4th of obj mode 2022-12-18 08:35:14 -04:00
0de44835e5 fix: properly implement black/white blending for sprites
There's unique rules to handle for BLDY w/r/t sprites, I didn't know
about them (shown in bld_demo.gba). I'm sure I haven't ironed out every
rule but bld_demo.gba now *actually* passes
2022-12-18 07:44:01 -04:00
5aac04faf5 tmp: disable buggy window emulation
I'd like to merge my affine sprite impl into main, which will require
merging a lot of the rewrites I did in this branch. My plan is to
merge the buggy ppu window impl to main, but keep it disabled.

This is technically a regression but the current impl barely worked
anyways so....
2022-12-17 09:58:15 -04:00
f98a1700e0 feat: implement affine sprites 2022-12-17 09:47:10 -04:00
acdb270793 chore: reimplement alpha blending 2022-12-16 22:16:37 -04:00
4ceed382ed chore(ppu): use @ptrCast in drawTextMode 2022-12-16 22:16:37 -04:00
52ce4f3d20 chore(ppu): reimplement modes 3, 4, and 5 2022-12-16 22:16:37 -04:00
c1c8cac6e4 style(ppu): move text mode drawing to unique fn 2022-12-16 22:16:37 -04:00
be7a34f719 fix(window): proper inRange impl for window
window wrap now works (it's pretty slow though?)
2022-12-16 22:16:37 -04:00
f7a94634f9 chore: improve readability of sprite drawing code a bit 2022-12-16 22:16:37 -04:00
7d4ab6db2c style: remove unused imports 2022-12-16 22:16:37 -04:00
0a78587d8e chore: dont allocate not-small ?Sprite array on stack
use memset like most other allocations in this emu
2022-12-16 22:16:37 -04:00
b753ceef8e chore: move FrameBuffer struct to util.zig 2022-12-16 22:16:37 -04:00
8963fe205b chore: move OAM, PALRAM and VRAM structs to separate files 2022-12-16 22:16:37 -04:00
e906506e16 fix: 8-bit writes to WIN PPU registers
Advance Wars depends on these registers similar to Mario Kart's 8-bit
writes to Affine Background registers:
2022-12-16 22:16:37 -04:00
3195a45e3d chore: refactor window 2022-12-16 22:16:37 -04:00
6aad911985 chore: crude background window impl (no affine) 2022-12-16 22:16:37 -04:00
e3b45ef794 chore: rename function (misspelt until now somehow) 2022-12-16 22:16:37 -04:00
8e1a539e70 chore: debug read takes advantage of fastmem
deduplicate slowmem backup read handler
2022-12-15 23:18:54 -04:00
63fa972afa chore: update dependencies
in response to zig master deprecations
2022-12-14 22:57:51 -04:00
bf95eee3f1 fix(apu): resolve bug in NR10 obscure behaviour 2022-12-05 11:08:04 -04:00
240fbcb1df chore: update dependencies 2022-12-01 13:23:09 -04:00
26db340077 fix(input): implement atomic for KeyInput 2022-11-30 00:42:20 -04:00
20f611b7b5 chore: be more intentional in atomic ordering use 2022-11-30 00:21:02 -04:00
f9aefedf60 chore: cal glDeleteTextures on program exit 2022-11-29 23:35:13 -04:00
d7e3d34726 fix(platform): ensure that title char* is null terminated 2022-11-29 23:21:57 -04:00
2294dc8832 chore: add minimum zig version 2022-11-29 23:10:29 -04:00
4af86e1cb3 style: replace meta.Tuple calls with new tuple syntax 2022-11-29 23:01:06 -04:00
9fcbbe7d57 chore: cleanup OpenGL vertex array + buffers 2022-11-29 22:53:37 -04:00
c3f67e38a1 chore: exit early on shader compile failure 2022-11-29 22:25:04 -04:00
46e29245b7 fix(apu): disable APU writes when APU is disabled 2022-11-26 12:20:42 -04:00
002e33b48b fix: properly render table in README 2022-11-24 08:22:58 -04:00
5bb25fe214 chore: update dependencies 2022-11-23 21:57:53 -04:00
66db2e6049 Revert "chore: refactor flash impl"
This reverts commit 96a9ae2ca5.
2022-11-20 21:46:40 -04:00
c5cf471912 fix(timer): removing cascade when TIM aleady enabled shouldn't reset counter 2022-11-20 19:13:49 -04:00
4ed4f8e143 fix(dma): implement obscure behaviour for DMAs from ROM 2022-11-20 17:49:26 -04:00
f31699d921 fix(log): logged improper second opcode for THUMB BL 2022-11-20 15:36:40 -04:00
96a9ae2ca5 chore: refactor flash impl 2022-11-17 10:47:19 -04:00
ee1c0bb313 chore: update README 2022-11-16 10:55:33 -04:00
558c03b12b style: changes to cpu.zig 2022-11-16 10:21:40 -04:00
7d8fbbb086 fix(bus): resolve off-by-one error 2022-11-14 01:59:43 -04:00
9fd405a896 chore(ci): update CI dependency 2022-11-11 13:25:56 -04:00
5d7cf3a8a2 chore: remove util fn for stdlib equivalent 2022-11-11 13:02:51 -04:00
1230aa1e91 fix(cpu): remove miscompilation workaround 2022-11-11 03:56:49 -04:00
accecb3350 chore(ci): rename CI workflow 2022-11-10 11:58:47 -04:00
1e0ade8f55 chore: update depdendencies 2022-11-07 00:54:35 -04:00
429676ad43 feat(config): write config.toml to config dir, not data dir 2022-11-03 09:45:57 -03:00
ef39d9a7b8 chore(ci): only run for .zig files, name workflow
Also enabled workflow dispatch
2022-11-03 08:56:14 -03:00
986bc9448e fix(bus): account for read_table being the first table when freeing 2022-11-03 07:50:12 -03:00
d34893ba72 fix(bus): fix confusion about which fastmem write table is for which write type 2022-11-02 08:21:59 -03:00
b8a5fb95c1 fix(io): account for read-only bit in WAITCNT 2022-11-02 08:06:19 -03:00
102b2c946b fix(io): respect read-only bits in DISPSTAT
Superstar Saga now renders correctly
2022-11-02 07:54:06 -03:00
505b1b9608 fix(bus): resolve simple oversights 2022-11-01 09:00:25 -03:00
2851c140ea fix(cpu): use LUT for ARM condition codes 2022-11-01 08:29:42 -03:00
637d81ce44 chore(bus): only perform one allocation for fastmem tables 2022-11-01 07:04:42 -03:00
bc52461f0f fix(bus): replace write table with two tables for u32/u8 and u8 writes 2022-11-01 07:00:07 -03:00
c395c04a6e feat(bus): implement fastmem
+100 fps in Pokemon Emerald lol
2022-11-01 06:18:12 -03:00
9eb4f8f191 chore: reccomend stable Zig v0.10.0 2022-11-01 01:01:48 -03:00
f774256c42 chore: update README.md 2022-10-31 09:14:42 -03:00
5c15d039e1 chore(ci): update actions/checkout to v3
supresses deprecation warning for node12
2022-10-31 08:16:45 -03:00
28e9342c25 ci: add github actions config file 2022-10-31 08:04:21 -03:00
af8ec4db5b chore: go through TODOs and FIXMEs
mainly deleting / rewording those that no longer apply
2022-10-31 06:17:09 -03:00
5d47e5d167 fix(io): force-align all i/o reads
Of course, backups being the exception due to flash or sram quirks,
I don't remember lol
2022-10-31 05:50:27 -03:00
5101fbd809 feat(io): pass all suite.gba i/o read tests 2022-10-31 05:22:11 -03:00
472457b9f3 chore: make use of comptime control flow when working with tuples 2022-10-31 05:14:20 -03:00
2ef4bb7dcc revert(apu): switch from f32 44.1kHz to u16 32.768kHz 2022-10-31 05:14:20 -03:00
9a732ea6f8 chore(i/o): ensure interrupt i/o exists 2022-10-31 05:14:20 -03:00
f80799a593 fix(util): resolve bug in setHalf function
introduced in 472215b4c2
2022-10-30 04:12:58 -03:00
ca67ca3183 fix(apu): only enable dma sound fifo after manual write 2022-10-30 03:48:12 -03:00
47fc49deb6 fix(audio): add asserts where I assume audio format 2022-10-30 03:25:49 -03:00
472215b4c2 feat(ppu): implement all i/o writes 2022-10-30 03:11:04 -03:00
c9a423d094 fix(ppu): resolve mistakes in ppu i/o reads 2022-10-30 02:15:26 -03:00
1d163fa56f feat(apu): implement all apu i/o writes 2022-10-30 02:02:23 -03:00
13710a3236 feat(timer): implement all timer i/o writes 2022-10-30 01:18:46 -03:00
6154585e77 feat(dma): implement all dma i/o writes 2022-10-30 01:04:22 -03:00
7debdc490d fix(io): resovle off-by-one errors in i/o register ranges 2022-10-29 05:23:05 -03:00
58375795bf fix(ppu): apply proper masks to ppu i/o
Refactor Window, and bldcnt, bldalpha, bldy
2022-10-29 05:18:53 -03:00
f0dca29836 fix(dma): apply proper masks to dma i/o 2022-10-29 04:53:21 -03:00
c75682dbd4 fix(apu): some invalid i/o registers should read 0x0000 2022-10-29 04:29:44 -03:00
36832ba1fb feat(apu): impelement all apu i/o reads 2022-10-29 04:24:06 -03:00
647bd83224 chore(io): rewrite certain error messages
We can do this now that we know that it won't be because of any
unimplemented feature in some circumstances
2022-10-29 02:37:54 -03:00
c831f67d1a feat(timer): implemeant all timer i/o reads 2022-10-29 01:37:28 -03:00
268961262d feat(dma): implement all dma i/o reads 2022-10-29 01:30:12 -03:00
3e62feacba feat(ppu): implement all ppu i/o reads 2022-10-29 01:29:27 -03:00
d859cee365 style: get rid of unnecessary type coersion 2022-10-29 00:06:08 -03:00
371cf4cc12 style(i/o, ppu): refactor ppu i/o 2022-10-28 23:45:54 -03:00
10aec67ee0 emu: implement thread sleep in granular steps 2022-10-28 21:58:55 -03:00
4eb715a138 doc(emu): properly document + simply constants 2022-10-28 21:57:30 -03:00
14b24787ab style: remove unnecessary imports 2022-10-28 21:56:55 -03:00
eb7ffa29f4 fix(apu): pause device on mute instead of writing silence 2022-10-27 09:11:08 -03:00
4b8ed3cebb fix(io): resolve embarrasingly simple regression
introduced in 21eddac31e
2022-10-23 04:39:31 -03:00
928ce674d9 fix(cpu): fix obscure LDRSH behaviour 2022-10-22 22:12:41 -03:00
945dbec013 fix(open-bus): don't rotate result
Rotating misaligned reads is the responsibility of the CPU
2022-10-22 21:32:36 -03:00
dd98066a34 Merge pull request 'feat(dma): Implement DMA Latch' (#5) from dma-latch into main
Reviewed-on: #5
2022-10-22 23:53:21 +00:00
a2868dfe9e feat(dma): Implement DMA Latch 2022-10-22 20:52:02 -03:00
22979d9450 fix(bios): fix regression
was reading addr_latch + 8, which is a remnant from when I was faking
the pipeline
2022-10-22 15:33:36 -03:00
712c58391d chore(config): change defaults in config.toml 2022-10-21 06:01:22 -03:00
407774d798 chore(gitignore): update .gitignore 2022-10-21 04:40:55 -03:00
16f8f4c953 feat: write default config.toml if it doesn't exist
also resolves panic on missing /zba or /zba/save directory by ensuring
those directories exist as soon as we know the data directory
2022-10-21 04:39:16 -03:00
143ffd95f7 chore: update README 2022-10-21 02:59:43 -03:00
250ff25ed7 Merge pull request 'Configure SDL2 to use OpenGL' (#4) from opengl into main
Reviewed-on: #4
2022-10-20 01:41:50 +00:00
eff52ac1bb fix(opengl): properly control whether vsync is enabled 2022-10-17 20:31:42 -03:00
e60b556f72 chore(ppu): remove BGR555 -> RGBA888 LUT
LUT probably couldn't fit in CPU cache anyways.

TODO: Consider whether LUTs for separate channels (size 32 * 3 * 3
instead of std.math.maxInt(u15))
2022-10-17 20:31:42 -03:00
3a3e6acc6a chore: replace OpenGL 4.5 bindings with OpenGL 3.3 2022-10-17 20:31:42 -03:00
4b4bc7f894 chore: remove unnecessary ptr cast 2022-10-17 20:31:42 -03:00
325208d460 feat: implement better Colour Emulation 2022-10-17 20:31:42 -03:00
f44a1a49fd fix: lower required OpenGL version + resolve offset bug 2022-10-17 20:31:42 -03:00
1575f517a9 feat: use opengl
TODO:
- Texture isn't scaling properly
- I need to reverse the colours in the frag shader
2022-10-17 20:31:42 -03:00
26dba16789 chore(gpio): add missing errdefer 2022-10-17 20:01:50 -03:00
73 changed files with 4789 additions and 9125 deletions

59
.github/workflows/main.yml vendored Normal file
View File

@@ -0,0 +1,59 @@
name: Nightly
on:
push:
paths:
- "**.zig"
- "dl_sdl2.ps1"
branches:
- main
schedule:
- cron: '0 0 * * *'
workflow_dispatch:
jobs:
build:
strategy:
matrix:
os: [ubuntu-latest, windows-latest] # TODO: Figure out Apple Silicon macOS
runs-on: ${{matrix.os}}
steps:
- uses: goto-bus-stop/setup-zig@v2
with:
version: 0.13.0
- run: |
git config --global core.autocrlf false
- uses: actions/checkout@v3
with:
submodules: recursive
- name: prepare-linux
if: runner.os == 'Linux'
run: |
sudo apt update
sudo apt install libgtk-3-dev libsdl2-dev
- name: prepare-windows
if: runner.os == 'Windows'
run: |
.\dl_sdl2.ps1
- name: prepare-macos
if: runner.os == 'macOS'
run: |
brew install sdl2
- name: build
run: zig build -Doptimize=ReleaseSafe -Dcpu=baseline
- name: upload
uses: actions/upload-artifact@v3
with:
name: zba-${{matrix.os}}
path: zig-out
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with:
submodules: recursive
- uses: goto-bus-stop/setup-zig@v2
with:
version: 0.13.0
- run: zig fmt --check {src,lib}/**/*.zig build.zig build.zig.zon

11
.gitignore vendored
View File

@@ -1,7 +1,8 @@
/.vscode
/bin
/zig-cache
/zig-out
**/zig-cache
**/.zig-cache
**/zig-out
/docs
**/*.log
**/*.bin
@@ -11,4 +12,8 @@
/lib/SDL2
# Any Custom Scripts for Debugging purposes
*.sh
*.sh
# Dear ImGui
**/imgui.ini

15
.gitmodules vendored
View File

@@ -1,15 +0,0 @@
[submodule "lib/SDL.zig"]
path = lib/SDL.zig
url = https://github.com/MasterQ32/SDL.zig
[submodule "lib/zig-clap"]
path = lib/zig-clap
url = https://github.com/Hejsil/zig-clap
[submodule "lib/known-folders"]
path = lib/known-folders
url = https://github.com/ziglibs/known-folders
[submodule "lib/zig-datetime"]
path = lib/zig-datetime
url = https://github.com/frmdstryr/zig-datetime
[submodule "lib/zig-toml"]
path = lib/zig-toml
url = https://github.com/aeronavery/zig-toml

View File

@@ -1,8 +0,0 @@
{
"recommendations": [
"augusterame.zls-vscode",
"usernamehw.errorlens",
"vadimcn.vscode-lldb",
"dan-c-underwood.arm"
]
}

137
README.md
View File

@@ -1,87 +1,96 @@
# ZBA (working title)
A Game Boy Advance Emulator written in Zig ⚡!
![ZBA running リズム天国](assets/screenshot.png)
## Scope
I'm hardly the first to write a Game Boy Advance Emulator nor will I be the last. This project isn't going to compete with the GOATs like
[mGBA](https://github.com/mgba-emu) or [NanoBoyAdvance](https://github.com/nba-emu/NanoBoyAdvance). There aren't any interesting
ideas either like in [DSHBA](https://github.com/DenSinH/DSHBA).
This is a simple (read: incomplete) for-fun long-term project. I hope to get "mostly there", which to me means that I'm not missing any major hardware
features and the set of possible improvements would be in memory timing or in UI/UX. With respect to that goal, here's what's outstanding:
I'm hardly the first to write a Game Boy Advance Emulator nor will I be the last. This project isn't going to compete with the GOATs like [mGBA](https://github.com/mgba-emu) or [NanoBoyAdvance](https://github.com/nba-emu/NanoBoyAdvance). There aren't any interesting ideas either like in [DSHBA](https://github.com/DenSinH/DSHBA).
### TODO
- [ ] Affine Sprites
This is a simple (read: incomplete) for-fun long-term project. I hope to get "mostly there", which to me means that I'm not missing any major hardware features and the set of possible improvements would be in memory timing or in UI/UX. With respect to that goal, here's what's outstanding:
### TODO
- [x] Affine Sprites
- [ ] Windowing (see [this branch](https://git.musuka.dev/paoda/zba/src/branch/window))
- [ ] Shaders (see [this branch](https://git.musuka.dev/paoda/zba/src/branch/opengl))
- [ ] Audio Resampler (Having issues with SDL2's)
- [ ] Immediate Mode GUI
- [ ] Refactoring for easy-ish perf boosts
## Tests
- [x] [jsmolka's GBA Test Collection](https://github.com/jsmolka/gba-tests)
- [x] `arm.gba` and `thumb.gba`
- [x] `flash64.gba`, `flash128.gba`, `none.gba`, and `sram.gba`
- [x] `hello.gba`, `shades.gba`, and `stripes.gba`
- [x] `memory.gba`
- [x] `bios.gba`
- [x] `nes.gba`
- [ ] [DenSinH's GBA ROMs](https://github.com/DenSinH/GBARoms)
- [x] `eeprom-test` and `flash-test`
- [x] `midikey2freq`
- [ ] `swi-tests-random`
- [ ] [destoer's GBA Tests](https://github.com/destoer/gba_tests)
- [x] `cond_invalid.gba`
- [x] `dma_priority.gba`
- [x] `hello_world.gba`
- [x] `if_ack.gba`
- [ ] `line_timing.gba`
- [ ] `lyc_midline.gba`
- [ ] `window_midframe.gba`
- [x] [ladystarbreeze's GBA Test Collection](https://github.com/ladystarbreeze/GBA-Test-Collection)
- [x] `retAddr.gba`
- [x] `helloWorld.gba`
- [x] `helloAudio.gba`
- [x] [`armwrestler-gba-fixed.gba`](https://github.com/destoer/armwrestler-gba-fixed)
- [x] [FuzzARM](https://github.com/DenSinH/FuzzARM)
## Usage
## Resources
* [GBATEK](https://problemkaputt.de/gbatek.htm)
* [TONC](https://coranac.com/tonc/text/toc.htm)
* [ARM Architecture Reference Manual](https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/third-party/ddi0100e_arm_arm.pdf)
* [ARM7TDMI Data Sheet](https://www.dca.fee.unicamp.br/cursos/EA871/references/ARM/ARM7TDMIDataSheet.pdf)
ZBA supports both a CLI and a GUI. If running from the terminal, try using `zba --help` to see what you can do. If you want to use the GUI, feel free to just run `zba` without any arguments.
ZBA does not feature any BIOS HLE, so providing one will be necessary if a ROM makes use of it. Need one? Why not try using the open-source [Cult-Of-GBA BIOS](https://github.com/Cult-of-GBA/BIOS) written by [fleroviux](https://github.com/fleroviux) and [DenSinH](https://github.com/DenSinH)?
Finally it's worth noting that ZBA uses a TOML config file it'll store in your OS's data directory. See `example.toml` to learn about the defaults and what exactly you can mess around with.
## Compiling
Most recently built on Zig [0.10.0-dev.4324+c23b3e6fd](https://github.com/ziglang/zig/tree/c23b3e6fd)
Most recently built on Zig [v0.11.0](https://github.com/ziglang/zig/tree/0.11.0)
### Dependencies
* [SDL.zig](https://github.com/MasterQ32/SDL.zig)
* [SDL2](https://www.libsdl.org/download-2.0.php)
* [zig-clap](https://github.com/Hejsil/zig-clap)
* [known-folders](https://github.com/ziglibs/known-folders)
* [zig-toml](https://github.com/aeronavery/zig-toml)
* [zig-datetime](https://github.com/frmdstryr/zig-datetime)
* [`bitfields.zig`](https://github.com/FlorenceOS/Florence/blob/aaa5a9e568/lib/util/bitfields.zig)
`bitfields.zig` from [FlorenceOS](https://github.com/FlorenceOS) is included under `lib/util/bitfield.zig`.
Dependency | Source
--- | ---
known-folders | <https://github.com/ziglibs/known-folders>
nfd-zig | <https://github.com/fabioarnold/nfd-zig>
SDL.zig | <https://github.com/MasterQ32/SDL.zig>
tomlz | <https://github.com/mattyhall/tomlz>
zba-gdbstub | <https://github.com/paoda/zba-gdbstub>
zba-util | <https://git.musuka.dev/paoda/zba-util>
zgui | <https://github.com/michal-z/zig-gamedev/tree/main/libs/zgui>
zig-clap | <https://github.com/Hejsil/zig-clap>
zig-datetime | <https://github.com/frmdstryr/zig-datetime>
`bitfield.zig` | [https://github.com/FlorenceOS/Florence](https://github.com/FlorenceOS/Florence/blob/aaa5a9e568/lib/util/bitfields.zig)
`gl.zig` | <https://github.com/MasterQ32/zig-opengl>
Use `git submodule update --init` from the project root to pull the git submodules `SDL.zig`, `zig-clap`, `known-folders`, `zig-toml` and `zig-datetime`
Use `git submodule update --init` from the project root to pull the git relevant git submodules
Be sure to provide SDL2 using:
* Linux: Your distro's package manager
* MacOS: ¯\\\_(ツ)_/¯
* Windows: [`vcpkg`](https://github.com/Microsoft/vcpkg) (install `sdl2:x64-windows`)
Be sure to provide SDL2 using:
`SDL.zig` will provide a helpful compile error if the zig compiler is unable to find SDL2.
- Linux: Your distro's package manager
- macOS: ¯\\\_(ツ)_/¯ (try [this formula](https://formulae.brew.sh/formula/sdl2)?)
- Windows: [`vcpkg`](https://github.com/Microsoft/vcpkg) (install `sdl2:x64-windows`)
Once you've got all the dependencies, execute `zig build -Drelease-fast`. The executable is located at `zig-out/bin/`.
`SDL.zig` will provide a helpful compile error if the zig compiler is unable to find SDL2.
Once you've got all the dependencies, execute `zig build -Doptimize=ReleaseSafe`. The executable will be under `zig-out/bin` and the shared libraries (if enabled) under `zig-out/lib`. If working with shared libraries on windows, be sure to add all artifacts to the same directory. On Unix, you'll want to make use of `LD_PRELOAD`.
## Controls
Key | Button
--- | ---
<kbd>X</kbd> | A
<kbd>Z</kbd> | B
<kbd>A</kbd> | L
<kbd>S</kbd> | R
<kbd>Return</kbd> | Start
<kbd>RShift</kbd> | Select
Key | Button | | Key | Button
--- | --- | --- | --- | ---
<kbd>A</kbd> | L | | <kbd>S</kbd> | R
<kbd>X</kbd> | A | | <kbd>Z</kbd> | B
<kbd>Return</kbd> | Start | | <kbd>RShift</kbd> | Select
Arrow Keys | D-Pad
## Tests
GBA Tests | [jsmolka](https://github.com/jsmolka/) | gba_tests | [destoer](https://github.com/destoer/)
--- | --- | --- | ---
`arm.gba`, `thumb.gba` | PASS | `cond_invalid.gba` | PASS
`memory.gba`, `bios.gba` | PASS | `dma_priority.gba` | PASS
`flash64.gba`, `flash128.gba` | PASS | `hello_world.gba` | PASS
`sram.gba` | PASS | `if_ack.gba` | PASS
`none.gba` | PASS | `line_timing.gba` | FAIL
`hello.gba`, `shades.gba`, `stripes.gba` | PASS | `lyc_midline.gba` | FAIL
`nes.gba` | PASS | `window_midframe.gba` | FAIL
GBARoms | [DenSinH](https://github.com/DenSinH/) | GBA Test Collection | [ladystarbreeze](https://github.com/ladystarbreeze)
--- | --- | --- | ---
`eeprom-test`, `flash-test` | PASS | `retAddr.gba` | PASS
`midikey2freq` | PASS | `helloWorld.gba` | PASS
`swi-tests-random` | FAIL | `helloAudio.gba` | PASS
FuzzARM | [DenSinH](https://github.com/DenSinH/) | arm7wrestler GBA Fixed | [destoer](https://github.com/destoer)
--- | --- | --- | ---
`main.gba` | PASS | `armwrestler-gba-fixed.gba` | PASS
## Resources
- [GBATEK](https://problemkaputt.de/gbatek.htm)
- [TONC](https://coranac.com/tonc/text/toc.htm)
- [ARM Architecture Reference Manual](https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/third-party/ddi0100e_arm_arm.pdf)
- [ARM7TDMI Data Sheet](https://www.dca.fee.unicamp.br/cursos/EA871/references/ARM/ARM7TDMIDataSheet.pdf)

BIN
assets/screenshot.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

166
build.zig
View File

@@ -1,60 +1,154 @@
const std = @import("std");
const Sdk = @import("lib/SDL.zig/Sdk.zig");
pub fn build(b: *std.build.Builder) void {
// Standard target options allows the person running `zig build` to choose
// Although this function looks imperative, it does not perform the build
// directly and instead it mutates the build graph (`b`) that will be then
// executed by an external runner. The functions in `std.Build` implement a DSL
// for defining build steps and express dependencies between them, allowing the
// build runner to parallelize the build automatically (and the cache system to
// know when a step doesn't need to be re-run).
pub fn build(b: *std.Build) void {
// Standard target options allow the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// It's also possible to define more custom flags to toggle optional features
// of this build script using `b.option()`. All defined flags (including
// target and optimize options) will be listed when running `zig build --help`
// in this directory.
// Standard release options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall.
const mode = b.standardReleaseOptions();
// This creates a module, which represents a collection of source files alongside
// some compilation options, such as optimization mode and linked system libraries.
// Zig modules are the preferred way of making Zig code available to consumers.
// addModule defines a module that we intend to make available for importing
// to our consumers. We must give it a name because a Zig package can expose
// multiple modules and consumers will need to be able to specify which
// module they want to access.
const exe_mod = b.addModule("zba", .{
// The root source file is the "entry point" of this module. Users of
// this module will only be able to access public declarations contained
// in this file, which means that if you have declarations that you
// intend to expose to consumers that were defined in other files part
// of this module, you will have to make sure to re-export them from
// the root file.
.root_source_file = b.path("src/main.zig"),
// Later on we'll use this module as the root module of a test executable
// which requires us to specify a target.
.target = target,
.link_libc = true,
});
const exe = b.addExecutable("zba", "src/main.zig");
exe.setTarget(target);
// Here we define an executable. An executable needs to have a root module
// which needs to expose a `main` function. While we could add a main function
// to the module defined above, it's sometimes preferable to split business
// business logic and the CLI into two separate modules.
//
// If your goal is to create a Zig library for others to use, consider if
// it might benefit from also exposing a CLI tool. A parser library for a
// data serialization format could also bundle a CLI syntax checker, for example.
//
// If instead your goal is to create an executable, consider if users might
// be interested in also being able to embed the core functionality of your
// program in their own executable in order to avoid the overhead involved in
// subprocessing your CLI tool.
//
// If neither case applies to you, feel free to delete the declaration you
// don't need and to put everything under a single module.
const exe = b.addExecutable(.{ .name = "zba", .root_module = exe_mod });
// Known Folders (%APPDATA%, XDG, etc.)
exe.addPackagePath("known_folders", "lib/known-folders/known-folders.zig");
const zgui = b.dependency("zgui", .{ .shared = false, .with_implot = true, .backend = .sdl3_opengl3 });
const sdl = b.dependency("sdl", .{ .target = target, .optimize = optimize, .preferred_linkage = .static });
const gl = @import("zigglgen").generateBindingsModule(b, .{ .api = .gl, .version = .@"3.3", .profile = .core });
// DateTime Library
exe.addPackagePath("datetime", "lib/zig-datetime/src/main.zig");
const sdl_lib = sdl.artifact("SDL3");
const zgui_lib = zgui.artifact("imgui");
// Bitfield type from FlorenceOS: https://github.com/FlorenceOS/
// exe.addPackage(.{ .name = "bitfield", .path = .{ .path = "lib/util/bitfield.zig" } });
exe.addPackagePath("bitfield", "lib/util/bitfield.zig");
exe_mod.linkLibrary(sdl_lib);
exe_mod.linkLibrary(zgui_lib);
// Argument Parsing Library
exe.addPackagePath("clap", "lib/zig-clap/clap.zig");
exe_mod.addImport("gl", gl);
exe_mod.addImport("known_folders", b.dependency("known_folders", .{}).module("known-folders"));
exe_mod.addImport("datetime", b.dependency("datetime", .{}).module("datetime"));
exe_mod.addImport("clap", b.dependency("clap", .{}).module("clap"));
exe_mod.addImport("zba_util", b.dependency("zba_util", .{}).module("zba_util"));
exe_mod.addImport("arm32", b.dependency("arm32", .{}).module("arm32"));
exe_mod.addImport("gdbstub", b.dependency("zba_gdbstub", .{}).module("zba_gdbstub"));
exe_mod.addImport("nfd", b.dependency("nfdzig", .{}).module("nfd"));
exe_mod.addImport("zgui", zgui.module("root"));
exe_mod.addImport("bitjuggle", b.dependency("bitjuggle", .{}).module("bitjuggle"));
// TOML Library
exe.addPackagePath("toml", "lib/zig-toml/src/toml.zig");
// This declares intent for the executable to be installed into the
// install prefix when running `zig build` (i.e. when executing the default
// step). By default the install prefix is `zig-out/` but can be overridden
// by passing `--prefix` or `-p`.
b.installArtifact(exe);
// OpenGL 3.3 Bindings
exe.addPackagePath("gl", "lib/gl.zig");
// This creates a top level step. Top level steps have a name and can be
// invoked by name when running `zig build` (e.g. `zig build run`).
// This will evaluate the `run` step rather than the default step.
// For a top level step to actually do something, it must depend on other
// steps (e.g. a Run step, as we will see in a moment).
const run_step = b.step("run", "Run the app");
// Zig SDL Bindings: https://github.com/MasterQ32/SDL.zig
const sdk = Sdk.init(b);
sdk.link(exe, .dynamic);
exe.addPackage(sdk.getNativePackage("sdl2"));
// This creates a RunArtifact step in the build graph. A RunArtifact step
// invokes an executable compiled by Zig. Steps will only be executed by the
// runner if invoked directly by the user (in the case of top level steps)
// or if another step depends on it, so it's up to you to define when and
// how this Run step will be executed. In our case we want to run it when
// the user runs `zig build run`, so we create a dependency link.
const run_cmd = b.addRunArtifact(exe);
run_step.dependOn(&run_cmd.step);
exe.setBuildMode(mode);
exe.install();
const run_cmd = exe.run();
// By making the run step depend on the default step, it will be run from the
// installation directory rather than directly from within the cache directory.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
// command itself, like this: `zig build run -- arg1 arg2 etc`
if (b.args) |args| {
run_cmd.addArgs(args);
}
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
// Creates an executable that will run `test` blocks from the provided module.
// Here `mod` needs to define a target, which is why earlier we made sure to
// set the releative field.
const mod_tests = b.addTest(.{
.root_module = exe_mod,
});
const exe_tests = b.addTest("src/main.zig");
exe_tests.setTarget(target);
exe_tests.setBuildMode(mode);
// A run step that will run the test executable.
const run_mod_tests = b.addRunArtifact(mod_tests);
const test_step = b.step("test", "Run unit tests");
test_step.dependOn(&exe_tests.step);
// Creates an executable that will run `test` blocks from the executable's
// root module. Note that test executables only test one module at a time,
// hence why we have to create two separate ones.
const exe_tests = b.addTest(.{
.root_module = exe.root_module,
});
// A run step that will run the second test executable.
const run_exe_tests = b.addRunArtifact(exe_tests);
// A top level step for running all tests. dependOn can be called multiple
// times and since the two run steps do not depend on one another, this will
// make the two of them run in parallel.
const test_step = b.step("test", "Run tests");
test_step.dependOn(&run_mod_tests.step);
test_step.dependOn(&run_exe_tests.step);
// Just like flags, top level steps are also listed in the `--help` menu.
//
// The Zig build system is entirely implemented in userland, which means
// that it cannot hook into private compiler APIs. All compilation work
// orchestrated by the build system will result in other Zig compiler
// subcommands being invoked with the right flags defined. You can observe
// these invocations when one fails (or you pass a flag to increase
// verbosity) to validate assumptions and diagnose problems.
//
// Lastly, the Zig build system is relatively simple and self-contained,
// and reading its source code will allow you to master it.
}

55
build.zig.zon Normal file
View File

@@ -0,0 +1,55 @@
.{
.name = .zba,
.version = "0.1.0",
.paths = .{
"build.zig",
"build.zig.zon",
"lib/bitfield.zig",
"lib/gl.zig",
"src",
},
.minimum_zig_version = "0.15.1",
.fingerprint = 0xcb596c7fbdb20efc,
.dependencies = .{
// .tomlz = .{
// .url = "git+https://github.com/paoda/tomlz#9a16dd53927ef2012478b6494bafb4475e44f4c9",
// .hash = "12204f922cab84980e36b5c058d354ec0ee169bda401c8e0e80a463580349b476569",
// },
.zba_util = .{ .path = "../zba-util" },
.arm32 = .{ .path = "../arm32" },
.zba_gdbstub = .{ .path = "../zba-gdbstub" },
.known_folders = .{
.url = "git+https://github.com/ziglibs/known-folders.git#ab5cf5feb936fa3b72c95d3ad0c0c67791937ba1",
.hash = "known_folders-0.0.0-Fy-PJtTTAADUOhGKM0sxzG4eMkNQxRvx9e5dfHVyaeA3",
},
.nfdzig = .{
.url = "git+https://github.com/paoda/nfd-zig#0ad2a0c092ffba0c98613d619b82100c991f5ad6",
.hash = "nfdzig-0.1.0-11fxvN6IBgD5rvvfjrw1wPqibMsbUJ-h2ZcGR6FOEvrm",
},
.datetime = .{
.url = "git+https://github.com/frmdstryr/zig-datetime#3a39a21e6e34dcb0ade0ff828d0914d40ba535f3",
.hash = "datetime-0.8.0-cJNXzP_YAQBxQ5hkNNP6ScnG5XsqciJmeP5RVV4xwCBA",
},
.clap = .{
.url = "https://github.com/Hejsil/zig-clap/archive/refs/tags/0.11.0.tar.gz",
.hash = "clap-0.11.0-oBajB-HnAQDPCKYzwF7rO3qDFwRcD39Q0DALlTSz5H7e",
},
.sdl = .{
.url = "git+https://github.com/castholm/SDL.git#b1913e7c31ad72ecfd3ab04aeac387027754cfaf",
.hash = "sdl-0.3.0+3.2.22-7uIn9Pg3fwGG2IyIOPxxOSVe-75nUng9clt7tXGFLzMr",
},
.zigglgen = .{
.url = "git+https://github.com/castholm/zigglgen.git#a1e969b3e35818785fab0373124f50463793b28a",
.hash = "zigglgen-0.4.0-bmyqLQGMLwA0EPVmSm-Nc6Olb84zBzvwMjguxwKYLf1S",
},
.bitjuggle = .{
.url = "git+https://github.com/leecannon/zig-bitjuggle#80111f4f8c672aaea94a8a189ae2a7c8bbaf883f",
.hash = "bitjuggle-2.0.0-SJdU76dvAAARompHEhqKDiwZ4FE4FZ8eHvPvmz5JUOS0",
},
.zgui = .{
.url = "git+https://github.com/zig-gamedev/zgui#7fa8081c208885b85e3fdfc043cd9d9cb9559123",
.hash = "zgui-0.6.0-dev--L6sZL7tbQAPRLYrcQAVx0V49tPHAXNxclZ-v8IP4wLr",
},
},
}

36
dl_sdl2.ps1 Normal file
View File

@@ -0,0 +1,36 @@
$SDL2Version = "2.30.0"
$ArchiveFile = ".\SDL2-devel-mingw.zip"
$Json = @"
{
"x86_64-windows-gnu": {
"include": ".build_config\\SDL2\\include",
"libs": ".build_config\\SDL2\\lib",
"bin": ".build_config\\SDL2\\bin"
}
}
"@
New-Item -Force -ItemType Directory -Path .\.build_config
Set-Location -Path .build_config -PassThru
if (!(Test-Path -PathType Leaf $ArchiveFile)) {
Invoke-WebRequest "https://github.com/libsdl-org/SDL/releases/download/release-$SDL2Version/SDL2-devel-$SDL2Version-mingw.zip" -OutFile $ArchiveFile
}
Expand-Archive $ArchiveFile
if (Test-Path -PathType Container .\SDL2) {
Remove-Item -Recurse .\SDL2
}
New-Item -Force -ItemType Directory -Path .\SDL2
Get-ChildItem -Path ".\SDL2-devel-mingw\SDL2-$SDL2Version\x86_64-w64-mingw32" | Move-Item -Destination .\SDL2
# #include <SDL.h>
Move-Item -Force -Path .\SDL2\include\SDL2\* -Destination .\SDL2\include
Remove-Item -Force .\SDL2\include\SDL2
New-Item -Force .\sdl.json -Value $Json
Remove-Item -Recurse .\SDL2-devel-mingw
Set-Location -Path .. -PassThru

View File

@@ -1,23 +1,23 @@
[Host]
[host]
# Using nearest-neighbour scaling, how many times the native resolution
# of the game bow should the screen be?
win_scale = 4
win_scale = 3
# Enable VSYNC on the UI thread
vsync = true
# Mute ZBA
mute = false
[Guest]
[guest]
# Sync Emulation to Audio
audio_sync = false
audio_sync = true
# Sync Emulation to Video
video_sync = false
video_sync = true
# Force RTC support
force_rtc = false
# Skip BIOS
skip_bios = false
[Debug]
[debug]
# Enable detailed CPU logs
cpu_trace = false
# When false and builtin.mode == .Debug, ZBA will panic

Submodule lib/SDL.zig deleted from 6a9e37687a

5028
lib/gl.zig

File diff suppressed because it is too large Load Diff

View File

@@ -1,146 +0,0 @@
const std = @import("std");
fn PtrCastPreserveCV(comptime T: type, comptime PtrToT: type, comptime NewT: type) type {
return switch (PtrToT) {
*T => *NewT,
*const T => *const NewT,
*volatile T => *volatile NewT,
*const volatile T => *const volatile NewT,
else => @compileError("wtf you doing"),
};
}
fn BitType(comptime FieldType: type, comptime ValueType: type, comptime shamt: usize) type {
const self_bit: FieldType = (1 << shamt);
return extern struct {
bits: Bitfield(FieldType, shamt, 1),
pub fn set(self: anytype) void {
self.bits.field().* |= self_bit;
}
pub fn unset(self: anytype) void {
self.bits.field().* &= ~self_bit;
}
pub fn read(self: anytype) ValueType {
return @bitCast(ValueType, @truncate(u1, self.bits.field().* >> shamt));
}
// Since these are mostly used with MMIO, I want to avoid
// reading the memory just to write it again, also races
pub fn write(self: anytype, val: ValueType) void {
if (@bitCast(bool, val)) {
self.set();
} else {
self.unset();
}
}
};
}
// Original Bit Constructor
// pub fn Bit(comptime FieldType: type, comptime shamt: usize) type {
// return BitType(FieldType, u1, shamt);
// }
pub fn Bit(comptime FieldType: type, comptime shamt: usize) type {
return BitType(FieldType, bool, shamt);
}
fn Boolean(comptime FieldType: type, comptime shamt: usize) type {
return BitType(FieldType, bool, shamt);
}
pub fn Bitfield(comptime FieldType: type, comptime shamt: usize, comptime num_bits: usize) type {
if (shamt + num_bits > @bitSizeOf(FieldType)) {
@compileError("bitfield doesn't fit");
}
const self_mask: FieldType = ((1 << num_bits) - 1) << shamt;
const ValueType = std.meta.Int(.unsigned, num_bits);
return extern struct {
dummy: FieldType,
fn field(self: anytype) PtrCastPreserveCV(@This(), @TypeOf(self), FieldType) {
return @ptrCast(PtrCastPreserveCV(@This(), @TypeOf(self), FieldType), self);
}
pub fn write(self: anytype, val: ValueType) void {
self.field().* &= ~self_mask;
self.field().* |= @intCast(FieldType, val) << shamt;
}
pub fn read(self: anytype) ValueType {
const val: FieldType = self.field().*;
return @intCast(ValueType, (val & self_mask) >> shamt);
}
};
}
test "bit" {
const S = extern union {
low: Bit(u32, 0),
high: Bit(u32, 1),
val: u32,
};
std.testing.expect(@sizeOf(S) == 4);
std.testing.expect(@bitSizeOf(S) == 32);
var s: S = .{ .val = 1 };
std.testing.expect(s.low.read() == 1);
std.testing.expect(s.high.read() == 0);
s.low.write(0);
s.high.write(1);
std.testing.expect(s.val == 2);
}
test "boolean" {
const S = extern union {
low: Boolean(u32, 0),
high: Boolean(u32, 1),
val: u32,
};
std.testing.expect(@sizeOf(S) == 4);
std.testing.expect(@bitSizeOf(S) == 32);
var s: S = .{ .val = 2 };
std.testing.expect(s.low.read() == false);
std.testing.expect(s.high.read() == true);
s.low.write(true);
s.high.write(false);
std.testing.expect(s.val == 1);
}
test "bitfield" {
const S = extern union {
low: Bitfield(u32, 0, 16),
high: Bitfield(u32, 16, 16),
val: u32,
};
std.testing.expect(@sizeOf(S) == 4);
std.testing.expect(@bitSizeOf(S) == 32);
var s: S = .{ .val = 0x13376969 };
std.testing.expect(s.low.read() == 0x6969);
std.testing.expect(s.high.read() == 0x1337);
s.low.write(0x1337);
s.high.write(0x6969);
std.testing.expect(s.val == 0x69691337);
}

Submodule lib/zig-clap deleted from e5d09c4b2d

Submodule lib/zig-datetime deleted from 5ec1c36cf3

Submodule lib/zig-toml deleted from 5dfa919e03

View File

@@ -1,5 +1,5 @@
const std = @import("std");
const toml = @import("toml");
// const tomlz = @import("tomlz");
const Allocator = std.mem.Allocator;
@@ -7,6 +7,7 @@ const log = std.log.scoped(.Config);
var state: Config = .{};
const Config = struct {
// FIXME: tomlz expects these to be case sensitive
host: Host = .{},
guest: Guest = .{},
debug: Debug = .{},
@@ -49,35 +50,15 @@ pub fn config() *const Config {
}
/// Reads a config file and then loads it into the global state
pub fn load(allocator: Allocator, config_path: []const u8) !void {
var config_file = try std.fs.cwd().openFile(config_path, .{});
pub fn load(allocator: Allocator, file_path: []const u8) !void {
var config_file = try std.fs.cwd().openFile(file_path, .{});
defer config_file.close();
log.info("loaded from {s}", .{config_path});
log.info("loaded from {s}", .{file_path});
const contents = try config_file.readToEndAlloc(allocator, try config_file.getEndPos());
defer allocator.free(contents);
const table = try toml.parseContents(allocator, contents, null);
defer table.deinit();
// TODO: Report unknown config options
if (table.keys.get("Host")) |host| {
if (host.Table.keys.get("win_scale")) |scale| state.host.win_scale = scale.Integer;
if (host.Table.keys.get("vsync")) |vsync| state.host.vsync = vsync.Boolean;
if (host.Table.keys.get("mute")) |mute| state.host.mute = mute.Boolean;
}
if (table.keys.get("Guest")) |guest| {
if (guest.Table.keys.get("audio_sync")) |sync| state.guest.audio_sync = sync.Boolean;
if (guest.Table.keys.get("video_sync")) |sync| state.guest.video_sync = sync.Boolean;
if (guest.Table.keys.get("force_rtc")) |forced| state.guest.force_rtc = forced.Boolean;
if (guest.Table.keys.get("skip_bios")) |skip| state.guest.skip_bios = skip.Boolean;
}
if (table.keys.get("Debug")) |debug| {
if (debug.Table.keys.get("cpu_trace")) |trace| state.debug.cpu_trace = trace.Boolean;
if (debug.Table.keys.get("unhandled_io")) |unhandled| state.debug.unhandled_io = unhandled.Boolean;
}
// FIXME(2025-09-22): re-enable
// state = try tomlz.parser.decode(Config, allocator, contents);
}

View File

@@ -1,7 +1,6 @@
const std = @import("std");
const AudioDeviceId = @import("sdl2").SDL_AudioDeviceID;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Bios = @import("bus/Bios.zig");
const Ewram = @import("bus/Ewram.zig");
const GamePak = @import("bus/GamePak.zig");
@@ -14,13 +13,13 @@ const TimerTuple = @import("bus/timer.zig").TimerTuple;
const Scheduler = @import("scheduler.zig").Scheduler;
const FilePaths = @import("../util.zig").FilePaths;
const io = @import("bus/io.zig");
const _io = @import("bus/io.zig");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Bus);
const createDmaTuple = @import("bus/dma.zig").create;
const createTimerTuple = @import("bus/timer.zig").create;
const rotr = @import("../util.zig").rotr;
const rotr = @import("zba_util").rotr;
const timings: [2][0x10]u8 = [_][0x10]u8{
// BIOS, Unused, EWRAM, IWRAM, I/0, PALRAM, VRAM, OAM, ROM0, ROM0, ROM1, ROM1, ROM2, ROM2, SRAM, Unused
@@ -34,6 +33,11 @@ pub const fetch_timings: [2][0x10]u8 = [_][0x10]u8{
[_]u8{ 1, 1, 6, 1, 1, 2, 2, 1, 4, 4, 4, 4, 4, 4, 8, 8 }, // 32-bit
};
// Fastmem Related
const page_size = 1 * 0x400; // 1KiB
const address_space_size = 0x1000_0000;
const table_len = address_space_size / page_size;
const Self = @This();
pak: GamePak,
@@ -49,7 +53,16 @@ io: Io,
cpu: *Arm7tdmi,
sched: *Scheduler,
read_table: *const [table_len]?*const anyopaque,
write_tables: [2]*const [table_len]?*anyopaque,
allocator: Allocator,
pub fn init(self: *Self, allocator: Allocator, sched: *Scheduler, cpu: *Arm7tdmi, paths: FilePaths) !void {
const tables = try allocator.alloc(?*anyopaque, 3 * table_len); // Allocate all tables
const read_table = tables[0..table_len];
const write_tables = .{ tables[table_len .. 2 * table_len], tables[2 * table_len .. 3 * table_len] };
self.* = .{
.pak = try GamePak.init(allocator, cpu, paths.rom, paths.save),
.bios = try Bios.init(allocator, paths.bios),
@@ -62,7 +75,17 @@ pub fn init(self: *Self, allocator: Allocator, sched: *Scheduler, cpu: *Arm7tdmi
.io = Io.init(),
.cpu = cpu,
.sched = sched,
.read_table = read_table,
.write_tables = write_tables,
.allocator = allocator,
};
self.fillReadTable(@ptrCast(read_table));
// Internal Display Memory behaves differently on 8-bit reads
self.fillWriteTable(u32, write_tables[0]);
self.fillWriteTable(u8, write_tables[1]);
}
pub fn deinit(self: *Self) void {
@@ -71,61 +94,168 @@ pub fn deinit(self: *Self) void {
self.pak.deinit();
self.bios.deinit();
self.ppu.deinit();
// This is so I can deallocate the original `allocator.alloc`. I have to re-make the type
// since I'm not keeping it around, This is very jank and bad though
// FIXME: please figure out another way
self.allocator.free(@as([*]const ?*anyopaque, @ptrCast(self.read_table[0..]))[0 .. 3 * table_len]);
self.* = undefined;
}
pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
const page = @truncate(u8, address >> 24);
const aligned_addr = forceAlign(T, address);
pub fn reset(self: *Self) void {
self.bios.reset();
self.ppu.reset();
self.apu.reset();
self.iwram.reset();
self.ewram.reset();
return switch (page) {
// General Internal Memory
0x00 => blk: {
if (address < Bios.size)
break :blk self.bios.dbgRead(T, self.cpu.r[15], aligned_addr);
// https://github.com/ziglang/zig/issues/14705
{
comptime var i: usize = 0;
inline while (i < self.dma.len) : (i += 1) {
self.dma[0].reset();
}
}
break :blk self.openBus(T, address);
},
0x02 => self.ewram.read(T, aligned_addr),
0x03 => self.iwram.read(T, aligned_addr),
0x04 => self.readIo(T, address),
// https://github.com/ziglang/zig/issues/14705
{
comptime var i: usize = 0;
inline while (i < self.tim.len) : (i += 1) {
self.tim[0].reset();
}
}
// Internal Display Memory
0x05 => self.ppu.palette.read(T, aligned_addr),
0x06 => self.ppu.vram.read(T, aligned_addr),
0x07 => self.ppu.oam.read(T, aligned_addr),
// External Memory (Game Pak)
0x08...0x0D => self.pak.dbgRead(T, aligned_addr),
0x0E...0x0F => blk: {
const value = self.pak.backup.read(address);
const multiplier = switch (T) {
u32 => 0x01010101,
u16 => 0x0101,
u8 => 1,
else => @compileError("Backup: Unsupported read width"),
};
break :blk @as(T, value) * multiplier;
},
else => self.openBus(T, address),
};
self.io.reset();
}
fn readIo(self: *const Self, comptime T: type, unaligned_address: u32) T {
const maybe_value = io.read(self, T, forceAlign(T, unaligned_address));
return if (maybe_value) |value| value else self.openBus(T, unaligned_address);
pub fn replaceGamepak(self: *Self, file_path: []const u8) !void {
// Note: `save_path` isn't owned by `Backup`
const save_path = self.pak.backup.save_path;
self.pak.deinit();
self.pak = try GamePak.init(self.allocator, self.cpu, file_path, save_path);
// SAFETY: TODO: why do we know this is safe?
self.fillReadTable(@ptrCast(@constCast(self.read_table)));
self.fillWriteTable(u32, @constCast(self.write_tables[0]));
self.fillWriteTable(u8, @constCast(self.write_tables[1]));
}
fn fillReadTable(self: *Self, table: *[table_len]?*const anyopaque) void {
const vramMirror = @import("ppu/Vram.zig").mirror;
for (table, 0..) |*ptr, i| {
const addr: u32 = @intCast(page_size * i);
ptr.* = switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => null, // BIOS has it's own checks
0x0200_0000...0x02FF_FFFF => &self.ewram.buf[addr & 0x3FFFF],
0x0300_0000...0x03FF_FFFF => &self.iwram.buf[addr & 0x7FFF],
0x0400_0000...0x0400_03FF => null, // I/O
// Internal Display Memory
0x0500_0000...0x05FF_FFFF => &self.ppu.palette.buf[addr & 0x3FF],
0x0600_0000...0x06FF_FFFF => &self.ppu.vram.buf[vramMirror(addr)],
0x0700_0000...0x07FF_FFFF => &self.ppu.oam.buf[addr & 0x3FF],
// External Memory (Game Pak)
0x0800_0000...0x0DFF_FFFF => self.fillReadTableExternal(addr),
0x0E00_0000...0x0FFF_FFFF => null, // SRAM
else => null,
};
}
}
fn fillWriteTable(self: *Self, comptime T: type, table: *[table_len]?*anyopaque) void {
comptime std.debug.assert(T == u32 or T == u16 or T == u8);
const vramMirror = @import("ppu/Vram.zig").mirror;
for (table, 0..) |*ptr, i| {
const addr: u32 = @intCast(page_size * i);
ptr.* = switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => null, // BIOS has it's own checks
0x0200_0000...0x02FF_FFFF => &self.ewram.buf[addr & 0x3FFFF],
0x0300_0000...0x03FF_FFFF => &self.iwram.buf[addr & 0x7FFF],
0x0400_0000...0x0400_03FF => null, // I/O
// Internal Display Memory
0x0500_0000...0x05FF_FFFF => if (T != u8) &self.ppu.palette.buf[addr & 0x3FF] else null,
0x0600_0000...0x06FF_FFFF => if (T != u8) &self.ppu.vram.buf[vramMirror(addr)] else null,
0x0700_0000...0x07FF_FFFF => if (T != u8) &self.ppu.oam.buf[addr & 0x3FF] else null,
// External Memory (Game Pak)
0x0800_0000...0x0DFF_FFFF => null, // ROM
0x0E00_0000...0x0FFF_FFFF => null, // SRAM
else => null,
};
}
}
fn fillReadTableExternal(self: *Self, addr: u32) ?*anyopaque {
// see `GamePak.zig` for more information about what conditions need to be true
// so that a simple pointer dereference isn't possible
std.debug.assert(addr & @as(u32, page_size - 1) == 0); // addr is guaranteed to be page-aligned
const start_addr = addr;
const end_addr = start_addr + page_size;
{
const data = start_addr <= 0x0800_00C4 and 0x0800_00C4 < end_addr; // GPIO Data
const direction = start_addr <= 0x0800_00C6 and 0x0800_00C6 < end_addr; // GPIO Direction
const control = start_addr <= 0x0800_00C8 and 0x0800_00C8 < end_addr; // GPIO Control
const has_gpio = data or direction or control;
const gpio_kind = self.pak.gpio.device.kind;
// There is a GPIO Device, and the current page contains at least one memory-mapped GPIO register
if (gpio_kind != .None and has_gpio) return null;
}
if (self.pak.backup.kind == .Eeprom) {
if (self.pak.buf.len > 0x100_000) {
// We are using a "large" EEPROM which means that if the below check is true
// this page has an address that's reserved for the EEPROM and therefore must
// be handled in slowmem
if (addr & 0x1FF_FFFF > 0x1FF_FEFF) return null;
} else {
// We are using a "small" EEPROM which means that if the below check is true
// (that is, we're in the 0xD address page) then we must handle at least one
// address in this page in slowmem
if (@as(u4, @truncate(addr >> 24)) == 0xD) return null;
}
}
// Finally, the GamePak has some unique behaviour for reads past the end of the ROM,
// so those will be handled by slowmem as well
const masked_addr = addr & 0x1FF_FFFF;
if (masked_addr >= self.pak.buf.len) return null;
return &self.pak.buf[masked_addr];
}
fn readIo(self: *const Self, comptime T: type, address: u32) T {
return _io.read(self, T, address) orelse self.openBus(T, address);
}
fn openBus(self: *const Self, comptime T: type, address: u32) T {
@branchHint(.cold);
const r15 = self.cpu.r[15];
const word = blk: {
// If Arm, get the most recently fetched instruction (PC + 8)
//
// FIXME: This is most likely a faulty assumption.
// I think what *actually* happens is that the Bus has a latch for the most
// recently fetched piece of data, which is then returned during Open Bus (also DMA open bus?)
// I can "get away" with this because it's very statistically likely that the most recently latched value is
// the most recently fetched instruction by the pipeline
if (!self.cpu.cpsr.t.read()) break :blk self.cpu.pipe.stage[1].?;
const page = @truncate(u8, r15 >> 24);
const page: u8 = @truncate(r15 >> 24);
// PC + 2 = stage[0]
// PC + 4 = stage[1]
@@ -134,7 +264,7 @@ fn openBus(self: *const Self, comptime T: type, address: u32) T {
switch (page) {
// EWRAM, PALRAM, VRAM, and Game ROM (16-bit)
0x02, 0x05, 0x06, 0x08...0x0D => {
const halfword: u32 = @truncate(u16, self.cpu.pipe.stage[1].?);
const halfword: u32 = @as(u16, @truncate(self.cpu.pipe.stage[1].?));
break :blk halfword << 16 | halfword;
},
@@ -145,8 +275,8 @@ fn openBus(self: *const Self, comptime T: type, address: u32) T {
const aligned = address & 3 == 0b00;
// TODO: What to do on PC + 6?
const high: u32 = if (aligned) self.dbgRead(u16, r15 + 4) else @truncate(u16, self.cpu.pipe.stage[1].?);
const low: u32 = @truncate(u16, self.cpu.pipe.stage[@boolToInt(aligned)].?);
const high: u32 = if (aligned) self.dbgRead(u16, r15 + 4) else @as(u16, @truncate(self.cpu.pipe.stage[1].?));
const low: u32 = @as(u16, @truncate(self.cpu.pipe.stage[@intFromBool(aligned)].?));
break :blk high << 16 | low;
},
@@ -157,8 +287,8 @@ fn openBus(self: *const Self, comptime T: type, address: u32) T {
// Unaligned: (PC + 4) | (PC + 2)
const aligned = address & 3 == 0b00;
const high: u32 = @truncate(u16, self.cpu.pipe.stage[1 - @boolToInt(aligned)].?);
const low: u32 = @truncate(u16, self.cpu.pipe.stage[@boolToInt(aligned)].?);
const high: u32 = @as(u16, @truncate(self.cpu.pipe.stage[1 - @intFromBool(aligned)].?));
const low: u32 = @as(u16, @truncate(self.cpu.pipe.stage[@intFromBool(aligned)].?));
break :blk high << 16 | low;
},
@@ -169,88 +299,236 @@ fn openBus(self: *const Self, comptime T: type, address: u32) T {
}
};
return @truncate(T, rotr(u32, word, 8 * (address & 3)));
return @truncate(word);
}
pub fn read(self: *Self, comptime T: type, address: u32) T {
const page = @truncate(u8, address >> 24);
const aligned_addr = forceAlign(T, address);
pub fn read(self: *Self, comptime T: type, unaligned_address: u32) T {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, page)];
// whether or not we do this in slowmem or fastmem, we should advance the scheduler
self.sched.tick += timings[@intFromBool(T == u32)][@as(u4, @truncate(unaligned_address >> 24))];
// We're doing some serious out-of-bounds open-bus reads
if (page >= table_len) return self.openBus(T, unaligned_address);
if (self.read_table[page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const ptr: [*]const T = @ptrCast(@alignCast(some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
return ptr[forceAlign(T, offset) / @sizeOf(T)];
}
return self.slowRead(T, unaligned_address);
}
pub fn dbgRead(self: *const Self, comptime T: type, unaligned_address: u32) T {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
// We're doing some serious out-of-bounds open-bus reads
if (page >= table_len) return self.openBus(T, unaligned_address);
if (self.read_table[page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const ptr: [*]const T = @ptrCast(@alignCast(some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
return ptr[forceAlign(T, offset) / @sizeOf(T)];
}
return self.dbgSlowRead(T, unaligned_address);
}
fn slowRead(self: *Self, comptime T: type, unaligned_address: u32) T {
@branchHint(.cold);
const page: u8 = @truncate(unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
return switch (page) {
// General Internal Memory
0x00 => blk: {
if (address < Bios.size)
break :blk self.bios.read(T, self.cpu.r[15], aligned_addr);
break :blk self.bios.read(T, self.cpu.r[15], unaligned_address);
break :blk self.openBus(T, address);
},
0x02 => self.ewram.read(T, aligned_addr),
0x03 => self.iwram.read(T, aligned_addr),
0x02 => unreachable, // completely handled by fastmeme
0x03 => unreachable, // completely handled by fastmeme
0x04 => self.readIo(T, address),
// Internal Display Memory
0x05 => self.ppu.palette.read(T, aligned_addr),
0x06 => self.ppu.vram.read(T, aligned_addr),
0x07 => self.ppu.oam.read(T, aligned_addr),
0x05 => unreachable, // completely handled by fastmeme
0x06 => unreachable, // completely handled by fastmeme
0x07 => unreachable, // completely handled by fastmeme
// External Memory (Game Pak)
0x08...0x0D => self.pak.read(T, aligned_addr),
0x0E...0x0F => blk: {
const value = self.pak.backup.read(address);
const multiplier = switch (T) {
u32 => 0x01010101,
u16 => 0x0101,
u8 => 1,
else => @compileError("Backup: Unsupported read width"),
};
break :blk @as(T, value) * multiplier;
},
0x08...0x0D => self.pak.read(T, address),
0x0E...0x0F => self.readBackup(T, unaligned_address),
else => self.openBus(T, address),
};
}
pub fn write(self: *Self, comptime T: type, address: u32, value: T) void {
const page = @truncate(u8, address >> 24);
const aligned_addr = forceAlign(T, address);
fn dbgSlowRead(self: *const Self, comptime T: type, unaligned_address: u32) T {
const page: u8 = @truncate(unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, page)];
return switch (page) {
// General Internal Memory
0x00 => blk: {
if (address < Bios.size)
break :blk self.bios.dbgRead(T, self.cpu.r[15], unaligned_address);
break :blk self.openBus(T, address);
},
0x02 => unreachable, // handled by fastmem
0x03 => unreachable, // handled by fastmem
0x04 => self.readIo(T, address),
// Internal Display Memory
0x05 => unreachable, // handled by fastmem
0x06 => unreachable, // handled by fastmem
0x07 => unreachable, // handled by fastmem
// External Memory (Game Pak)
0x08...0x0D => self.pak.dbgRead(T, address),
0x0E...0x0F => self.readBackup(T, unaligned_address),
else => self.openBus(T, address),
};
}
fn readBackup(self: *const Self, comptime T: type, unaligned_address: u32) T {
const value = self.pak.backup.read(unaligned_address);
const multiplier = switch (T) {
u32 => 0x01010101,
u16 => 0x0101,
u8 => 1,
else => @compileError("Backup: Unsupported read width"),
};
return @as(T, value) * multiplier;
}
pub fn write(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
// whether or not we do this in slowmem or fastmem, we should advance the scheduler
self.sched.tick += timings[@intFromBool(T == u32)][@as(u4, @truncate(unaligned_address >> 24))];
// We're doing some serious out-of-bounds open-bus writes, they do nothing though
if (page >= table_len) return;
if (self.write_tables[@intFromBool(T == u8)][page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const ptr: [*]T = @ptrCast(@alignCast(some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
ptr[forceAlign(T, offset) / @sizeOf(T)] = value;
} else {
// we can return early if this is an 8-bit OAM write
if (T == u8 and @as(u8, @truncate(unaligned_address >> 24)) == 0x07) return;
self.slowWrite(T, unaligned_address, value);
}
}
/// Mostly Identical to `Bus.write`, slowmeme is handled by `Bus.dbgSlowWrite`
pub fn dbgWrite(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
// We're doing some serious out-of-bounds open-bus writes, they do nothing though
if (page >= table_len) return;
if (self.write_tables[@intFromBool(T == u8)][page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const ptr: [*]T = @ptrCast(@alignCast(some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
ptr[forceAlign(T, offset) / @sizeOf(T)] = value;
} else {
// we can return early if this is an 8-bit OAM write
if (T == u8 and @as(u8, @truncate(unaligned_address >> 24)) == 0x07) return;
self.dbgSlowWrite(T, unaligned_address, value);
}
}
fn slowWrite(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
@branchHint(.cold);
const page: u8 = @truncate(unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
switch (page) {
// General Internal Memory
0x00 => self.bios.write(T, aligned_addr, value),
0x02 => self.ewram.write(T, aligned_addr, value),
0x03 => self.iwram.write(T, aligned_addr, value),
0x04 => io.write(self, T, aligned_addr, value),
0x00 => self.bios.write(T, address, value),
0x02 => unreachable, // completely handled by fastmem
0x03 => unreachable, // completely handled by fastmem
0x04 => _io.write(self, T, address, value),
// Internal Display Memory
0x05 => self.ppu.palette.write(T, aligned_addr, value),
0x06 => self.ppu.vram.write(T, self.ppu.dispcnt, aligned_addr, value),
0x07 => self.ppu.oam.write(T, aligned_addr, value),
0x05 => self.ppu.palette.write(T, address, value),
0x06 => self.ppu.vram.write(T, self.ppu.dispcnt, address, value),
0x07 => unreachable, // completely handled by fastmem
// External Memory (Game Pak)
0x08...0x0D => self.pak.write(T, self.dma[3].word_count, aligned_addr, value),
0x0E...0x0F => {
const rotate_by = switch (T) {
u32 => address & 3,
u16 => address & 1,
u8 => 0,
else => @compileError("Backup: Unsupported write width"),
};
self.pak.backup.write(address, @truncate(u8, rotr(T, value, 8 * rotate_by)));
},
0x08...0x0D => self.pak.write(T, self.dma[3].word_count, address, value),
0x0E...0x0F => self.pak.backup.write(unaligned_address, @truncate(rotr(T, value, 8 * rotateBy(T, unaligned_address)))),
else => {},
}
}
fn forceAlign(comptime T: type, address: u32) u32 {
fn dbgSlowWrite(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
@branchHint(.cold);
const page: u8 = @truncate(unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
switch (page) {
// General Internal Memory
0x00 => self.bios.write(T, address, value),
0x02 => unreachable, // completely handled by fastmem
0x03 => unreachable, // completely handled by fastmem
0x04 => return, // FIXME: Let debug writes mess with I/O
// Internal Display Memory
0x05 => self.ppu.palette.write(T, address, value),
0x06 => self.ppu.vram.write(T, self.ppu.dispcnt, address, value),
0x07 => unreachable, // completely handled by fastmem
// External Memory (Game Pak)
0x08...0x0D => return, // FIXME: Debug Write to Backup/GPIO w/out messing with state
0x0E...0x0F => return, // FIXME: Debug Write to Backup w/out messing with state
else => {},
}
}
inline fn rotateBy(comptime T: type, address: u32) u32 {
return switch (T) {
u32 => address & 0xFFFF_FFFC,
u16 => address & 0xFFFF_FFFE,
u32 => address & 3,
u16 => address & 1,
u8 => 0,
else => @compileError("Unsupported write width"),
};
}
pub inline fn forceAlign(comptime T: type, address: u32) u32 {
return switch (T) {
u32 => address & ~@as(u32, 3),
u16 => address & ~@as(u32, 1),
u8 => address,
else => @compileError("Bus: Invalid read/write type"),
};

View File

@@ -1,146 +1,229 @@
const std = @import("std");
const SDL = @import("sdl2");
const io = @import("bus/io.zig");
const util = @import("../util.zig");
const c = @import("../lib.zig").c;
const AudioDeviceId = SDL.SDL_AudioDeviceID;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const LinearFifo = @import("../lib/fifo.zig").LinearFifo;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Bus = @import("Bus.zig");
const Scheduler = @import("scheduler.zig").Scheduler;
const ToneSweep = @import("apu/ToneSweep.zig");
const Tone = @import("apu/Tone.zig");
const Wave = @import("apu/Wave.zig");
const Noise = @import("apu/Noise.zig");
const SoundFifo = std.fifo.LinearFifo(u8, .{ .Static = 0x20 });
const SoundFifo = LinearFifo(u8, .{ .static = 0x20 });
const intToBytes = @import("../util.zig").intToBytes;
const setHi = @import("../util.zig").setHi;
const setLo = @import("../util.zig").setLo;
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const log = std.log.scoped(.APU);
pub const host_sample_rate = 1 << 15;
pub const host_rate = @import("../platform.zig").sample_rate;
pub const host_format = @import("../platform.zig").sample_format;
pub fn read(comptime T: type, apu: *const Apu, addr: u32) ?T {
const byte = @truncate(u8, addr);
const byte_addr: u8 = @truncate(addr);
return switch (T) {
u16 => switch (byte) {
0x60 => apu.ch1.sound1CntL(),
0x62 => apu.ch1.sound1CntH(),
u32 => switch (byte_addr) {
0x60 => @as(T, apu.ch1.sound1CntH()) << 16 | apu.ch1.sound1CntL(),
0x64 => apu.ch1.sound1CntX(),
0x68 => apu.ch2.sound2CntL(),
0x6C => apu.ch2.sound2CntH(),
0x70 => apu.ch3.select.raw & 0xE0, // SOUND3CNT_L
0x72 => apu.ch3.sound3CntH(),
0x74 => apu.ch3.freq.raw & 0x4000, // SOUND3CNT_X
0x70 => @as(T, apu.ch3.sound3CntH()) << 16 | apu.ch3.sound3CntL(),
0x74 => apu.ch3.sound3CntX(),
0x78 => apu.ch4.sound4CntL(),
0x7C => apu.ch4.sound4CntH(),
0x80 => apu.psg_cnt.raw & 0xFF77, // SOUNDCNT_L
0x82 => apu.dma_cnt.raw & 0x770F, // SOUNDCNT_H
0x80 => @as(T, apu.dma_cnt.raw) << 16 | apu.psg_cnt.raw, // SOUNDCNT_H, SOUNDCNT_L
0x84 => apu.soundCntX(),
0x88 => apu.bias.raw, // SOUNDBIAS, high is unused
0x8C => null,
0x90, 0x94, 0x98, 0x9C => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
0xA0 => null, // FIFO_A
0xA4 => null, // FIFO_B
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte_addr) {
0x60 => apu.ch1.sound1CntL(),
0x62 => apu.ch1.sound1CntH(),
0x64 => apu.ch1.sound1CntX(),
0x66 => 0x0000, // suite.gba expects 0x0000, not 0xDEAD
0x68 => apu.ch2.sound2CntL(),
0x6A => 0x0000,
0x6C => apu.ch2.sound2CntH(),
0x6E => 0x0000,
0x70 => apu.ch3.sound3CntL(),
0x72 => apu.ch3.sound3CntH(),
0x74 => apu.ch3.sound3CntX(),
0x76 => 0x0000,
0x78 => apu.ch4.sound4CntL(),
0x7A => 0x0000,
0x7C => apu.ch4.sound4CntH(),
0x7E => 0x0000,
0x80 => apu.soundCntL(),
0x82 => apu.soundCntH(),
0x84 => apu.soundCntX(),
0x86 => 0x0000,
0x88 => apu.bias.raw, // SOUNDBIAS
0x8A => 0x0000,
0x8C, 0x8E => null,
0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
0xA0, 0xA2 => null, // FIFO_A
0xA4, 0xA6 => null, // FIFO_B
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0x60, 0x61 => @truncate(@as(u16, apu.ch1.sound1CntL()) >> getHalf(byte_addr)),
0x62, 0x63 => @truncate(apu.ch1.sound1CntH() >> getHalf(byte_addr)),
0x64, 0x65 => @truncate(apu.ch1.sound1CntX() >> getHalf(byte_addr)),
0x66, 0x67 => 0x00, // assuming behaviour is identical to that of 16-bit reads
0x68, 0x69 => @truncate(apu.ch2.sound2CntL() >> getHalf(byte_addr)),
0x6A, 0x6B => 0x00,
0x6C, 0x6D => @truncate(apu.ch2.sound2CntH() >> getHalf(byte_addr)),
0x6E, 0x6F => 0x00,
0x70, 0x71 => @truncate(@as(u16, apu.ch3.sound3CntL()) >> getHalf(byte_addr)), // SOUND3CNT_L
0x72, 0x73 => @truncate(apu.ch3.sound3CntH() >> getHalf(byte_addr)),
0x74, 0x75 => @truncate(apu.ch3.sound3CntX() >> getHalf(byte_addr)), // SOUND3CNT_L
0x76, 0x77 => 0x00,
0x78, 0x79 => @truncate(apu.ch4.sound4CntL() >> getHalf(byte_addr)),
0x7A, 0x7B => 0x00,
0x7C, 0x7D => @truncate(apu.ch4.sound4CntH() >> getHalf(byte_addr)),
0x7E, 0x7F => 0x00,
0x80, 0x81 => @truncate(apu.soundCntL() >> getHalf(byte_addr)), // SOUNDCNT_L
0x82, 0x83 => @truncate(apu.soundCntH() >> getHalf(byte_addr)), // SOUNDCNT_H
0x84, 0x85 => @truncate(@as(u16, apu.soundCntX()) >> getHalf(byte_addr)),
0x86, 0x87 => 0x00,
0x88, 0x89 => @truncate(apu.bias.raw >> getHalf(byte_addr)), // SOUNDBIAS
0x8A, 0x8B => 0x00,
0x8C...0x8F => null,
0x90...0x9F => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
0xA0, 0xA1, 0xA2, 0xA3 => null, // FIFO_A
0xA4, 0xA5, 0xA6, 0xA7 => null, // FIFO_B
else => util.io.read.err(T, log, "unexpected {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte) {
0x60 => apu.ch1.sound1CntL(), // NR10
0x62 => apu.ch1.duty.raw, // NR11
0x63 => apu.ch1.envelope.raw, // NR12
0x68 => apu.ch2.duty.raw, // NR21
0x69 => apu.ch2.envelope.raw, // NR22
0x73 => apu.ch3.vol.raw, // NR32
0x79 => apu.ch4.envelope.raw, // NR42
0x7C => apu.ch4.poly.raw, // NR43
0x81 => @truncate(u8, apu.psg_cnt.raw >> 8), // NR51
0x84 => apu.soundCntX(),
0x89 => @truncate(u8, apu.bias.raw >> 8), // SOUNDBIAS_H
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
u32 => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
else => @compileError("APU: Unsupported read width"),
};
}
pub fn write(comptime T: type, apu: *Apu, addr: u32, value: T) void {
const byte = @truncate(u8, addr);
const byte_addr: u8 = @truncate(addr);
if (byte_addr <= 0x81 and !apu.cnt.apu_enable.read()) return;
switch (T) {
u32 => switch (byte) {
0x60 => apu.ch1.setSound1Cnt(value),
0x64 => apu.ch1.setSound1CntX(&apu.fs, @truncate(u16, value)),
0x68 => apu.ch2.setSound2CntL(@truncate(u16, value)),
0x6C => apu.ch2.setSound2CntH(&apu.fs, @truncate(u16, value)),
0x70 => apu.ch3.setSound3Cnt(value),
0x74 => apu.ch3.setSound3CntX(&apu.fs, @truncate(u16, value)),
0x78 => apu.ch4.setSound4CntL(@truncate(u16, value)),
0x7C => apu.ch4.setSound4CntH(&apu.fs, @truncate(u16, value)),
u32 => {
// 0x80 and 0x81 handled in setSoundCnt
if (byte_addr < 0x80 and !apu.cnt.apu_enable.read()) return;
0x80 => apu.setSoundCnt(value),
// WAVE_RAM
0x90...0x9F => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0 => apu.chA.push(value), // FIFO_A
0xA4 => apu.chB.push(value), // FIFO_B
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
switch (byte_addr) {
0x60 => apu.ch1.setSound1Cnt(value),
0x64 => apu.ch1.setSound1CntX(&apu.fs, @truncate(value)),
0x68 => apu.ch2.setSound2CntL(@truncate(value)),
0x6C => apu.ch2.setSound2CntH(&apu.fs, @truncate(value)),
0x70 => apu.ch3.setSound3Cnt(value),
0x74 => apu.ch3.setSound3CntX(&apu.fs, @truncate(value)),
0x78 => apu.ch4.setSound4CntL(@truncate(value)),
0x7C => apu.ch4.setSound4CntH(&apu.fs, @truncate(value)),
0x80 => apu.setSoundCnt(value),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x88 => apu.bias.raw = @truncate(value),
0x8C => {},
0x90, 0x94, 0x98, 0x9C => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0 => apu.chA.push(value), // FIFO_A
0xA4 => apu.chB.push(value), // FIFO_B
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
}
},
u16 => switch (byte) {
0x60 => apu.ch1.setSound1CntL(@truncate(u8, value)), // SOUND1CNT_L
0x62 => apu.ch1.setSound1CntH(value),
0x64 => apu.ch1.setSound1CntX(&apu.fs, value),
u16 => {
if (byte_addr <= 0x81 and !apu.cnt.apu_enable.read()) return;
0x68 => apu.ch2.setSound2CntL(value),
0x6C => apu.ch2.setSound2CntH(&apu.fs, value),
switch (byte_addr) {
0x60 => apu.ch1.setSound1CntL(@truncate(value)), // SOUND1CNT_L
0x62 => apu.ch1.setSound1CntH(value),
0x64 => apu.ch1.setSound1CntX(&apu.fs, value),
0x66 => {},
0x70 => apu.ch3.setSound3CntL(@truncate(u8, value)),
0x72 => apu.ch3.setSound3CntH(value),
0x74 => apu.ch3.setSound3CntX(&apu.fs, value),
0x68 => apu.ch2.setSound2CntL(value),
0x6A => {},
0x6C => apu.ch2.setSound2CntH(&apu.fs, value),
0x6E => {},
0x78 => apu.ch4.setSound4CntL(value),
0x7C => apu.ch4.setSound4CntH(&apu.fs, value),
0x70 => apu.ch3.setSound3CntL(@truncate(value)),
0x72 => apu.ch3.setSound3CntH(value),
0x74 => apu.ch3.setSound3CntX(&apu.fs, value),
0x76 => {},
0x80 => apu.psg_cnt.raw = value, // SOUNDCNT_L
0x82 => apu.setSoundCntH(value),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x88 => apu.bias.raw = value, // SOUNDBIAS
// WAVE_RAM
0x90...0x9F => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
0x78 => apu.ch4.setSound4CntL(value),
0x7A => {},
0x7C => apu.ch4.setSound4CntH(&apu.fs, value),
0x7E => {},
0x80 => apu.setSoundCntL(value),
0x82 => apu.setSoundCntH(value),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x86 => {},
0x88 => apu.bias.raw = value, // SOUNDBIAS
0x8A, 0x8C, 0x8E => {},
0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0, 0xA2 => log.err("Tried to write 0x{X:0>4}{} to FIFO_A", .{ value, T }),
0xA4, 0xA6 => log.err("Tried to write 0x{X:0>4}{} to FIFO_B", .{ value, T }),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
}
},
u8 => switch (byte) {
0x60 => apu.ch1.setSound1CntL(value),
0x62 => apu.ch1.setNr11(value),
0x63 => apu.ch1.setNr12(value),
0x64 => apu.ch1.setNr13(value),
0x65 => apu.ch1.setNr14(&apu.fs, value),
u8 => {
if (byte_addr <= 0x81 and !apu.cnt.apu_enable.read()) return;
0x68 => apu.ch2.setNr21(value),
0x69 => apu.ch2.setNr22(value),
0x6C => apu.ch2.setNr23(value),
0x6D => apu.ch2.setNr24(&apu.fs, value),
switch (byte_addr) {
0x60 => apu.ch1.setSound1CntL(value),
0x61 => {},
0x62 => apu.ch1.setNr11(value),
0x63 => apu.ch1.setNr12(value),
0x64 => apu.ch1.setNr13(value),
0x65 => apu.ch1.setNr14(&apu.fs, value),
0x66, 0x67 => {},
0x70 => apu.ch3.setSound3CntL(value), // NR30
0x72 => apu.ch3.setNr31(value),
0x73 => apu.ch3.vol.raw = value, // NR32
0x74 => apu.ch3.setNr33(value),
0x75 => apu.ch3.setNr34(&apu.fs, value),
0x68 => apu.ch2.setNr21(value),
0x69 => apu.ch2.setNr22(value),
0x6A, 0x6B => {},
0x6C => apu.ch2.setNr23(value),
0x6D => apu.ch2.setNr24(&apu.fs, value),
0x6E, 0x6F => {},
0x78 => apu.ch4.setNr41(value),
0x79 => apu.ch4.setNr42(value),
0x7C => apu.ch4.poly.raw = value, // NR 43
0x7D => apu.ch4.setNr44(&apu.fs, value),
0x70 => apu.ch3.setSound3CntL(value), // NR30
0x71 => {},
0x72 => apu.ch3.setNr31(value),
0x73 => apu.ch3.vol.raw = value, // NR32
0x74 => apu.ch3.setNr33(value),
0x75 => apu.ch3.setNr34(&apu.fs, value),
0x76, 0x77 => {},
0x80 => apu.setNr50(value),
0x81 => apu.setNr51(value),
0x82 => apu.setSoundCntH(setLo(u16, apu.dma_cnt.raw, value)),
0x83 => apu.setSoundCntH(setHi(u16, apu.dma_cnt.raw, value)),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1), // NR52
0x89 => apu.setSoundBiasH(value),
0x90...0x9F => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
0x78 => apu.ch4.setNr41(value),
0x79 => apu.ch4.setNr42(value),
0x7A, 0x7B => {},
0x7C => apu.ch4.poly.raw = value, // NR 43
0x7D => apu.ch4.setNr44(&apu.fs, value),
0x7E, 0x7F => {},
0x80, 0x81 => apu.setSoundCntL(setHalf(u16, apu.psg_cnt.raw, byte_addr, value)),
0x82, 0x83 => apu.setSoundCntH(setHalf(u16, apu.dma_cnt.raw, byte_addr, value)),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x85 => {},
0x86, 0x87 => {},
0x88, 0x89 => apu.bias.raw = setHalf(u16, apu.bias.raw, byte_addr, value), // SOUNDBIAS
0x8A...0x8F => {},
0x90...0x9F => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0...0xA3 => log.err("Tried to write 0x{X:0>2}{} to FIFO_A", .{ value, T }),
0xA4...0xA7 => log.err("Tried to write 0x{X:0>2}{} to FIFO_B", .{ value, T }),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
}
},
else => @compileError("APU: Unsupported write width"),
}
@@ -164,7 +247,7 @@ pub const Apu = struct {
sampling_cycle: u2,
stream: *SDL.SDL_AudioStream,
stream: *c.SDL_AudioStream,
sched: *Scheduler,
fs: FrameSequencer,
@@ -189,35 +272,77 @@ pub const Apu = struct {
.bias = .{ .raw = 0x0200 },
.sampling_cycle = 0b00,
.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, 1 << 15, SDL.AUDIO_U16, 2, host_sample_rate).?,
.sched = sched,
.stream = undefined, // FIXME: bad practice
.capacitor = 0,
.fs = FrameSequencer.init(),
.is_buffer_full = false,
};
sched.push(.SampleAudio, apu.interval());
sched.push(.{ .ApuChannel = 0 }, @import("apu/signal/Square.zig").interval);
sched.push(.{ .ApuChannel = 1 }, @import("apu/signal/Square.zig").interval);
sched.push(.{ .ApuChannel = 2 }, @import("apu/signal/Wave.zig").interval);
sched.push(.{ .ApuChannel = 3 }, @import("apu/signal/Lfsr.zig").interval);
sched.push(.FrameSequencer, FrameSequencer.interval);
Self.initEvents(apu.sched, apu.interval());
return apu;
}
fn reset(self: *Self) void {
fn initEvents(scheduler: *Scheduler, apu_interval: u64) void {
scheduler.push(.SampleAudio, apu_interval);
scheduler.push(.{ .ApuChannel = 0 }, @import("apu/signal/Square.zig").interval);
scheduler.push(.{ .ApuChannel = 1 }, @import("apu/signal/Square.zig").interval);
scheduler.push(.{ .ApuChannel = 2 }, @import("apu/signal/Wave.zig").interval);
scheduler.push(.{ .ApuChannel = 3 }, @import("apu/signal/Lfsr.zig").interval);
scheduler.push(.FrameSequencer, FrameSequencer.interval);
}
/// Used when resetting the emulator
pub fn reset(self: *Self) void {
// FIXME: These reset functions are meant to emulate obscure APU behaviour. Write proper emu reset fns
self.ch1.reset();
self.ch2.reset();
self.ch3.reset();
self.ch4.reset();
self.chA.reset();
self.chB.reset();
self.psg_cnt = .{ .raw = 0 };
self.dma_cnt = .{ .raw = 0 };
self.cnt = .{ .raw = 0 };
self.bias = .{ .raw = 0x200 };
self.sampling_cycle = 0;
self.fs.reset();
Self.initEvents(self.sched, self.interval());
}
/// Emulates the reset behaviour of the APU
fn _reset(self: *Self) void {
// All PSG Registers between 0x0400_0060..0x0400_0081 are zeroed
// 0x0400_0082 and 0x0400_0088 retain their values
self.ch1.reset();
self.ch2.reset();
self.ch3.reset();
self.ch4.reset();
// GBATEK says 4000060h..4000081h I take this to mean inclusive
self.psg_cnt.raw = 0x0000;
}
/// SOUNDCNT
fn setSoundCnt(self: *Self, value: u32) void {
self.psg_cnt.raw = @truncate(u16, value);
self.setSoundCntH(@truncate(u16, value >> 16));
if (self.cnt.apu_enable.read()) self.setSoundCntL(@truncate(value));
self.setSoundCntH(@truncate(value >> 16));
}
/// SOUNDCNT_L
pub fn soundCntL(self: *const Self) u16 {
return self.psg_cnt.raw & 0xFF77;
}
/// SOUNDCNT_L
pub fn setSoundCntL(self: *Self, value: u16) void {
self.psg_cnt.raw = value;
}
/// SOUNDCNT_H
@@ -232,6 +357,11 @@ pub const Apu = struct {
self.dma_cnt = new;
}
/// SOUNDCNT_H
pub fn soundCntH(self: *const Self) u16 {
return self.dma_cnt.raw & 0x770F;
}
/// NR52
pub fn setSoundCntX(self: *Self, value: bool) void {
self.cnt.apu_enable.write(value);
@@ -240,42 +370,31 @@ pub const Apu = struct {
self.fs.step = 0; // Reset Frame Sequencer
// Reset Square Wave Offsets
self.ch1.square.pos = 0;
self.ch2.square.pos = 0;
self.ch1.square.reset();
self.ch2.square.reset();
// Reset Wave Device Offsets
self.ch3.wave_dev.offset = 0;
// Reset Wave
self.ch3.wave_dev.reset();
// Rest Noise
self.ch4.lfsr.reset();
} else {
self.reset();
self._reset();
}
}
/// NR52
pub fn soundCntX(self: *const Self) u8 {
const apu_enable: u8 = @boolToInt(self.cnt.apu_enable.read());
const apu_enable: u8 = @intFromBool(self.cnt.apu_enable.read());
const ch1_enable: u8 = @boolToInt(self.ch1.enabled);
const ch2_enable: u8 = @boolToInt(self.ch2.enabled);
const ch3_enable: u8 = @boolToInt(self.ch3.enabled);
const ch4_enable: u8 = @boolToInt(self.ch4.enabled);
const ch1_enable: u8 = @intFromBool(self.ch1.enabled);
const ch2_enable: u8 = @intFromBool(self.ch2.enabled);
const ch3_enable: u8 = @intFromBool(self.ch3.enabled);
const ch4_enable: u8 = @intFromBool(self.ch4.enabled);
return apu_enable << 7 | ch4_enable << 3 | ch3_enable << 2 | ch2_enable << 1 | ch1_enable;
}
/// NR50
pub fn setNr50(self: *Self, byte: u8) void {
self.psg_cnt.raw = (self.psg_cnt.raw & 0xFF00) | byte;
}
/// NR51
pub fn setNr51(self: *Self, byte: u8) void {
self.psg_cnt.raw = @as(u16, byte) << 8 | (self.psg_cnt.raw & 0xFF);
}
pub fn setSoundBiasH(self: *Self, byte: u8) void {
self.bias.raw = (@as(u16, byte) << 8) | (self.bias.raw & 0xFF);
}
pub fn sampleAudio(self: *Self, late: u64) void {
self.sched.push(.SampleAudio, self.interval() -| late);
@@ -327,36 +446,47 @@ pub const Apu = struct {
right += if (self.dma_cnt.chB_right.read()) chB_sample else 0;
// Add SOUNDBIAS
// FIXME: Is SOUNDBIAS 9-bit or 10-bit?
const bias = @as(i16, self.bias.level.read()) << 1;
// FIXME: SOUNDBIAS is 10-bit but The waveform is centered around 0 if I treat it as 11-bit
const bias = @as(i16, self.bias.level.read()) << 2;
left += bias;
right += bias;
const clamped_left = std.math.clamp(@bitCast(u16, left), std.math.minInt(u11), std.math.maxInt(u11));
const clamped_right = std.math.clamp(@bitCast(u16, right), std.math.minInt(u11), std.math.maxInt(u11));
const clamped_left = std.math.clamp(@as(u16, @bitCast(left)), 0, std.math.maxInt(u11));
const clamped_right = std.math.clamp(@as(u16, @bitCast(right)), 0, std.math.maxInt(u11));
// Extend to 16-bit signed audio samples
const ext_left = (clamped_left << 5) | (clamped_left >> 6);
const ext_right = (clamped_right << 5) | (clamped_right >> 6);
// FIXME: This rarely happens
if (self.sampling_cycle != self.bias.sampling_cycle.read()) self.replaceSDLResampler();
_ = SDL.SDL_AudioStreamPut(self.stream, &[2]u16{ ext_left, ext_right }, 2 * @sizeOf(u16));
const ret = c.SDL_PutAudioStreamData(self.stream, &[2]i16{ @bitCast(ext_left ^ 0x8000), @bitCast(ext_right ^ 0x8000) }, 2 * @sizeOf(i16));
if (!ret) @panic("TODO: Failed to put i16s into SDL Audio Queue");
}
fn replaceSDLResampler(self: *Self) void {
@setCold(true);
const sample_rate = Self.sampleRate(self.bias.sampling_cycle.read());
log.info("Sample Rate changed from {}Hz to {}Hz", .{ Self.sampleRate(self.sampling_cycle), sample_rate });
@branchHint(.cold);
_ = self;
// Sampling Cycle (Sample Rate) changed, Craete a new SDL Audio Resampler
// FIXME: Replace SDL's Audio Resampler with either a custom or more reliable one
const old_stream = self.stream;
defer SDL.SDL_FreeAudioStream(old_stream);
@panic("TODO: Implement Multiple Sample Rates...");
self.sampling_cycle = self.bias.sampling_cycle.read();
self.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, @intCast(c_int, sample_rate), SDL.AUDIO_U16, 2, host_sample_rate).?;
// const sample_rate = Self.sampleRate(self.bias.sampling_cycle.read());
// log.info("Sample Rate changed from {}Hz to {}Hz", .{ Self.sampleRate(self.sampling_cycle), sample_rate });
// // Sampling Cycle (Sample Rate) changed, Craete a new SDL Audio Resampler
// // FIXME: Replace SDL's Audio Resampler with either a custom or more reliable one
// const old_stream = self.stream;
// defer c.SDL_DestroyAudioStream(old_stream);
// self.sampling_cycle = self.bias.sampling_cycle.read();
// var desired: c.SDL_AudioSpec = std.mem.zeroes(c.SDL_AudioSpec);
// desired.format = c.SDL_AUDIO_S16;
// desired.channels = 2;
// desired.freq = @intCast(sample_rate);
// const new_stream = c.SDL_OpenAudioDeviceStream(c.SDL_AUDIO_DEVICE_DEFAULT_PLAYBACK, &desired, null, null) orelse @panic("TODO: Failed to replace SDL Audio Stream");
// self.stream = new_stream;
}
fn interval(self: *const Self) u64 {
@@ -404,14 +534,20 @@ pub const Apu = struct {
pub fn onDmaAudioSampleRequest(self: *Self, cpu: *Arm7tdmi, tim_id: u3) void {
if (!self.cnt.apu_enable.read()) return;
if (@boolToInt(self.dma_cnt.chA_timer.read()) == tim_id) {
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
if (@intFromBool(self.dma_cnt.chA_timer.read()) == tim_id) {
if (!self.chA.enabled) return;
self.chA.updateSample();
if (self.chA.len() <= 15) cpu.bus.dma[1].requestAudio(0x0400_00A0);
if (self.chA.len() <= 15) bus_ptr.dma[1].requestAudio(0x0400_00A0);
}
if (@boolToInt(self.dma_cnt.chB_timer.read()) == tim_id) {
if (@intFromBool(self.dma_cnt.chB_timer.read()) == tim_id) {
if (!self.chB.enabled) return;
self.chB.updateSample();
if (self.chB.len() <= 15) cpu.bus.dma[2].requestAudio(0x0400_00A4);
if (self.chB.len() <= 15) bus_ptr.dma[2].requestAudio(0x0400_00A4);
}
}
};
@@ -423,17 +559,31 @@ pub fn DmaSound(comptime kind: DmaSoundKind) type {
fifo: SoundFifo,
kind: DmaSoundKind,
sample: i8,
enabled: bool,
fn init() Self {
return .{
.fifo = SoundFifo.init(),
.kind = kind,
.sample = 0,
.enabled = false,
};
}
/// Used when resetting hte emulator (not emulation code)
fn reset(self: *Self) void {
self.* = Self.init();
}
pub fn push(self: *Self, value: u32) void {
self.fifo.write(&intToBytes(u32, value)) catch |e| log.err("{} Error: {}", .{ kind, e });
if (!self.enabled) self.enable();
self.fifo.write(std.mem.asBytes(&value)) catch |e| log.err("{} Error: {}", .{ kind, e });
}
fn enable(self: *Self) void {
@branchHint(.cold);
self.enabled = true;
}
pub fn len(self: *const Self) usize {
@@ -441,11 +591,11 @@ pub fn DmaSound(comptime kind: DmaSoundKind) type {
}
pub fn updateSample(self: *Self) void {
if (self.fifo.readItem()) |sample| self.sample = @bitCast(i8, sample);
if (self.fifo.readItem()) |sample| self.sample = @bitCast(sample);
}
pub fn amplitude(self: *const Self) i16 {
return @as(i16, self.sample);
return self.sample;
}
};
}
@@ -456,13 +606,17 @@ const DmaSoundKind = enum {
};
pub const FrameSequencer = struct {
const interval = (1 << 24) / 512;
const Self = @This();
pub const interval = (1 << 24) / 512;
step: u3,
step: u3 = 0,
pub fn init() Self {
return .{ .step = 0 };
return .{};
}
pub fn reset(self: *Self) void {
self.* = .{};
}
pub fn tick(self: *Self) void {

View File

@@ -49,10 +49,13 @@ pub fn init(sched: *Scheduler) Self {
}
pub fn reset(self: *Self) void {
self.len = 0;
self.envelope.raw = 0;
self.poly.raw = 0;
self.cnt.raw = 0;
self.len = 0; // NR41
self.envelope.raw = 0; // NR42
self.poly.raw = 0; // NR43
self.cnt.raw = 0; // NR44
self.len_dev.reset();
self.env_dev.reset();
self.sample = 0;
self.enabled = false;
@@ -73,14 +76,14 @@ pub fn sound4CntL(self: *const Self) u16 {
/// NR41, NR42
pub fn setSound4CntL(self: *Self, value: u16) void {
self.setNr41(@truncate(u8, value));
self.setNr42(@truncate(u8, value >> 8));
self.setNr41(@truncate(value));
self.setNr42(@truncate(value >> 8));
}
/// NR41
pub fn setNr41(self: *Self, len: u8) void {
self.len = @truncate(u6, len);
self.len_dev.timer = @as(u7, 64) - @truncate(u6, len);
self.len = @truncate(len);
self.len_dev.timer = @as(u7, 64) - self.len;
}
/// NR42
@@ -96,8 +99,8 @@ pub fn sound4CntH(self: *const Self) u16 {
/// NR43, NR44
pub fn setSound4CntH(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.poly.raw = @truncate(u8, value);
self.setNr44(fs, @truncate(u8, value >> 8));
self.poly.raw = @truncate(value);
self.setNr44(fs, @truncate(value >> 8));
}
/// NR44

View File

@@ -43,9 +43,12 @@ pub fn init(sched: *Scheduler) Self {
}
pub fn reset(self: *Self) void {
self.duty.raw = 0;
self.envelope.raw = 0;
self.freq.raw = 0;
self.duty.raw = 0; // NR21
self.envelope.raw = 0; // NR22
self.freq.raw = 0; // NR32, NR24
self.len_dev.reset();
self.env_dev.reset();
self.sample = 0;
self.enabled = false;
@@ -74,14 +77,14 @@ pub fn sound2CntL(self: *const Self) u16 {
/// NR21, NR22
pub fn setSound2CntL(self: *Self, value: u16) void {
self.setNr21(@truncate(u8, value));
self.setNr22(@truncate(u8, value >> 8));
self.setNr21(@truncate(value));
self.setNr22(@truncate(value >> 8));
}
/// NR21
pub fn setNr21(self: *Self, value: u8) void {
self.duty.raw = value;
self.len_dev.timer = @as(u7, 64) - @truncate(u6, value);
self.len_dev.timer = @as(u7, 64) - @as(u6, @truncate(value));
}
/// NR22
@@ -97,8 +100,8 @@ pub fn sound2CntH(self: *const Self) u16 {
/// NR23, NR24
pub fn setSound2CntH(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setNr23(@truncate(u8, value));
self.setNr24(fs, @truncate(u8, value >> 8));
self.setNr23(@truncate(value));
self.setNr24(fs, @truncate(value >> 8));
}
/// NR23

View File

@@ -50,12 +50,14 @@ pub fn init(sched: *Scheduler) Self {
}
pub fn reset(self: *Self) void {
self.sweep.raw = 0;
self.sweep_dev.calc_performed = false;
self.sweep.raw = 0; // NR10
self.duty.raw = 0; // NR11
self.envelope.raw = 0; // NR12
self.freq.raw = 0; // NR13, NR14
self.duty.raw = 0;
self.envelope.raw = 0;
self.freq.raw = 0;
self.len_dev.reset();
self.sweep_dev.reset();
self.env_dev.reset();
self.sample = 0;
self.enabled = false;
@@ -79,8 +81,8 @@ pub fn onToneSweepEvent(self: *Self, late: u64) void {
/// NR10, NR11, NR12
pub fn setSound1Cnt(self: *Self, value: u32) void {
self.setSound1CntL(@truncate(u8, value));
self.setSound1CntH(@truncate(u16, value >> 16));
self.setSound1CntL(@truncate(value));
self.setSound1CntH(@truncate(value >> 16));
}
/// NR10
@@ -92,10 +94,9 @@ pub fn sound1CntL(self: *const Self) u8 {
pub fn setSound1CntL(self: *Self, value: u8) void {
const new = io.Sweep{ .raw = value };
if (self.sweep.direction.read() and !new.direction.read()) {
// Sweep Negate bit has been cleared
// If At least 1 Sweep Calculation has been made since
// the last trigger, the channel is immediately disabled
if (!new.direction.read()) {
// If at least one (1) sweep calculation has been made with
// the negate bit set (since last trigger), disable the channel
if (self.sweep_dev.calc_performed) self.enabled = false;
}
@@ -110,14 +111,14 @@ pub fn sound1CntH(self: *const Self) u16 {
/// NR11, NR12
pub fn setSound1CntH(self: *Self, value: u16) void {
self.setNr11(@truncate(u8, value));
self.setNr12(@truncate(u8, value >> 8));
self.setNr11(@truncate(value));
self.setNr12(@truncate(value >> 8));
}
/// NR11
pub fn setNr11(self: *Self, value: u8) void {
self.duty.raw = value;
self.len_dev.timer = @as(u7, 64) - @truncate(u6, value);
self.len_dev.timer = @as(u7, 64) - @as(u6, @truncate(value));
}
/// NR12
@@ -133,8 +134,8 @@ pub fn sound1CntX(self: *const Self) u16 {
/// NR13, NR14
pub fn setSound1CntX(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setNr13(@truncate(u8, value));
self.setNr14(fs, @truncate(u8, value >> 8));
self.setNr13(@truncate(value));
self.setNr14(fs, @truncate(value >> 8));
}
/// NR13

View File

@@ -42,10 +42,13 @@ pub fn init(sched: *Scheduler) Self {
}
pub fn reset(self: *Self) void {
self.select.raw = 0;
self.length = 0;
self.vol.raw = 0;
self.freq.raw = 0;
self.select.raw = 0; // NR30
self.length = 0; // NR31
self.vol.raw = 0; // NR32
self.freq.raw = 0; // NR33, NR34
self.len_dev.reset();
self.wave_dev.reset();
self.sample = 0;
self.enabled = false;
@@ -61,8 +64,8 @@ pub fn tick(self: *Self, comptime kind: Tick) void {
/// NR30, NR31, NR32
pub fn setSound3Cnt(self: *Self, value: u32) void {
self.setSound3CntL(@truncate(u8, value));
self.setSound3CntH(@truncate(u16, value >> 16));
self.setSound3CntL(@truncate(value));
self.setSound3CntH(@truncate(value >> 16));
}
/// NR30
@@ -71,6 +74,11 @@ pub fn setSound3CntL(self: *Self, value: u8) void {
if (!self.select.enabled.read()) self.enabled = false;
}
/// NR30
pub fn sound3CntL(self: *const Self) u8 {
return self.select.raw & 0xE0;
}
/// NR31, NR32
pub fn sound3CntH(self: *const Self) u16 {
return @as(u16, self.length & 0xE0) << 8;
@@ -78,8 +86,8 @@ pub fn sound3CntH(self: *const Self) u16 {
/// NR31, NR32
pub fn setSound3CntH(self: *Self, value: u16) void {
self.setNr31(@truncate(u8, value));
self.vol.raw = (@truncate(u8, value >> 8));
self.setNr31(@truncate(value));
self.vol.raw = @truncate(value >> 8);
}
/// NR31
@@ -90,8 +98,13 @@ pub fn setNr31(self: *Self, len: u8) void {
/// NR33, NR34
pub fn setSound3CntX(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setNr33(@truncate(u8, value));
self.setNr34(fs, @truncate(u8, value >> 8));
self.setNr33(@truncate(value));
self.setNr34(fs, @truncate(value >> 8));
}
/// NR33, NR34
pub fn sound3CntX(self: *const Self) u16 {
return self.freq.raw & 0x4000;
}
/// NR33

View File

@@ -3,12 +3,16 @@ const io = @import("../../bus/io.zig");
const Self = @This();
/// Period Timer
timer: u3,
timer: u3 = 0,
/// Current Volume
vol: u4,
vol: u4 = 0,
pub fn create() Self {
return .{ .timer = 0, .vol = 0 };
return .{};
}
pub fn reset(self: *Self) void {
self.* = .{};
}
pub fn tick(self: *Self, nrx2: io.Envelope) void {

View File

@@ -1,9 +1,13 @@
const Self = @This();
timer: u9,
timer: u9 = 0,
pub fn create() Self {
return .{ .timer = 0 };
return .{};
}
pub fn reset(self: *Self) void {
self.* = .{};
}
pub fn tick(self: *Self, enabled: bool, ch_enable: *bool) void {

View File

@@ -3,19 +3,18 @@ const ToneSweep = @import("../ToneSweep.zig");
const Self = @This();
timer: u8,
enabled: bool,
shadow: u11,
timer: u8 = 0,
enabled: bool = false,
shadow: u11 = 0,
calc_performed: bool,
calc_performed: bool = false,
pub fn create() Self {
return .{
.timer = 0,
.enabled = false,
.shadow = 0,
.calc_performed = false,
};
return .{};
}
pub fn reset(self: *Self) void {
self.* = .{};
}
pub fn tick(self: *Self, ch1: *ToneSweep) void {
@@ -24,14 +23,13 @@ pub fn tick(self: *Self, ch1: *ToneSweep) void {
if (self.timer == 0) {
const period = ch1.sweep.period.read();
self.timer = if (period == 0) 8 else period;
if (!self.calc_performed) self.calc_performed = true;
if (self.enabled and period != 0) {
const new_freq = self.calculate(ch1.sweep, &ch1.enabled);
if (new_freq <= 0x7FF and ch1.sweep.shift.read() != 0) {
ch1.freq.frequency.write(@truncate(u11, new_freq));
self.shadow = @truncate(u11, new_freq);
ch1.freq.frequency.write(@as(u11, @truncate(new_freq)));
self.shadow = @truncate(new_freq);
_ = self.calculate(ch1.sweep, &ch1.enabled);
}
@@ -45,7 +43,10 @@ pub fn calculate(self: *Self, sweep: io.Sweep, ch_enable: *bool) u12 {
const shadow_shifted = shadow >> sweep.shift.read();
const decrease = sweep.direction.read();
const freq = if (decrease) shadow - shadow_shifted else shadow + shadow_shifted;
const freq = if (decrease) blk: {
self.calc_performed = true;
break :blk shadow - shadow_shifted;
} else shadow + shadow_shifted;
if (freq > 0x7FF) ch_enable.* = false;
return freq;

View File

@@ -1,9 +1,7 @@
//! Linear Feedback Shift Register
const io = @import("../../bus/io.zig");
/// Linear Feedback Shift Register
const Scheduler = @import("../../scheduler.zig").Scheduler;
const FrameSequencer = @import("../../apu.zig").FrameSequencer;
const Noise = @import("../Noise.zig");
const Self = @This();
pub const interval: u64 = (1 << 24) / (1 << 22);
@@ -21,6 +19,11 @@ pub fn create(sched: *Scheduler) Self {
};
}
pub fn reset(self: *Self) void {
self.shift = 0;
self.timer = 0;
}
pub fn sample(self: *const Self) i8 {
return if ((~self.shift & 1) == 1) 1 else -1;
}
@@ -35,7 +38,7 @@ pub fn reload(self: *Self, poly: io.PolyCounter) void {
}
/// Scheduler Event Handler for LFSR Timer Expire
/// FIXME: This gets called a lot, clogging up the Scheduler
/// FIXME: This gets called a lot, slowing down the scheduler
pub fn onLfsrTimerExpire(self: *Self, poly: io.PolyCounter, late: u64) void {
// Obscure: "Using a noise channel clock shift of 14 or 15
// results in the LFSR receiving no clocks."

View File

@@ -2,7 +2,6 @@ const std = @import("std");
const io = @import("../../bus/io.zig");
const Scheduler = @import("../../scheduler.zig").Scheduler;
const FrameSequencer = @import("../../apu.zig").FrameSequencer;
const ToneSweep = @import("../ToneSweep.zig");
const Tone = @import("../Tone.zig");
@@ -21,6 +20,11 @@ pub fn init(sched: *Scheduler) Self {
};
}
pub fn reset(self: *Self) void {
self.timer = 0;
self.pos = 0;
}
/// Scheduler Event Handler for Square Synth Timer Expire
pub fn onSquareTimerExpire(self: *Self, comptime T: type, nrx34: io.Frequency, late: u64) void {
comptime std.debug.assert(T == ToneSweep or T == Tone);

View File

@@ -2,8 +2,6 @@ const std = @import("std");
const io = @import("../../bus/io.zig");
const Scheduler = @import("../../scheduler.zig").Scheduler;
const FrameSequencer = @import("../../apu.zig").FrameSequencer;
const Wave = @import("../Wave.zig");
const buf_len = 0x20;
pub const interval: u64 = (1 << 24) / (1 << 22);
@@ -20,7 +18,7 @@ pub fn read(self: *const Self, comptime T: type, nr30: io.WaveSelect, addr: u32)
const base = if (!nr30.bank.read()) @as(u32, 0x10) else 0; // Read from the Opposite Bank in Use
const i = base + addr - 0x0400_0090;
return std.mem.readIntSliceLittle(T, self.buf[i..][0..@sizeOf(T)]);
return std.mem.readInt(T, self.buf[i..][0..@sizeOf(T)], .little);
}
pub fn write(self: *Self, comptime T: type, nr30: io.WaveSelect, addr: u32, value: T) void {
@@ -28,7 +26,7 @@ pub fn write(self: *Self, comptime T: type, nr30: io.WaveSelect, addr: u32, valu
const base = if (!nr30.bank.read()) @as(u32, 0x10) else 0; // Write to the Opposite Bank in Use
const i = base + addr - 0x0400_0090;
std.mem.writeIntSliceLittle(T, self.buf[i..][0..@sizeOf(T)], value);
std.mem.writeInt(T, self.buf[i..][0..@sizeOf(T)], value, .little);
}
pub fn init(sched: *Scheduler) Self {
@@ -40,6 +38,13 @@ pub fn init(sched: *Scheduler) Self {
};
}
pub fn reset(self: *Self) void {
self.timer = 0;
self.offset = 0;
// sample buffer isn't reset because it's outside of the range of what NR52{7}'s effects
}
/// Reload internal Wave Timer
pub fn reload(self: *Self, value: u11) void {
self.sched.removeScheduledEvent(.{ .ApuChannel = 2 });
@@ -65,7 +70,7 @@ pub fn sample(self: *const Self, nr30: io.WaveSelect) u4 {
const base = if (nr30.bank.read()) @as(u32, 0x10) else 0;
const value = self.buf[base + self.offset / 2];
return if (self.offset & 1 == 0) @truncate(u4, value >> 4) else @truncate(u4, value);
return if (self.offset & 1 == 0) @truncate(value >> 4) else @truncate(value);
}
/// TODO: Write comment

View File

@@ -3,6 +3,9 @@ const std = @import("std");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Bios);
const rotr = @import("zba_util").rotr;
const forceAlign = @import("../Bus.zig").forceAlign;
/// Size of the BIOS in bytes
pub const size = 0x4000;
const Self = @This();
@@ -10,21 +13,37 @@ const Self = @This();
buf: ?[]u8,
allocator: Allocator,
addr_latch: u32,
addr_latch: u32 = 0,
pub fn read(self: *Self, comptime T: type, r15: u32, addr: u32) T {
// https://github.com/ITotalJustice/notorious_beeg/issues/106
pub fn read(self: *Self, comptime T: type, r15: u32, address: u32) T {
if (r15 < Self.size) {
const addr = forceAlign(T, address);
self.addr_latch = addr;
return self._read(T, addr);
}
log.debug("Rejected read since r15=0x{X:0>8}", .{r15});
return @truncate(T, self._read(T, self.addr_latch + 8));
log.warn("Open Bus! Read from 0x{X:0>8}, but PC was 0x{X:0>8}", .{ address, r15 });
const value = self._read(u32, self.addr_latch);
return @truncate(rotr(u32, value, 8 * rotateBy(T, address)));
}
pub fn dbgRead(self: *const Self, comptime T: type, r15: u32, addr: u32) T {
if (r15 < Self.size) return self._read(T, addr);
return @truncate(T, self._read(T, self.addr_latch + 8));
fn rotateBy(comptime T: type, address: u32) u32 {
return switch (T) {
u8 => address & 3,
u16 => address & 2,
u32 => 0,
else => @compileError("bios: unsupported read width"),
};
}
pub fn dbgRead(self: *const Self, comptime T: type, r15: u32, address: u32) T {
if (r15 < Self.size) return self._read(T, forceAlign(T, address));
const value = self._read(u32, self.addr_latch);
return @truncate(rotr(u32, value, 8 * rotateBy(T, address)));
}
/// Read without the GBA safety checks
@@ -32,29 +51,39 @@ fn _read(self: *const Self, comptime T: type, addr: u32) T {
const buf = self.buf orelse std.debug.panic("[BIOS] ZBA tried to read {} from 0x{X:0>8} but not BIOS was present", .{ T, addr });
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, buf[addr..][0..@sizeOf(T)]),
u32, u16, u8 => std.mem.readInt(T, buf[addr..][0..@sizeOf(T)], .little),
else => @compileError("BIOS: Unsupported read width"),
};
}
pub fn write(_: *Self, comptime T: type, addr: u32, value: T) void {
@setCold(true);
@branchHint(.cold);
log.debug("Tried to write {} 0x{X:} to 0x{X:0>8} ", .{ T, value, addr });
}
pub fn init(allocator: Allocator, maybe_path: ?[]const u8) !Self {
const buf: ?[]u8 = if (maybe_path) |path| blk: {
const file = try std.fs.cwd().openFile(path, .{});
defer file.close();
if (maybe_path == null) return .{ .buf = null, .allocator = allocator };
const file_path = maybe_path.?;
break :blk try file.readToEndAlloc(allocator, try file.getEndPos());
} else null;
const buf = try allocator.alloc(u8, Self.size);
errdefer allocator.free(buf);
return Self{
.buf = buf,
.allocator = allocator,
.addr_latch = 0,
};
var self: Self = .{ .buf = buf, .allocator = allocator };
try self.load(file_path);
return self;
}
pub fn load(self: *Self, file_path: []const u8) !void {
const file = try std.fs.cwd().openFile(file_path, .{});
defer file.close();
const len = try file.readAll(self.buf orelse return error.UnallocatedBuffer);
if (len != Self.size) log.err("Expected BIOS to be {}B, was {}B", .{ Self.size, len });
}
pub fn reset(self: *Self) void {
self.addr_latch = 0;
}
pub fn deinit(self: *Self) void {

View File

@@ -11,7 +11,7 @@ pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FFFF;
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
u32, u16, u8 => std.mem.readInt(T, self.buf[addr..][0..@sizeOf(T)], .little),
else => @compileError("EWRAM: Unsupported read width"),
};
}
@@ -20,14 +20,14 @@ pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void
const addr = address & 0x3FFFF;
return switch (T) {
u32, u16, u8 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
u32, u16, u8 => std.mem.writeInt(T, self.buf[addr..][0..@sizeOf(T)], value, .little),
else => @compileError("EWRAM: Unsupported write width"),
};
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, ewram_size);
std.mem.set(u8, buf, 0);
@memset(buf, 0);
return Self{
.buf = buf,
@@ -35,6 +35,10 @@ pub fn init(allocator: Allocator) !Self {
};
}
pub fn reset(self: *Self) void {
@memset(self.buf, 0);
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;

View File

@@ -1,11 +1,7 @@
const std = @import("std");
const config = @import("../../config.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const DateTime = @import("datetime").datetime.Datetime;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Backup = @import("backup.zig").Backup;
const Gpio = @import("gpio.zig").Gpio;
const Allocator = std.mem.Allocator;
@@ -34,7 +30,7 @@ pub fn read(self: *Self, comptime T: type, address: u32) T {
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
if (@as(u8, @truncate(address >> 24)) == 0x0D)
return self.backup.eeprom.read();
}
}
@@ -81,7 +77,7 @@ inline fn get(self: *const Self, i: u32) u8 {
if (i < self.buf.len) return self.buf[i];
const lhs = i >> 1 & 0xFFFF;
return @truncate(u8, lhs >> 8 * @truncate(u5, i & 1));
return @truncate(lhs >> 8 * @as(u5, @truncate(i & 1)));
}
pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
@@ -98,7 +94,7 @@ pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
if (@as(u8, @truncate(address >> 24)) == 0x0D)
return self.backup.eeprom.dbgRead();
}
}
@@ -109,14 +105,13 @@ pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
switch (T) {
u32 => switch (address) {
// TODO: Do I even need to implement these?
// FIXME: Do I even need to implement these?
0x0800_00C4 => std.debug.panic("Handle 32-bit GPIO Data/Direction Reads", .{}),
0x0800_00C6 => std.debug.panic("Handle 32-bit GPIO Direction/Control Reads", .{}),
0x0800_00C8 => std.debug.panic("Handle 32-bit GPIO Control Reads", .{}),
else => {},
},
u16 => switch (address) {
// FIXME: What do 16-bit GPIO Reads look like?
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
@@ -144,7 +139,7 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
const addr = address & 0x1FF_FFFF;
if (self.backup.kind == .Eeprom) {
const bit = @truncate(u1, value);
const bit: u1 = @truncate(value);
if (self.buf.len > 0x100_0000) { // Large
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
@@ -156,7 +151,7 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
if (@as(u8, @truncate(address >> 24)) == 0x0D)
return self.backup.eeprom.write(word_count, &self.backup.buf, bit);
}
}
@@ -164,19 +159,19 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
switch (T) {
u32 => switch (address) {
0x0800_00C4 => {
self.gpio.write(.Data, @truncate(u4, value));
self.gpio.write(.Direction, @truncate(u4, value >> 16));
self.gpio.write(.Data, @as(u4, @truncate(value)));
self.gpio.write(.Direction, @as(u4, @truncate(value >> 16)));
},
0x0800_00C6 => {
self.gpio.write(.Direction, @truncate(u4, value));
self.gpio.write(.Control, @truncate(u1, value >> 16));
self.gpio.write(.Direction, @as(u4, @truncate(value)));
self.gpio.write(.Control, @as(u1, @truncate(value >> 16)));
},
else => log.err("Wrote {} 0x{X:0>8} to 0x{X:0>8}, Unhandled", .{ T, value, address }),
},
u16 => switch (address) {
0x0800_00C4 => self.gpio.write(.Data, @truncate(u4, value)),
0x0800_00C6 => self.gpio.write(.Direction, @truncate(u4, value)),
0x0800_00C8 => self.gpio.write(.Control, @truncate(u1, value)),
0x0800_00C4 => self.gpio.write(.Data, @as(u4, @truncate(value))),
0x0800_00C6 => self.gpio.write(.Direction, @as(u4, @truncate(value))),
0x0800_00C8 => self.gpio.write(.Control, @as(u1, @truncate(value))),
else => log.err("Wrote {} 0x{X:0>4} to 0x{X:0>8}, Unhandled", .{ T, value, address }),
},
u8 => log.debug("Wrote {} 0x{X:0>2} to 0x{X:0>8}, Ignored.", .{ T, value, address }),
@@ -184,23 +179,30 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
}
}
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, rom_path: []const u8, save_path: ?[]const u8) !Self {
const file = try std.fs.cwd().openFile(rom_path, .{});
defer file.close();
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, maybe_rom: ?[]const u8, maybe_save: ?[]const u8) !Self {
const Device = Gpio.Device;
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
const title = file_buf[0xA0..0xAC].*;
const kind = Backup.guess(file_buf);
const device = if (config.config().guest.force_rtc) .Rtc else guessDevice(file_buf);
const items: struct { []u8, [12]u8, Backup.Kind, Device.Kind } = if (maybe_rom) |file_path| blk: {
const file = try std.fs.cwd().openFile(file_path, .{});
defer file.close();
logHeader(file_buf, &title);
const buffer = try file.readToEndAlloc(allocator, try file.getEndPos());
const title = buffer[0xA0..0xAC];
logHeader(buffer, title);
const device_kind = if (config.config().guest.force_rtc) .Rtc else guessDevice(buffer);
break :blk .{ buffer, title.*, Backup.guess(buffer), device_kind };
} else .{ try allocator.alloc(u8, 0), [_]u8{0} ** 12, .None, .None };
const title = items[1];
return .{
.buf = file_buf,
.buf = items[0],
.allocator = allocator,
.title = title,
.backup = try Backup.init(allocator, kind, title, save_path),
.gpio = try Gpio.init(allocator, cpu, device),
.backup = try Backup.init(allocator, items[2], title, maybe_save),
.gpio = try Gpio.init(allocator, cpu, items[3]),
};
}
@@ -218,25 +220,24 @@ fn guessDevice(buf: []const u8) Gpio.Device.Kind {
// Try to Guess if ROM uses RTC
const needle = "RTC_V"; // I was told SIIRTC_V, though Pokemen Firered (USA) is a false negative
// TODO: Use new for loop syntax?
var i: usize = 0;
while ((i + needle.len) < buf.len) : (i += 1) {
if (std.mem.eql(u8, needle, buf[i..(i + needle.len)])) return .Rtc;
}
// TODO: Detect other GPIO devices
return .None;
}
fn logHeader(buf: []const u8, title: *const [12]u8) void {
const code = buf[0xAC..0xB0];
const maker = buf[0xB0..0xB2];
const version = buf[0xBC];
log.info("Title: {s}", .{title});
if (version != 0) log.info("Version: {}", .{version});
log.info("Game Code: {s}", .{code});
log.info("Maker Code: {s}", .{maker});
log.info("Game Code: {s}", .{buf[0xAC..0xB0]});
log.info("Maker Code: {s}", .{buf[0xB0..0xB2]});
}
test "OOB Access" {

View File

@@ -11,7 +11,7 @@ pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x7FFF;
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
u32, u16, u8 => std.mem.readInt(T, self.buf[addr..][0..@sizeOf(T)], .little),
else => @compileError("IWRAM: Unsupported read width"),
};
}
@@ -20,14 +20,14 @@ pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void
const addr = address & 0x7FFF;
return switch (T) {
u32, u16, u8 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
u32, u16, u8 => std.mem.writeInt(T, self.buf[addr..][0..@sizeOf(T)], value, .little),
else => @compileError("IWRAM: Unsupported write width"),
};
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, iwram_size);
std.mem.set(u8, buf, 0);
@memset(buf, 0);
return Self{
.buf = buf,
@@ -35,6 +35,10 @@ pub fn init(allocator: Allocator) !Self {
};
}
pub fn reset(self: *Self) void {
@memset(self.buf, 0);
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;

View File

@@ -6,7 +6,6 @@ const Eeprom = @import("backup/eeprom.zig").Eeprom;
const Flash = @import("backup/Flash.zig");
const escape = @import("../../util.zig").escape;
const span = @import("../../util.zig").span;
const Needle = struct { str: []const u8, kind: Backup.Kind };
const backup_kinds = [6]Needle{
@@ -33,7 +32,7 @@ pub const Backup = struct {
flash: Flash,
eeprom: Eeprom,
const Kind = enum {
pub const Kind = enum {
Eeprom,
Sram,
Flash,
@@ -78,7 +77,7 @@ pub const Backup = struct {
switch (addr) {
0x0000 => if (self.kind == .Flash1M and self.flash.set_bank) {
self.flash.bank = @truncate(u1, byte);
self.flash.bank = @truncate(byte);
},
0x5555 => {
if (self.flash.state == .Command) {
@@ -111,7 +110,7 @@ pub const Backup = struct {
};
const buf = try allocator.alloc(u8, buf_size);
std.mem.set(u8, buf, 0xFF);
@memset(buf, 0xFF);
var backup = Self{
.buf = buf,
@@ -138,6 +137,7 @@ pub const Backup = struct {
for (backup_kinds) |needle| {
const needle_len = needle.str.len;
// TODO: Use new for loop syntax?
var i: usize = 0;
while ((i + needle_len) < rom.len) : (i += 1) {
if (std.mem.eql(u8, needle.str, rom[i..][0..needle_len])) return needle.kind;
@@ -151,8 +151,8 @@ pub const Backup = struct {
const file_path = try self.savePath(allocator, path);
defer allocator.free(file_path);
// FIXME: Don't rely on this lol
if (std.mem.eql(u8, file_path[file_path.len - 12 .. file_path.len], "untitled.sav")) {
const expected = "untitled.sav";
if (std.mem.eql(u8, file_path[file_path.len - expected.len .. file_path.len], expected)) {
return log.err("ROM header lacks title, no save loaded", .{});
}
@@ -163,7 +163,7 @@ pub const Backup = struct {
switch (self.kind) {
.Sram, .Flash, .Flash1M => {
if (self.buf.len == file_buf.len) {
std.mem.copy(u8, self.buf, file_buf);
@memcpy(self.buf, file_buf);
return log.info("Loaded Save from {s}", .{file_path});
}
@@ -174,7 +174,7 @@ pub const Backup = struct {
self.eeprom.kind = if (file_buf.len == 0x200) .Small else .Large;
self.buf = try allocator.alloc(u8, file_buf.len);
std.mem.copy(u8, self.buf, file_buf);
@memcpy(self.buf, file_buf);
return log.info("Loaded Save from {s}", .{file_path});
}
@@ -195,7 +195,7 @@ pub const Backup = struct {
}
fn saveName(self: *const Self, allocator: Allocator) ![]const u8 {
const title_str = span(&escape(self.title));
const title_str = std.mem.sliceTo(&escape(self.title), 0);
const name = if (title_str.len != 0) title_str else "untitled";
return try std.mem.concat(allocator, u8, &[_][]const u8{ name, ".sav" });

View File

@@ -44,7 +44,7 @@ pub fn handleCommand(self: *Self, buf: []u8, byte: u8) void {
0xB0 => self.set_bank = true,
0x80 => self.prep_erase = true,
0x10 => {
std.mem.set(u8, buf, 0xFF);
@memset(buf, 0xFF);
self.prep_erase = false;
},
0xA0 => self.prep_write = true,
@@ -61,7 +61,7 @@ pub fn shouldEraseSector(self: *const Self, addr: usize, byte: u8) bool {
pub fn erase(self: *Self, buf: []u8, sector: usize) void {
const start = self.address() + (sector & 0xF000);
std.mem.set(u8, buf[start..][0..0x1000], 0xFF);
@memset(buf[start..][0..0x1000], 0xFF);
self.prep_erase = false;
self.state = .Ready;
}

View File

@@ -58,12 +58,14 @@ pub const Eeprom = struct {
log.err("Failed to resize EEPROM buf to {} bytes", .{len});
std.debug.panic("EEPROM entered irrecoverable state {}", .{e});
};
std.mem.set(u8, buf.*, 0xFF);
// FIXME: ptr to a slice?
@memset(buf.*, 0xFF);
}
}
if (self.state == .RequestEnd) {
if (bit != 0) log.debug("EEPROM Request did not end in 0u1. TODO: is this ok?", .{});
// if (bit != 0) log.debug("EEPROM Request did not end in 0u1. TODO: is this ok?", .{});
self.state = .Ready;
return;
}
@@ -106,7 +108,7 @@ pub const Eeprom = struct {
switch (self.state) {
.Ready => {
if (self.writer.len() == 2) {
const req = @intCast(u2, self.writer.finish());
const req: u2 = @intCast(self.writer.finish());
switch (req) {
0b11 => self.state = .Read,
0b10 => self.state = .Write,
@@ -118,8 +120,8 @@ pub const Eeprom = struct {
switch (self.kind) {
.Large => {
if (self.writer.len() == 14) {
const addr = @intCast(u10, self.writer.finish());
const value = std.mem.readIntSliceLittle(u64, buf[@as(u13, addr) * 8 ..][0..8]);
const addr: u10 = @intCast(self.writer.finish());
const value = std.mem.readInt(u64, buf[@as(u13, addr) * 8 ..][0..8], .little);
self.reader.configure(value);
self.state = .RequestEnd;
@@ -128,8 +130,8 @@ pub const Eeprom = struct {
.Small => {
if (self.writer.len() == 6) {
// FIXME: Duplicated code from above
const addr = @intCast(u6, self.writer.finish());
const value = std.mem.readIntSliceLittle(u64, buf[@as(u13, addr) * 8 ..][0..8]);
const addr: u6 = @intCast(self.writer.finish());
const value = std.mem.readInt(u64, buf[@as(u13, addr) * 8 ..][0..8], .little);
self.reader.configure(value);
self.state = .RequestEnd;
@@ -142,13 +144,13 @@ pub const Eeprom = struct {
switch (self.kind) {
.Large => {
if (self.writer.len() == 14) {
self.addr = @intCast(u10, self.writer.finish());
self.addr = @as(u10, @intCast(self.writer.finish()));
self.state = .WriteTransfer;
}
},
.Small => {
if (self.writer.len() == 6) {
self.addr = @intCast(u6, self.writer.finish());
self.addr = @as(u6, @intCast(self.writer.finish()));
self.state = .WriteTransfer;
}
},
@@ -157,7 +159,7 @@ pub const Eeprom = struct {
},
.WriteTransfer => {
if (self.writer.len() == 64) {
std.mem.writeIntSliceLittle(u64, buf[self.addr * 8 ..][0..8], self.writer.finish());
std.mem.writeInt(u64, buf[self.addr * 8 ..][0..8], self.writer.finish(), .little);
self.state = .RequestEnd;
}
},
@@ -184,11 +186,9 @@ const Reader = struct {
fn read(self: *Self) u1 {
if (!self.enabled) return 1;
const bit = if (self.i < 4) blk: {
break :blk 0;
} else blk: {
const idx = @intCast(u6, 63 - (self.i - 4));
break :blk @truncate(u1, self.data >> idx);
const bit: u1 = if (self.i < 4) 0 else blk: {
const idx: u6 = @intCast(63 - (self.i - 4));
break :blk @truncate(self.data >> idx);
};
self.i = (self.i + 1) % (64 + 4);
@@ -200,11 +200,11 @@ const Reader = struct {
fn dbgRead(self: *const Self) u1 {
if (!self.enabled) return 1;
const bit = if (self.i < 4) blk: {
const bit: u1 = if (self.i < 4) blk: {
break :blk 0;
} else blk: {
const idx = @intCast(u6, 63 - (self.i - 4));
break :blk @truncate(u1, self.data >> idx);
const idx: u6 = @intCast(63 - (self.i - 4));
break :blk @truncate(self.data >> idx);
};
return bit;
@@ -228,7 +228,7 @@ const Writer = struct {
}
fn requestWrite(self: *Self, bit: u1) void {
const idx = @intCast(u1, 1 - self.i);
const idx: u1 = @intCast(1 - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}
@@ -242,13 +242,13 @@ const Writer = struct {
.Unknown => unreachable,
};
const idx = @intCast(u4, size - self.i);
const idx: u4 = @intCast(size - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}
fn dataWrite(self: *Self, bit: u1) void {
const idx = @intCast(u6, 63 - self.i);
const idx: u6 = @intCast(63 - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}

View File

@@ -3,91 +3,143 @@ const util = @import("../../util.zig");
const DmaControl = @import("io.zig").DmaControl;
const Bus = @import("../Bus.zig");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Arm7tdmi = @import("arm32").Arm7tdmi;
pub const DmaTuple = std.meta.Tuple(&[_]type{ DmaController(0), DmaController(1), DmaController(2), DmaController(3) });
pub const DmaTuple = struct { DmaController(0), DmaController(1), DmaController(2), DmaController(3) };
const log = std.log.scoped(.DmaTransfer);
const setHi = util.setHi;
const setLo = util.setLo;
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const setQuart = util.setQuart;
const handleInterrupt = @import("../cpu_util.zig").handleInterrupt;
const rotr = @import("zba_util").rotr;
pub fn create() DmaTuple {
return .{ DmaController(0).init(), DmaController(1).init(), DmaController(2).init(), DmaController(3).init() };
}
pub fn read(comptime T: type, dma: *const DmaTuple, addr: u32) ?T {
const byte = @truncate(u8, addr);
const byte_addr: u8 = @truncate(addr);
return switch (T) {
u32 => switch (byte) {
0xB8 => @as(T, dma.*[0].cnt.raw) << 16,
0xC4 => @as(T, dma.*[1].cnt.raw) << 16,
0xD0 => @as(T, dma.*[2].cnt.raw) << 16,
0xDC => @as(T, dma.*[3].cnt.raw) << 16,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
u32 => switch (byte_addr) {
0xB0, 0xB4 => null, // DMA0SAD, DMA0DAD,
0xB8 => @as(T, dma.*[0].dmacntH()) << 16, // DMA0CNT_L is write-only
0xBC, 0xC0 => null, // DMA1SAD, DMA1DAD
0xC4 => @as(T, dma.*[1].dmacntH()) << 16, // DMA1CNT_L is write-only
0xC8, 0xCC => null, // DMA2SAD, DMA2DAD
0xD0 => @as(T, dma.*[2].dmacntH()) << 16, // DMA2CNT_L is write-only
0xD4, 0xD8 => null, // DMA3SAD, DMA3DAD
0xDC => @as(T, dma.*[3].dmacntH()) << 16, // DMA3CNT_L is write-only
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte) {
0xBA => dma.*[0].cnt.raw,
0xC6 => dma.*[1].cnt.raw,
0xD2 => dma.*[2].cnt.raw,
0xDE => dma.*[3].cnt.raw,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
u16 => switch (byte_addr) {
0xB0, 0xB2, 0xB4, 0xB6 => null, // DMA0SAD, DMA0DAD
0xB8 => 0x0000, // DMA0CNT_L, suite.gba expects 0x0000 instead of 0xDEAD
0xBA => dma.*[0].dmacntH(),
0xBC, 0xBE, 0xC0, 0xC2 => null, // DMA1SAD, DMA1DAD
0xC4 => 0x0000, // DMA1CNT_L
0xC6 => dma.*[1].dmacntH(),
0xC8, 0xCA, 0xCC, 0xCE => null, // DMA2SAD, DMA2DAD
0xD0 => 0x0000, // DMA2CNT_L
0xD2 => dma.*[2].dmacntH(),
0xD4, 0xD6, 0xD8, 0xDA => null, // DMA3SAD, DMA3DAD
0xDC => 0x0000, // DMA3CNT_L
0xDE => dma.*[3].dmacntH(),
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0xB0...0xB7 => null, // DMA0SAD, DMA0DAD
0xB8, 0xB9 => 0x00, // DMA0CNT_L
0xBA, 0xBB => @truncate(dma.*[0].dmacntH() >> getHalf(byte_addr)),
0xBC...0xC3 => null, // DMA1SAD, DMA1DAD
0xC4, 0xC5 => 0x00, // DMA1CNT_L
0xC6, 0xC7 => @truncate(dma.*[1].dmacntH() >> getHalf(byte_addr)),
0xC8...0xCF => null, // DMA2SAD, DMA2DAD
0xD0, 0xD1 => 0x00, // DMA2CNT_L
0xD2, 0xD3 => @truncate(dma.*[2].dmacntH() >> getHalf(byte_addr)),
0xD4...0xDB => null, // DMA3SAD, DMA3DAD
0xDC, 0xDD => 0x00, // DMA3CNT_L
0xDE, 0xDF => @truncate(dma.*[3].dmacntH() >> getHalf(byte_addr)),
else => util.io.read.err(T, log, "unexpected {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
else => @compileError("DMA: Unsupported read width"),
};
}
pub fn write(comptime T: type, dma: *DmaTuple, addr: u32, value: T) void {
const byte = @truncate(u8, addr);
const byte_addr: u8 = @truncate(addr);
switch (T) {
u32 => switch (byte) {
u32 => switch (byte_addr) {
0xB0 => dma.*[0].setDmasad(value),
0xB4 => dma.*[0].setDmadad(value),
0xB8 => dma.*[0].setDmacnt(value),
0xBC => dma.*[1].setDmasad(value),
0xC0 => dma.*[1].setDmadad(value),
0xC4 => dma.*[1].setDmacnt(value),
0xC8 => dma.*[2].setDmasad(value),
0xCC => dma.*[2].setDmadad(value),
0xD0 => dma.*[2].setDmacnt(value),
0xD4 => dma.*[3].setDmasad(value),
0xD8 => dma.*[3].setDmadad(value),
0xDC => dma.*[3].setDmacnt(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (byte) {
0xB0 => dma.*[0].setDmasad(setLo(u32, dma.*[0].sad, value)),
0xB2 => dma.*[0].setDmasad(setHi(u32, dma.*[0].sad, value)),
0xB4 => dma.*[0].setDmadad(setLo(u32, dma.*[0].dad, value)),
0xB6 => dma.*[0].setDmadad(setHi(u32, dma.*[0].dad, value)),
u16 => switch (byte_addr) {
0xB0, 0xB2 => dma.*[0].setDmasad(setHalf(u32, dma.*[0].sad, byte_addr, value)),
0xB4, 0xB6 => dma.*[0].setDmadad(setHalf(u32, dma.*[0].dad, byte_addr, value)),
0xB8 => dma.*[0].setDmacntL(value),
0xBA => dma.*[0].setDmacntH(value),
0xBC => dma.*[1].setDmasad(setLo(u32, dma.*[1].sad, value)),
0xBE => dma.*[1].setDmasad(setHi(u32, dma.*[1].sad, value)),
0xC0 => dma.*[1].setDmadad(setLo(u32, dma.*[1].dad, value)),
0xC2 => dma.*[1].setDmadad(setHi(u32, dma.*[1].dad, value)),
0xBC, 0xBE => dma.*[1].setDmasad(setHalf(u32, dma.*[1].sad, byte_addr, value)),
0xC0, 0xC2 => dma.*[1].setDmadad(setHalf(u32, dma.*[1].dad, byte_addr, value)),
0xC4 => dma.*[1].setDmacntL(value),
0xC6 => dma.*[1].setDmacntH(value),
0xC8 => dma.*[2].setDmasad(setLo(u32, dma.*[2].sad, value)),
0xCA => dma.*[2].setDmasad(setHi(u32, dma.*[2].sad, value)),
0xCC => dma.*[2].setDmadad(setLo(u32, dma.*[2].dad, value)),
0xCE => dma.*[2].setDmadad(setHi(u32, dma.*[2].dad, value)),
0xC8, 0xCA => dma.*[2].setDmasad(setHalf(u32, dma.*[2].sad, byte_addr, value)),
0xCC, 0xCE => dma.*[2].setDmadad(setHalf(u32, dma.*[2].dad, byte_addr, value)),
0xD0 => dma.*[2].setDmacntL(value),
0xD2 => dma.*[2].setDmacntH(value),
0xD4 => dma.*[3].setDmasad(setLo(u32, dma.*[3].sad, value)),
0xD6 => dma.*[3].setDmasad(setHi(u32, dma.*[3].sad, value)),
0xD8 => dma.*[3].setDmadad(setLo(u32, dma.*[3].dad, value)),
0xDA => dma.*[3].setDmadad(setHi(u32, dma.*[3].dad, value)),
0xD4, 0xD6 => dma.*[3].setDmasad(setHalf(u32, dma.*[3].sad, byte_addr, value)),
0xD8, 0xDA => dma.*[3].setDmadad(setHalf(u32, dma.*[3].dad, byte_addr, value)),
0xDC => dma.*[3].setDmacntL(value),
0xDE => dma.*[3].setDmacntH(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
u8 => switch (byte_addr) {
0xB0, 0xB1, 0xB2, 0xB3 => dma.*[0].setDmasad(setQuart(dma.*[0].sad, byte_addr, value)),
0xB4, 0xB5, 0xB6, 0xB7 => dma.*[0].setDmadad(setQuart(dma.*[0].dad, byte_addr, value)),
0xB8, 0xB9 => dma.*[0].setDmacntL(setHalf(u16, dma.*[0].word_count, byte_addr, value)),
0xBA, 0xBB => dma.*[0].setDmacntH(setHalf(u16, dma.*[0].cnt.raw, byte_addr, value)),
0xBC, 0xBD, 0xBE, 0xBF => dma.*[1].setDmasad(setQuart(dma.*[1].sad, byte_addr, value)),
0xC0, 0xC1, 0xC2, 0xC3 => dma.*[1].setDmadad(setQuart(dma.*[1].dad, byte_addr, value)),
0xC4, 0xC5 => dma.*[1].setDmacntL(setHalf(u16, dma.*[1].word_count, byte_addr, value)),
0xC6, 0xC7 => dma.*[1].setDmacntH(setHalf(u16, dma.*[1].cnt.raw, byte_addr, value)),
0xC8, 0xC9, 0xCA, 0xCB => dma.*[2].setDmasad(setQuart(dma.*[2].sad, byte_addr, value)),
0xCC, 0xCD, 0xCE, 0xCF => dma.*[2].setDmadad(setQuart(dma.*[2].dad, byte_addr, value)),
0xD0, 0xD1 => dma.*[2].setDmacntL(setHalf(u16, dma.*[2].word_count, byte_addr, value)),
0xD2, 0xD3 => dma.*[2].setDmacntH(setHalf(u16, dma.*[2].cnt.raw, byte_addr, value)),
0xD4, 0xD5, 0xD6, 0xD7 => dma.*[3].setDmasad(setQuart(dma.*[3].sad, byte_addr, value)),
0xD8, 0xD9, 0xDA, 0xDB => dma.*[3].setDmadad(setQuart(dma.*[3].dad, byte_addr, value)),
0xDC, 0xDD => dma.*[3].setDmacntL(setHalf(u16, dma.*[3].word_count, byte_addr, value)),
0xDE, 0xDF => dma.*[3].setDmacntH(setHalf(u16, dma.*[3].cnt.raw, byte_addr, value)),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
},
else => @compileError("DMA: Unsupported write width"),
}
}
@@ -99,6 +151,7 @@ fn DmaController(comptime id: u2) type {
const sad_mask: u32 = if (id == 0) 0x07FF_FFFF else 0x0FFF_FFFF;
const dad_mask: u32 = if (id != 3) 0x07FF_FFFF else 0x0FFF_FFFF;
const WordCount = if (id == 3) u16 else u14;
/// Write-only. The first address in a DMA transfer. (DMASAD)
/// Note: use writeSrc instead of manipulating src_addr directly
@@ -107,17 +160,19 @@ fn DmaController(comptime id: u2) type {
/// Note: Use writeDst instead of manipulatig dst_addr directly
dad: u32,
/// Write-only. The Word Count for the DMA Transfer (DMACNT_L)
word_count: if (id == 3) u16 else u14,
word_count: WordCount,
/// Read / Write. DMACNT_H
/// Note: Use writeControl instead of manipulating cnt directly.
cnt: DmaControl,
/// Internal. The last successfully read value
data_latch: u32,
/// Internal. Currrent Source Address
sad_latch: u32,
/// Internal. Current Destination Address
dad_latch: u32,
/// Internal. Word Count
_word_count: if (id == 3) u16 else u14,
_word_count: WordCount,
/// Some DMA Transfers are enabled during Hblank / VBlank and / or
/// have delays. Thefore bit 15 of DMACNT isn't actually something
@@ -134,11 +189,17 @@ fn DmaController(comptime id: u2) type {
// Internals
.sad_latch = 0,
.dad_latch = 0,
.data_latch = 0,
._word_count = 0,
.in_progress = false,
};
}
pub fn reset(self: *Self) void {
self.* = Self.init();
}
pub fn setDmasad(self: *Self, addr: u32) void {
self.sad = addr & sad_mask;
}
@@ -148,7 +209,11 @@ fn DmaController(comptime id: u2) type {
}
pub fn setDmacntL(self: *Self, halfword: u16) void {
self.word_count = @truncate(@TypeOf(self.word_count), halfword);
self.word_count = @truncate(halfword);
}
pub fn dmacntH(self: *const Self) u16 {
return self.cnt.raw & if (id == 3) 0xFFE0 else 0xF7E0;
}
pub fn setDmacntH(self: *Self, halfword: u16) void {
@@ -158,7 +223,7 @@ fn DmaController(comptime id: u2) type {
// Reload Internals on Rising Edge.
self.sad_latch = self.sad;
self.dad_latch = self.dad;
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
self._word_count = if (self.word_count == 0) std.math.maxInt(WordCount) else self.word_count;
// Only a Start Timing of 00 has a DMA Transfer immediately begin
self.in_progress = new.start_timing.read() == 0b00;
@@ -168,32 +233,46 @@ fn DmaController(comptime id: u2) type {
}
pub fn setDmacnt(self: *Self, word: u32) void {
self.setDmacntL(@truncate(u16, word));
self.setDmacntH(@truncate(u16, word >> 16));
self.setDmacntL(@truncate(word));
self.setDmacntH(@truncate(word >> 16));
}
pub fn step(self: *Self, cpu: *Arm7tdmi) void {
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
const is_fifo = (id == 1 or id == 2) and self.cnt.start_timing.read() == 0b11;
const sad_adj = @intToEnum(Adjustment, self.cnt.sad_adj.read());
const dad_adj = if (is_fifo) .Fixed else @intToEnum(Adjustment, self.cnt.dad_adj.read());
const sad_adj: Adjustment = @enumFromInt(self.cnt.sad_adj.read());
const dad_adj: Adjustment = if (is_fifo) .Fixed else @enumFromInt(self.cnt.dad_adj.read());
const transfer_type = is_fifo or self.cnt.transfer_type.read();
const offset: u32 = if (transfer_type) @sizeOf(u32) else @sizeOf(u16);
const mask = if (transfer_type) ~@as(u32, 3) else ~@as(u32, 1);
const sad_addr = self.sad_latch & mask;
const dad_addr = self.dad_latch & mask;
if (transfer_type) {
cpu.bus.write(u32, self.dad_latch & mask, cpu.bus.read(u32, self.sad_latch & mask));
if (sad_addr >= 0x0200_0000) self.data_latch = cpu.bus.read(u32, sad_addr);
cpu.bus.write(u32, dad_addr, self.data_latch);
} else {
cpu.bus.write(u16, self.dad_latch & mask, cpu.bus.read(u16, self.sad_latch & mask));
if (sad_addr >= 0x0200_0000) {
const value: u32 = cpu.bus.read(u16, sad_addr);
self.data_latch = value << 16 | value;
}
cpu.bus.write(u16, dad_addr, @as(u16, @truncate(rotr(u32, self.data_latch, 8 * (dad_addr & 3)))));
}
switch (sad_adj) {
.Increment => self.sad_latch +%= offset,
.Decrement => self.sad_latch -%= offset,
// FIXME: Is just ignoring this ok?
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
.Fixed => {},
switch (@as(u8, @truncate(sad_addr >> 24))) {
// according to fleroviux, DMAs with a source address in ROM misbehave
// the resultant behaviour is that the source address will increment despite what DMAXCNT says
0x08...0x0D => self.sad_latch +%= offset, // obscure behaviour
else => switch (sad_adj) {
.Increment => self.sad_latch +%= offset,
.Decrement => self.sad_latch -%= offset,
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
.Fixed => {},
},
}
switch (dad_adj) {
@@ -207,17 +286,17 @@ fn DmaController(comptime id: u2) type {
if (self._word_count == 0) {
if (self.cnt.irq.read()) {
switch (id) {
0 => cpu.bus.io.irq.dma0.set(),
1 => cpu.bus.io.irq.dma1.set(),
2 => cpu.bus.io.irq.dma2.set(),
3 => cpu.bus.io.irq.dma3.set(),
0 => bus_ptr.io.irq.dma0.write(true),
1 => bus_ptr.io.irq.dma1.write(true),
2 => bus_ptr.io.irq.dma2.write(true),
3 => bus_ptr.io.irq.dma3.write(true),
}
cpu.handleInterrupt();
handleInterrupt(cpu);
}
// If we're not repeating, Fire the IRQs and disable the DMA
if (!self.cnt.repeat.read()) self.cnt.enabled.unset();
if (!self.cnt.repeat.read()) self.cnt.enabled.write(false);
// We want to disable our internal enabled flag regardless of repeat
// because we only want to step A DMA that repeats during it's specific
@@ -242,7 +321,7 @@ fn DmaController(comptime id: u2) type {
// Reload internal DAD latch if we are in IncrementRelaod
if (self.in_progress) {
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
if (@intToEnum(Adjustment, self.cnt.dad_adj.read()) == .IncrementReload) self.dad_latch = self.dad;
if (@as(Adjustment, @enumFromInt(self.cnt.dad_adj.read())) == .IncrementReload) self.dad_latch = self.dad;
}
}
@@ -259,18 +338,15 @@ fn DmaController(comptime id: u2) type {
// FIXME: Safe to just assume whatever DAD is set to is the FIFO Address?
// self.dad_latch = fifo_addr;
self.cnt.repeat.set();
self.cnt.repeat.write(true);
self._word_count = 4;
self.in_progress = true;
}
};
}
pub fn pollDmaOnBlank(bus: *Bus, comptime kind: DmaKind) void {
bus.dma[0].poll(kind);
bus.dma[1].poll(kind);
bus.dma[2].poll(kind);
bus.dma[3].poll(kind);
pub fn onBlanking(bus: *Bus, comptime kind: DmaKind) void {
inline for (0..4) |i| bus.dma[i].poll(kind);
}
const Adjustment = enum(u2) {

View File

@@ -1,11 +1,14 @@
const std = @import("std");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Bit = @import("bitjuggle").Boolean;
const DateTime = @import("datetime").datetime.Datetime;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Bus = @import("../Bus.zig");
const Scheduler = @import("../scheduler.zig").Scheduler;
const Allocator = std.mem.Allocator;
const handleInterrupt = @import("../cpu_util.zig").handleInterrupt;
/// GPIO Register Implementation
pub const Gpio = struct {
const Self = @This();
@@ -28,8 +31,8 @@ pub const Gpio = struct {
fn step(self: *Device, value: u4) u4 {
return switch (self.kind) {
.Rtc => blk: {
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?));
break :blk clock.step(Clock.Data{ .raw = value });
const clock: *Clock = @ptrCast(@alignCast(self.ptr.?));
break :blk clock.step(.{ .raw = value });
},
.None => value,
};
@@ -68,9 +71,11 @@ pub const Gpio = struct {
log.info("Device: {}", .{kind});
const self = try allocator.create(Self);
errdefer allocator.destroy(self);
self.* = .{
.data = 0b0000,
.direction = 0b1111, // TODO: What is GPIO DIrection set to by default?
.direction = 0b1111, // TODO: What is GPIO Direction set to by default?
.cnt = 0b0,
.device = switch (kind) {
@@ -89,7 +94,7 @@ pub const Gpio = struct {
pub fn deinit(self: *Self, allocator: Allocator) void {
switch (self.device.kind) {
.Rtc => allocator.destroy(@ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.device.ptr.?))),
.Rtc => allocator.destroy(@as(*Clock, @ptrCast(@alignCast(self.device.ptr.?)))),
.None => {},
}
@@ -141,16 +146,16 @@ pub const Clock = struct {
/// 2. A `count`, which keeps track of which byte is currently being read
/// 3. An index, which keeps track of which bit of the byte determined by `count` is being read
fn read(self: *Reader, clock: *const Clock, register: Register) u1 {
const idx = @intCast(u3, self.i);
const idx: u3 = @intCast(self.i);
defer self.i += 1;
// FIXME: What do I do about the unused bits?
return switch (register) {
.Control => @truncate(u1, switch (self.count) {
.Control => @truncate(switch (self.count) {
0 => clock.cnt.raw >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
}),
.DateTime => @truncate(u1, switch (self.count) {
.DateTime => @truncate(switch (self.count) {
// Date
0 => clock.year >> idx,
1 => @as(u8, clock.month) >> idx,
@@ -163,7 +168,7 @@ pub const Clock = struct {
6 => @as(u8, clock.second) >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 7 bytes)", .{ self.count, register }),
}),
.Time => @truncate(u1, switch (self.count) {
.Time => @truncate(switch (self.count) {
0 => @as(u8, clock.hour) >> idx,
1 => @as(u8, clock.minute) >> idx,
2 => @as(u8, clock.second) >> idx,
@@ -202,7 +207,7 @@ pub const Clock = struct {
/// Append a bit to the internal bit buffer (aka an integer)
fn push(self: *Writer, value: u1) void {
const idx = @intCast(u3, self.i);
const idx: u3 = @intCast(self.i);
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
self.i += 1;
}
@@ -285,20 +290,22 @@ pub const Clock = struct {
.gpio = gpio, // Can't use Arm7tdmi ptr b/c not initialized yet
};
cpu.sched.push(.RealTimeClock, 1 << 24); // Every Second
const sched_ptr: *Scheduler = @ptrCast(@alignCast(cpu.sched.ptr));
sched_ptr.push(.RealTimeClock, 1 << 24); // Every Second
}
pub fn onClockUpdate(self: *Self, late: u64) void {
self.cpu.sched.push(.RealTimeClock, (1 << 24) -| late); // Reschedule
const sched_ptr: *Scheduler = @ptrCast(@alignCast(self.cpu.sched.ptr));
sched_ptr.push(.RealTimeClock, (1 << 24) -| late); // Reschedule
const now = DateTime.now();
self.year = bcd(u8, @intCast(u8, now.date.year - 2000));
self.month = bcd(u5, now.date.month);
self.day = bcd(u6, now.date.day);
self.weekday = bcd(u3, (now.date.weekday() + 1) % 7); // API is Monday = 0, Sunday = 6. We want Sunday = 0, Saturday = 6
self.hour = bcd(u6, now.time.hour);
self.minute = bcd(u7, now.time.minute);
self.second = bcd(u7, now.time.second);
self.year = bcd(@intCast(now.date.year - 2000));
self.month = @truncate(bcd(now.date.month));
self.day = @truncate(bcd(now.date.day));
self.weekday = @truncate(bcd((now.date.weekday() + 1) % 7)); // API is Monday = 0, Sunday = 6. We want Sunday = 0, Saturday = 6
self.hour = @truncate(bcd(now.time.hour));
self.minute = @truncate(bcd(now.time.minute));
self.second = @truncate(bcd(now.time.second));
}
fn step(self: *Self, value: Data) u4 {
@@ -314,14 +321,14 @@ pub const Clock = struct {
}
}
break :blk @truncate(u4, value.raw);
break :blk @truncate(value.raw);
},
.Command => blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
self.writer.push(@boolToInt(value.sio.read()));
self.writer.push(@intFromBool(value.sio.read()));
if (self.writer.finished()) {
self.state = self.processCommand(self.writer.buf);
@@ -331,14 +338,14 @@ pub const Clock = struct {
}
}
break :blk @truncate(u4, value.raw);
break :blk @truncate(value.raw);
},
.Write => |register| blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
self.writer.push(@boolToInt(value.sio.read()));
self.writer.push(@intFromBool(value.sio.read()));
const register_width: u32 = switch (register) {
.Control => 1,
@@ -357,7 +364,7 @@ pub const Clock = struct {
}
}
break :blk @truncate(u4, value.raw);
break :blk @truncate(value.raw);
},
.Read => |register| blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
@@ -383,7 +390,7 @@ pub const Clock = struct {
}
}
break :blk @truncate(u4, ret.raw);
break :blk @truncate(ret.raw);
},
};
}
@@ -396,11 +403,13 @@ pub const Clock = struct {
}
fn irq(self: *Self) void {
const bus_ptr: *Bus = @ptrCast(@alignCast(self.cpu.bus.ptr));
// TODO: Confirm that this is the right behaviour
log.debug("Force GamePak IRQ", .{});
self.cpu.bus.io.irq.game_pak.set();
self.cpu.handleInterrupt();
bus_ptr.io.irq.game_pak.write(true);
handleInterrupt(self.cpu);
}
fn processCommand(self: *Self, raw_command: u8) State {
@@ -420,7 +429,7 @@ pub const Clock = struct {
log.debug("Handling Command 0x{X:0>2} [0b{b:0>8}]", .{ command, command });
const is_write = command & 1 == 0;
const rtc_register = @truncate(u3, command >> 1 & 0x7);
const rtc_register: u3 = @truncate(command >> 1 & 0x7);
if (is_write) {
return switch (rtc_register) {
@@ -448,16 +457,8 @@ pub const Clock = struct {
}
};
fn bcd(comptime T: type, value: u8) T {
var input = value;
var ret: u8 = 0;
var shift: u3 = 0;
while (input > 0) {
ret |= (input % 10) << (shift << 2);
shift += 1;
input /= 10;
}
return @truncate(T, ret);
/// Converts an 8-bit unsigned integer to its BCD representation.
/// Note: Algorithm only works for values between 0 and 99 inclusive.
fn bcd(value: u8) u8 {
return ((value / 10) << 4) + (value % 10);
}

View File

@@ -1,18 +1,16 @@
const std = @import("std");
const builtin = @import("builtin");
const timer = @import("timer.zig");
const dma = @import("dma.zig");
const apu = @import("../apu.zig");
const ppu = @import("../ppu.zig");
const util = @import("../../util.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Bit = @import("bitjuggle").Boolean;
const Bitfield = @import("bitjuggle").Bitfield;
const Bus = @import("../Bus.zig");
const DmaController = @import("dma.zig").DmaController;
const Scheduler = @import("../scheduler.zig").Scheduler;
const setHi = util.setLo;
const setLo = util.setHi;
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const log = std.log.scoped(.@"I/O");
@@ -24,23 +22,29 @@ pub const Io = struct {
ie: InterruptEnable,
irq: InterruptRequest,
postflg: PostFlag,
waitcnt: WaitControl,
haltcnt: HaltControl,
keyinput: KeyInput,
keyinput: AtomicKeyInput,
pub fn init() Self {
return .{
.ime = false,
.ie = .{ .raw = 0x0000 },
.irq = .{ .raw = 0x0000 },
.keyinput = .{ .raw = 0x03FF },
.keyinput = AtomicKeyInput.init(.{ .raw = 0x03FF }),
.waitcnt = .{ .raw = 0x0000_0000 }, // Bit 15 == 0 for GBA
.postflg = .FirstBoot,
.haltcnt = .Execute,
};
}
pub fn reset(self: *Self) void {
self.* = Self.init();
}
fn setIrqs(self: *Io, word: u32) void {
self.ie.raw = @truncate(u16, word);
self.irq.raw &= ~@truncate(u16, word >> 16);
self.ie.raw = @truncate(word);
self.irq.raw &= ~@as(u16, @truncate(word >> 16));
}
};
@@ -48,9 +52,10 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
return switch (T) {
u32 => switch (address) {
// Display
0x0400_0000 => bus.ppu.dispcnt.raw,
0x0400_0004 => @as(T, bus.ppu.vcount.raw) << 16 | bus.ppu.dispstat.raw,
0x0400_0006 => @as(T, bus.ppu.bg[0].cnt.raw) << 16 | bus.ppu.vcount.raw,
0x0400_0000...0x0400_0054 => ppu.read(T, &bus.ppu, address),
// Sound
0x0400_0060...0x0400_00A4 => apu.read(T, &bus.apu, address),
// DMA Transfers
0x0400_00B0...0x0400_00DC => dma.read(T, &bus.dma, address),
@@ -68,26 +73,18 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
0x0400_0150 => util.io.read.todo(log, "Read {} from JOY_RECV", .{T}),
// Interrupts
0x0400_0200 => @as(T, bus.io.irq.raw) << 16 | bus.io.ie.raw,
0x0400_0208 => @boolToInt(bus.io.ime),
0x0400_0200 => @as(u32, bus.io.irq.raw) << 16 | bus.io.ie.raw,
0x0400_0204 => bus.io.waitcnt.raw,
0x0400_0208 => @intFromBool(bus.io.ime),
0x0400_0300 => @intFromEnum(bus.io.postflg),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
u16 => switch (address) {
// Display
0x0400_0000 => bus.ppu.dispcnt.raw,
0x0400_0004 => bus.ppu.dispstat.raw,
0x0400_0006 => bus.ppu.vcount.raw,
0x0400_0008 => bus.ppu.bg[0].cnt.raw,
0x0400_000A => bus.ppu.bg[1].cnt.raw,
0x0400_000C => bus.ppu.bg[2].cnt.raw,
0x0400_000E => bus.ppu.bg[3].cnt.raw,
0x0400_004C => util.io.read.todo(log, "Read {} from MOSAIC", .{T}),
0x0400_0050 => bus.ppu.bldcnt.raw,
0x0400_0052 => bus.ppu.bldalpha.raw,
0x0400_0054 => bus.ppu.bldy.raw,
0x0400_0000...0x0400_0054 => ppu.read(T, &bus.ppu, address),
// Sound
0x0400_0060...0x0400_009E => apu.read(T, &bus.apu, address),
0x0400_0060...0x0400_00A6 => apu.read(T, &bus.apu, address),
// DMA Transfers
0x0400_00B0...0x0400_00DE => dma.read(T, &bus.dma, address),
@@ -99,32 +96,38 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
0x0400_0128 => util.io.read.todo(log, "Read {} from SIOCNT", .{T}),
// Keypad Input
0x0400_0130 => bus.io.keyinput.raw,
0x0400_0130 => bus.io.keyinput.load(.monotonic),
// Serial Communication 2
0x0400_0134 => util.io.read.todo(log, "Read {} from RCNT", .{T}),
0x0400_0136 => 0x0000,
0x0400_0142 => 0x0000,
0x0400_015A => 0x0000,
// Interrupts
0x0400_0200 => bus.io.ie.raw,
0x0400_0202 => bus.io.irq.raw,
0x0400_0204 => util.io.read.todo(log, "Read {} from WAITCNT", .{T}),
0x0400_0208 => @boolToInt(bus.io.ime),
0x0400_0204 => bus.io.waitcnt.raw,
0x0400_0206 => 0x0000,
0x0400_0208 => @intFromBool(bus.io.ime),
0x0400_020A => 0x0000,
0x0400_0300 => @intFromEnum(bus.io.postflg),
0x0400_0302 => 0x0000,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
u8 => return switch (address) {
// Display
0x0400_0000 => @truncate(T, bus.ppu.dispcnt.raw),
0x0400_0004 => @truncate(T, bus.ppu.dispstat.raw),
0x0400_0005 => @truncate(T, bus.ppu.dispcnt.raw >> 8),
0x0400_0006 => @truncate(T, bus.ppu.vcount.raw),
0x0400_0008 => @truncate(T, bus.ppu.bg[0].cnt.raw),
0x0400_0009 => @truncate(T, bus.ppu.bg[0].cnt.raw >> 8),
0x0400_000A => @truncate(T, bus.ppu.bg[1].cnt.raw),
0x0400_000B => @truncate(T, bus.ppu.bg[1].cnt.raw >> 8),
0x0400_0000...0x0400_0055 => ppu.read(T, &bus.ppu, address),
// Sound
0x0400_0060...0x0400_00A7 => apu.read(T, &bus.apu, address),
// DMA Transfers
0x0400_00B0...0x0400_00DF => dma.read(T, &bus.dma, address),
// Timers
0x0400_0100...0x0400_010F => timer.read(T, &bus.tim, address),
// Serial Communication 1
0x0400_0128 => util.io.read.todo(log, "Read {} from SIOCNT_L", .{T}),
@@ -133,10 +136,20 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
// Serial Communication 2
0x0400_0135 => util.io.read.todo(log, "Read {} from RCNT_H", .{T}),
0x0400_0136, 0x0400_0137 => 0x00,
0x0400_0142, 0x0400_0143 => 0x00,
0x0400_015A, 0x0400_015B => 0x00,
// Interrupts
0x0400_0200 => @truncate(T, bus.io.ie.raw),
0x0400_0300 => @enumToInt(bus.io.postflg),
0x0400_0200, 0x0400_0201 => @truncate(bus.io.ie.raw >> getHalf(@truncate(address))),
0x0400_0202, 0x0400_0203 => @truncate(bus.io.irq.raw >> getHalf(@truncate(address))),
0x0400_0204, 0x0400_0205 => @truncate(bus.io.waitcnt.raw >> getHalf(@truncate(address))),
0x0400_0206, 0x0400_0207 => 0x00,
0x0400_0208, 0x0400_0209 => @truncate(@as(u16, @intFromBool(bus.io.ime)) >> getHalf(@truncate(address))),
0x0400_020A, 0x0400_020B => 0x00,
0x0400_0300 => @intFromEnum(bus.io.postflg),
0x0400_0301 => null,
0x0400_0302, 0x0400_0303 => 0x00,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
else => @compileError("I/O: Unsupported read width"),
@@ -147,34 +160,7 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
return switch (T) {
u32 => switch (address) {
// Display
0x0400_0000 => bus.ppu.dispcnt.raw = @truncate(u16, value),
0x0400_0004 => {
bus.ppu.dispstat.raw = @truncate(u16, value);
bus.ppu.vcount.raw = @truncate(u16, value >> 16);
},
0x0400_0008 => bus.ppu.setAdjCnts(0, value),
0x0400_000C => bus.ppu.setAdjCnts(2, value),
0x0400_0010 => bus.ppu.setBgOffsets(0, value),
0x0400_0014 => bus.ppu.setBgOffsets(1, value),
0x0400_0018 => bus.ppu.setBgOffsets(2, value),
0x0400_001C => bus.ppu.setBgOffsets(3, value),
0x0400_0020 => bus.ppu.aff_bg[0].writePaPb(value),
0x0400_0024 => bus.ppu.aff_bg[0].writePcPd(value),
0x0400_0028 => bus.ppu.aff_bg[0].setX(bus.ppu.dispstat.vblank.read(), value),
0x0400_002C => bus.ppu.aff_bg[0].setY(bus.ppu.dispstat.vblank.read(), value),
0x0400_0030 => bus.ppu.aff_bg[1].writePaPb(value),
0x0400_0034 => bus.ppu.aff_bg[1].writePcPd(value),
0x0400_0038 => bus.ppu.aff_bg[1].setX(bus.ppu.dispstat.vblank.read(), value),
0x0400_003C => bus.ppu.aff_bg[1].setY(bus.ppu.dispstat.vblank.read(), value),
0x0400_0040 => bus.ppu.win.setH(value),
0x0400_0044 => bus.ppu.win.setV(value),
0x0400_0048 => bus.ppu.win.setIo(value),
0x0400_004C => log.debug("Wrote 0x{X:0>8} to MOSAIC", .{value}),
0x0400_0050 => {
bus.ppu.bldcnt.raw = @truncate(u16, value);
bus.ppu.bldalpha.raw = @truncate(u16, value >> 16);
},
0x0400_0054 => bus.ppu.bldy.raw = @truncate(u16, value),
0x0400_0000...0x0400_0054 => ppu.write(T, &bus.ppu, address, value),
0x0400_0058...0x0400_005C => {}, // Unused
// Sound
@@ -210,65 +196,28 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
// Interrupts
0x0400_0200 => bus.io.setIrqs(value),
0x0400_0204 => log.debug("Wrote 0x{X:0>8} to WAITCNT", .{value}),
0x0400_0204 => bus.io.waitcnt.set(@truncate(value)),
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_020C...0x0400_021C => {}, // Unused
0x0400_0300 => {
bus.io.postflg = @enumFromInt(value & 1);
bus.io.haltcnt = if (value >> 15 & 1 == 0) .Halt else @panic("TODO: Implement STOP");
},
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, address }),
},
u16 => switch (address) {
// Display
0x0400_0000 => bus.ppu.dispcnt.raw = value,
0x0400_0004 => bus.ppu.dispstat.raw = value,
0x0400_0006 => {}, // vcount is read-only
0x0400_0008 => bus.ppu.bg[0].cnt.raw = value,
0x0400_000A => bus.ppu.bg[1].cnt.raw = value,
0x0400_000C => bus.ppu.bg[2].cnt.raw = value,
0x0400_000E => bus.ppu.bg[3].cnt.raw = value,
0x0400_0010 => bus.ppu.bg[0].hofs.raw = value, // TODO: Don't write out every HOFS / VOFS?
0x0400_0012 => bus.ppu.bg[0].vofs.raw = value,
0x0400_0014 => bus.ppu.bg[1].hofs.raw = value,
0x0400_0016 => bus.ppu.bg[1].vofs.raw = value,
0x0400_0018 => bus.ppu.bg[2].hofs.raw = value,
0x0400_001A => bus.ppu.bg[2].vofs.raw = value,
0x0400_001C => bus.ppu.bg[3].hofs.raw = value,
0x0400_001E => bus.ppu.bg[3].vofs.raw = value,
0x0400_0020 => bus.ppu.aff_bg[0].pa = @bitCast(i16, value),
0x0400_0022 => bus.ppu.aff_bg[0].pb = @bitCast(i16, value),
0x0400_0024 => bus.ppu.aff_bg[0].pc = @bitCast(i16, value),
0x0400_0026 => bus.ppu.aff_bg[0].pd = @bitCast(i16, value),
0x0400_0028 => bus.ppu.aff_bg[0].x = @bitCast(i32, setLo(u32, @bitCast(u32, bus.ppu.aff_bg[0].x), value)),
0x0400_002A => bus.ppu.aff_bg[0].x = @bitCast(i32, setHi(u32, @bitCast(u32, bus.ppu.aff_bg[0].x), value)),
0x0400_002C => bus.ppu.aff_bg[0].y = @bitCast(i32, setLo(u32, @bitCast(u32, bus.ppu.aff_bg[0].y), value)),
0x0400_002E => bus.ppu.aff_bg[0].y = @bitCast(i32, setHi(u32, @bitCast(u32, bus.ppu.aff_bg[0].y), value)),
0x0400_0030 => bus.ppu.aff_bg[1].pa = @bitCast(i16, value),
0x0400_0032 => bus.ppu.aff_bg[1].pb = @bitCast(i16, value),
0x0400_0034 => bus.ppu.aff_bg[1].pc = @bitCast(i16, value),
0x0400_0036 => bus.ppu.aff_bg[1].pd = @bitCast(i16, value),
0x0400_0038 => bus.ppu.aff_bg[1].x = @bitCast(i32, setLo(u32, @bitCast(u32, bus.ppu.aff_bg[1].x), value)),
0x0400_003A => bus.ppu.aff_bg[1].x = @bitCast(i32, setHi(u32, @bitCast(u32, bus.ppu.aff_bg[1].x), value)),
0x0400_003C => bus.ppu.aff_bg[1].y = @bitCast(i32, setLo(u32, @bitCast(u32, bus.ppu.aff_bg[1].y), value)),
0x0400_003E => bus.ppu.aff_bg[1].y = @bitCast(i32, setHi(u32, @bitCast(u32, bus.ppu.aff_bg[1].y), value)),
0x0400_0040 => bus.ppu.win.h[0].raw = value,
0x0400_0042 => bus.ppu.win.h[1].raw = value,
0x0400_0044 => bus.ppu.win.v[0].raw = value,
0x0400_0046 => bus.ppu.win.v[1].raw = value,
0x0400_0048 => bus.ppu.win.in.raw = value,
0x0400_004A => bus.ppu.win.out.raw = value,
0x0400_004C => log.debug("Wrote 0x{X:0>4} to MOSAIC", .{value}),
0x0400_0050 => bus.ppu.bldcnt.raw = value,
0x0400_0052 => bus.ppu.bldalpha.raw = value,
0x0400_0054 => bus.ppu.bldy.raw = value,
0x0400_004E, 0x0400_0056 => {}, // Not used
0x0400_0000...0x0400_0054 => ppu.write(T, &bus.ppu, address, value),
0x0400_0056 => {}, // Not used
// Sound
0x0400_0060...0x0400_009E => apu.write(T, &bus.apu, address, value),
0x0400_0060...0x0400_00A6 => apu.write(T, &bus.apu, address, value),
// Dma Transfers
0x0400_00B0...0x0400_00DE => dma.write(T, &bus.dma, address, value),
// Timers
0x0400_0100...0x0400_010E => timer.write(T, &bus.tim, address, value),
0x0400_0114 => {}, // TODO: Gyakuten Saiban writes 0x8000 to 0x0400_0114
0x0400_0114 => {},
0x0400_0110 => {}, // Not Used,
// Serial Communication 1
@@ -292,27 +241,29 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
// Interrupts
0x0400_0200 => bus.io.ie.raw = value,
0x0400_0202 => bus.io.irq.raw &= ~value,
0x0400_0204 => log.debug("Wrote 0x{X:0>4} to WAITCNT", .{value}),
0x0400_0204 => bus.io.waitcnt.set(value),
0x0400_0206 => {},
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0206, 0x0400_020A => {}, // Not Used
0x0400_020A => {},
0x0400_0300 => {
bus.io.postflg = @enumFromInt(value & 1);
bus.io.haltcnt = if (value >> 15 & 1 == 0) .Halt else @panic("TODO: Implement STOP");
},
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, address }),
},
u8 => switch (address) {
// Display
0x0400_0004 => bus.ppu.dispstat.raw = setLo(u16, bus.ppu.dispstat.raw, value),
0x0400_0005 => bus.ppu.dispstat.raw = setHi(u16, bus.ppu.dispstat.raw, value),
0x0400_0008 => bus.ppu.bg[0].cnt.raw = setLo(u16, bus.ppu.bg[0].cnt.raw, value),
0x0400_0009 => bus.ppu.bg[0].cnt.raw = setHi(u16, bus.ppu.bg[0].cnt.raw, value),
0x0400_000A => bus.ppu.bg[1].cnt.raw = setLo(u16, bus.ppu.bg[1].cnt.raw, value),
0x0400_000B => bus.ppu.bg[1].cnt.raw = setHi(u16, bus.ppu.bg[1].cnt.raw, value),
0x0400_0048 => bus.ppu.win.in.raw = setLo(u16, bus.ppu.win.in.raw, value),
0x0400_0049 => bus.ppu.win.in.raw = setHi(u16, bus.ppu.win.in.raw, value),
0x0400_004A => bus.ppu.win.out.raw = setLo(u16, bus.ppu.win.out.raw, value),
0x0400_0054 => bus.ppu.bldy.raw = setLo(u16, bus.ppu.bldy.raw, value),
0x0400_0000...0x0400_0055 => ppu.write(T, &bus.ppu, address, value),
// Sound
0x0400_0060...0x0400_00A7 => apu.write(T, &bus.apu, address, value),
// Dma Transfers
0x0400_00B0...0x0400_00DF => dma.write(T, &bus.dma, address, value),
// Timers
0x0400_0100...0x0400_010F => timer.write(T, &bus.tim, address, value),
// Serial Communication 1
0x0400_0120 => log.debug("Wrote 0x{X:0>2} to SIODATA32_L_L", .{value}),
0x0400_0128 => log.debug("Wrote 0x{X:0>2} to SIOCNT_L", .{value}),
@@ -322,9 +273,16 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
0x0400_0140 => log.debug("Wrote 0x{X:0>2} to JOYCNT_L", .{value}),
// Interrupts
0x0400_0200, 0x0400_0201 => bus.io.ie.raw = setHalf(u16, bus.io.ie.raw, @truncate(address), value),
0x0400_0202 => bus.io.irq.raw &= ~@as(u16, value),
0x0400_0203 => bus.io.irq.raw &= ~@as(u16, value) << 8, // TODO: Is this good?
0x0400_0204, 0x0400_0205 => bus.io.waitcnt.set(setHalf(u16, bus.io.waitcnt.raw, @truncate(address), value)),
0x0400_0206, 0x0400_0207 => {},
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0300 => bus.io.postflg = std.meta.intToEnum(PostFlag, value & 1) catch unreachable,
0x0400_0209 => {},
0x0400_020A, 0x0400_020B => {},
0x0400_0300 => bus.io.postflg = @enumFromInt(value & 1),
0x0400_0301 => bus.io.haltcnt = if (value >> 7 & 1 == 0) .Halt else std.debug.panic("TODO: Implement STOP", .{}),
0x0400_0410 => log.debug("Wrote 0x{X:0>2} to the common yet undocumented 0x{X:0>8}", .{ value, address }),
@@ -363,14 +321,22 @@ pub const DisplayControl = extern union {
/// Read / Write
pub const DisplayStatus = extern union {
/// read-only
vblank: Bit(u16, 0),
/// read-only
hblank: Bit(u16, 1),
// read-only
coincidence: Bit(u16, 2),
vblank_irq: Bit(u16, 3),
hblank_irq: Bit(u16, 4),
vcount_irq: Bit(u16, 5),
vcount_trigger: Bitfield(u16, 8, 8),
raw: u16,
pub fn set(self: *DisplayStatus, value: u16) void {
const mask: u16 = 0x00C7; // set bits are read-only
self.raw = (self.raw & mask) | (value & ~mask);
}
};
/// Read Only
@@ -384,10 +350,10 @@ const InterruptEnable = extern union {
vblank: Bit(u16, 0),
hblank: Bit(u16, 1),
coincidence: Bit(u16, 2),
tm0_overflow: Bit(u16, 3),
tm1_overflow: Bit(u16, 4),
tm2_overflow: Bit(u16, 5),
tm3_overflow: Bit(u16, 6),
tim0: Bit(u16, 3),
tim1: Bit(u16, 4),
tim2: Bit(u16, 5),
tim3: Bit(u16, 6),
serial: Bit(u16, 7),
dma0: Bit(u16, 8),
dma1: Bit(u16, 9),
@@ -400,7 +366,7 @@ const InterruptEnable = extern union {
/// Read Only
/// 0 = Pressed, 1 = Released
const KeyInput = extern union {
pub const KeyInput = extern union {
a: Bit(u16, 0),
b: Bit(u16, 1),
select: Bit(u16, 2),
@@ -414,6 +380,32 @@ const KeyInput = extern union {
raw: u16,
};
const AtomicKeyInput = struct {
const Self = @This();
const AtomicOrder = std.builtin.AtomicOrder;
inner: KeyInput,
pub fn init(value: KeyInput) Self {
return .{ .inner = value };
}
pub inline fn load(self: *const Self, comptime ordering: AtomicOrder) u16 {
return switch (ordering) {
.acq_rel, .release => @compileError("not supported for atomic loads"),
else => @atomicLoad(u16, &self.inner.raw, ordering),
};
}
pub inline fn fetchOr(self: *Self, value: u16, comptime ordering: AtomicOrder) void {
_ = @atomicRmw(u16, &self.inner.raw, .Or, value, ordering);
}
pub inline fn fetchAnd(self: *Self, value: u16, comptime ordering: AtomicOrder) void {
_ = @atomicRmw(u16, &self.inner.raw, .And, value, ordering);
}
};
// Read / Write
pub const BackgroundControl = extern union {
priority: Bitfield(u16, 0, 2),
@@ -462,6 +454,8 @@ pub const BldY = extern union {
raw: u16,
};
const u8WriteKind = enum { Hi, Lo };
/// Write-only
pub const WinH = extern union {
x2: Bitfield(u16, 0, 8),
@@ -471,6 +465,8 @@ pub const WinH = extern union {
/// Write-only
pub const WinV = extern union {
const Self = @This();
y2: Bitfield(u16, 0, 8),
y1: Bitfield(u16, 8, 8),
raw: u16,
@@ -479,20 +475,20 @@ pub const WinV = extern union {
pub const WinIn = extern union {
w0_bg: Bitfield(u16, 0, 4),
w0_obj: Bit(u16, 4),
w0_colour: Bit(u16, 5),
w0_bld: Bit(u16, 5),
w1_bg: Bitfield(u16, 8, 4),
w1_obj: Bit(u16, 12),
w1_colour: Bit(u16, 13),
w1_bld: Bit(u16, 13),
raw: u16,
};
pub const WinOut = extern union {
out_bg: Bitfield(u16, 0, 4),
out_obj: Bit(u16, 4),
out_colour: Bit(u16, 5),
out_bld: Bit(u16, 5),
obj_bg: Bitfield(u16, 8, 4),
obj_obj: Bit(u16, 12),
obj_colour: Bit(u16, 13),
obj_bld: Bit(u16, 13),
raw: u16,
};
@@ -661,3 +657,24 @@ pub const SoundBias = extern union {
sampling_cycle: Bitfield(u16, 14, 2),
raw: u16,
};
/// Read / Write
pub const WaitControl = extern union {
sram_cnt: Bitfield(u16, 0, 2),
s0_first: Bitfield(u16, 2, 2),
s0_second: Bit(u16, 4),
s1_first: Bitfield(u16, 5, 2),
s1_second: Bit(u16, 7),
s2_first: Bitfield(u16, 8, 2),
s2_second: Bit(u16, 10),
phi_out: Bitfield(u16, 11, 2),
prefetch_enable: Bit(u16, 14),
pak_kind: Bit(u16, 15),
raw: u16,
pub fn set(self: *WaitControl, value: u16) void {
const mask: u16 = 0x8000; // set bits are read-only
self.raw = (self.raw & mask) | (value & ~mask);
}
};

View File

@@ -2,68 +2,102 @@ const std = @import("std");
const util = @import("../../util.zig");
const TimerControl = @import("io.zig").TimerControl;
const Io = @import("io.zig").Io;
const Scheduler = @import("../scheduler.zig").Scheduler;
const Event = @import("../scheduler.zig").Event;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Bus = @import("../Bus.zig");
pub const TimerTuple = std.meta.Tuple(&[_]type{ Timer(0), Timer(1), Timer(2), Timer(3) });
const handleInterrupt = @import("../cpu_util.zig").handleInterrupt;
pub const TimerTuple = struct { Timer(0), Timer(1), Timer(2), Timer(3) };
const log = std.log.scoped(.Timer);
const getHalf = util.getHalf;
const setHalf = util.setHalf;
pub fn create(sched: *Scheduler) TimerTuple {
return .{ Timer(0).init(sched), Timer(1).init(sched), Timer(2).init(sched), Timer(3).init(sched) };
}
pub fn read(comptime T: type, tim: *const TimerTuple, addr: u32) ?T {
const nybble = @truncate(u4, addr);
const nybble_addr: u4 = @truncate(addr);
return switch (T) {
u32 => switch (nybble) {
u32 => switch (nybble_addr) {
0x0 => @as(T, tim.*[0].cnt.raw) << 16 | tim.*[0].timcntL(),
0x4 => @as(T, tim.*[1].cnt.raw) << 16 | tim.*[1].timcntL(),
0x8 => @as(T, tim.*[2].cnt.raw) << 16 | tim.*[2].timcntL(),
0xC => @as(T, tim.*[3].cnt.raw) << 16 | tim.*[3].timcntL(),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (nybble) {
u16 => switch (nybble_addr) {
0x0 => tim.*[0].timcntL(),
0x2 => tim.*[0].cnt.raw,
0x4 => tim.*[1].timcntL(),
0x6 => tim.*[1].cnt.raw,
0x8 => tim.*[2].timcntL(),
0xA => tim.*[2].cnt.raw,
0xC => tim.*[3].timcntL(),
0xE => tim.*[3].cnt.raw,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (nybble_addr) {
0x0, 0x1 => @truncate(tim.*[0].timcntL() >> getHalf(nybble_addr)),
0x2, 0x3 => @truncate(tim.*[0].cnt.raw >> getHalf(nybble_addr)),
0x4, 0x5 => @truncate(tim.*[1].timcntL() >> getHalf(nybble_addr)),
0x6, 0x7 => @truncate(tim.*[1].cnt.raw >> getHalf(nybble_addr)),
0x8, 0x9 => @truncate(tim.*[2].timcntL() >> getHalf(nybble_addr)),
0xA, 0xB => @truncate(tim.*[2].cnt.raw >> getHalf(nybble_addr)),
0xC, 0xD => @truncate(tim.*[3].timcntL() >> getHalf(nybble_addr)),
0xE, 0xF => @truncate(tim.*[3].cnt.raw >> getHalf(nybble_addr)),
},
u8 => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
else => @compileError("TIM: Unsupported read width"),
};
}
pub fn write(comptime T: type, tim: *TimerTuple, addr: u32, value: T) void {
const nybble = @truncate(u4, addr);
const nybble_addr: u4 = @truncate(addr);
return switch (T) {
u32 => switch (nybble) {
u32 => switch (nybble_addr) {
0x0 => tim.*[0].setTimcnt(value),
0x4 => tim.*[1].setTimcnt(value),
0x8 => tim.*[2].setTimcnt(value),
0xC => tim.*[3].setTimcnt(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (nybble) {
u16 => switch (nybble_addr) {
0x0 => tim.*[0].setTimcntL(value),
0x2 => tim.*[0].setTimcntH(value),
0x4 => tim.*[1].setTimcntL(value),
0x6 => tim.*[1].setTimcntH(value),
0x8 => tim.*[2].setTimcntL(value),
0xA => tim.*[2].setTimcntH(value),
0xC => tim.*[3].setTimcntL(value),
0xE => tim.*[3].setTimcntH(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
u8 => switch (nybble_addr) {
0x0, 0x1 => tim.*[0].setTimcntL(setHalf(u16, tim.*[0]._reload, nybble_addr, value)),
0x2, 0x3 => tim.*[0].setTimcntH(setHalf(u16, tim.*[0].cnt.raw, nybble_addr, value)),
0x4, 0x5 => tim.*[1].setTimcntL(setHalf(u16, tim.*[1]._reload, nybble_addr, value)),
0x6, 0x7 => tim.*[1].setTimcntH(setHalf(u16, tim.*[1].cnt.raw, nybble_addr, value)),
0x8, 0x9 => tim.*[2].setTimcntL(setHalf(u16, tim.*[2]._reload, nybble_addr, value)),
0xA, 0xB => tim.*[2].setTimcntH(setHalf(u16, tim.*[2].cnt.raw, nybble_addr, value)),
0xC, 0xD => tim.*[3].setTimcntL(setHalf(u16, tim.*[3]._reload, nybble_addr, value)),
0xE, 0xF => tim.*[3].setTimcntH(setHalf(u16, tim.*[3].cnt.raw, nybble_addr, value)),
},
else => @compileError("TIM: Unsupported write width"),
};
}
@@ -97,11 +131,17 @@ fn Timer(comptime id: u2) type {
};
}
pub fn reset(self: *Self) void {
const scheduler = self.sched;
self.* = Self.init(scheduler);
}
/// TIMCNT_L Getter
pub fn timcntL(self: *const Self) u16 {
if (self.cnt.cascade.read() or !self.cnt.enabled.read()) return self._counter;
return self._counter +% @truncate(u16, (self.sched.now() - self._start_timestamp) / self.frequency());
return self._counter +% @as(u16, @truncate((self.sched.now() - self._start_timestamp) / self.frequency()));
}
/// TIMCNT_L Setter
@@ -111,71 +151,85 @@ fn Timer(comptime id: u2) type {
/// TIMCNT_L & TIMCNT_H
pub fn setTimcnt(self: *Self, word: u32) void {
self.setTimcntL(@truncate(u16, word));
self.setTimcntH(@truncate(u16, word >> 16));
self.setTimcntL(@truncate(word));
self.setTimcntH(@truncate(word >> 16));
}
/// TIMCNT_H
pub fn setTimcntH(self: *Self, halfword: u16) void {
const new = TimerControl{ .raw = halfword };
// If Timer happens to be enabled, It will either be resheduled or disabled
self.sched.removeScheduledEvent(.{ .TimerOverflow = id });
if (self.cnt.enabled.read()) {
// timer was already enabled
if (self.cnt.enabled.read() and (new.cascade.read() or !new.enabled.read())) {
// Either through the cascade bit or the enable bit, the timer has effectively been disabled
// The Counter should hold whatever value it should have been at when it was disabled
self._counter +%= @truncate(u16, (self.sched.now() - self._start_timestamp) / self.frequency());
// If enabled falling edge or cascade falling edge, timer is paused
if (!new.enabled.read() or (!self.cnt.cascade.read() and new.cascade.read())) {
self.sched.removeScheduledEvent(.{ .TimerOverflow = id });
// Counter should hold the value it stopped at meaning we have to calculate it now
self._counter +%= @truncate((self.sched.now() - self._start_timestamp) / self.frequency());
}
// the timer has always been enabled, but the cascade bit which was blocking the timer has been unset
if (new.enabled.read() and (self.cnt.cascade.read() and !new.cascade.read())) {
// we want to reschedule the timer event, however we won't reload the counter.
// the invariant here is that self._counter holds the already calculated paused value
self.rescheduleTimerExpire(0);
}
} else {
// the timer was previously disabeld
if (new.enabled.read()) {
// timer should start counting (with a reloaded counter value)
self._counter = self._reload;
// if cascade happens to be set, the timer doesn't actually do anything though
if (!new.cascade.read()) self.rescheduleTimerExpire(0);
}
}
// The counter is only reloaded on the rising edge of the enable bit
if (!self.cnt.enabled.read() and new.enabled.read()) self._counter = self._reload;
// If Timer is enabled and we're not cascading, we need to schedule an overflow event
if (new.enabled.read() and !new.cascade.read()) self.rescheduleTimerExpire(0);
self.cnt.raw = halfword;
}
pub fn onTimerExpire(self: *Self, cpu: *Arm7tdmi, late: u64) void {
// Fire IRQ if enabled
const io = &cpu.bus.io;
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
const io = &bus_ptr.io;
if (self.cnt.irq.read()) {
switch (id) {
0 => io.irq.tim0.set(),
1 => io.irq.tim1.set(),
2 => io.irq.tim2.set(),
3 => io.irq.tim3.set(),
0 => io.irq.tim0.write(true),
1 => io.irq.tim1.write(true),
2 => io.irq.tim2.write(true),
3 => io.irq.tim3.write(true),
}
cpu.handleInterrupt();
handleInterrupt(cpu);
}
// DMA Sound Things
if (id == 0 or id == 1) {
cpu.bus.apu.onDmaAudioSampleRequest(cpu, id);
bus_ptr.apu.onDmaAudioSampleRequest(cpu, id);
}
// Perform Cascade Behaviour
switch (id) {
0 => if (cpu.bus.tim[1].cnt.cascade.read()) {
cpu.bus.tim[1]._counter +%= 1;
if (cpu.bus.tim[1]._counter == 0) cpu.bus.tim[1].onTimerExpire(cpu, late);
inline 0, 1, 2 => |idx| {
const next = idx + 1;
if (bus_ptr.tim[next].cnt.cascade.read()) {
bus_ptr.tim[next]._counter +%= 1;
if (bus_ptr.tim[next]._counter == 0) bus_ptr.tim[next].onTimerExpire(cpu, late);
}
},
1 => if (cpu.bus.tim[2].cnt.cascade.read()) {
cpu.bus.tim[2]._counter +%= 1;
if (cpu.bus.tim[2]._counter == 0) cpu.bus.tim[2].onTimerExpire(cpu, late);
},
2 => if (cpu.bus.tim[3].cnt.cascade.read()) {
cpu.bus.tim[3]._counter +%= 1;
if (cpu.bus.tim[3]._counter == 0) cpu.bus.tim[3].onTimerExpire(cpu, late);
},
3 => {}, // There is no Timer for TIM3 to "cascade" to,
3 => {}, // THere is no timer for TIM3 to cascade to
}
// Reschedule Timer if we're not cascading
if (!self.cnt.cascade.read()) {
// TIM0 cascade value is N/A
if (id == 0 or !self.cnt.cascade.read()) {
self._counter = self._reload;
self.rescheduleTimerExpire(late);
}

View File

@@ -1,727 +0,0 @@
const std = @import("std");
const util = @import("../util.zig");
const Bus = @import("Bus.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Scheduler = @import("scheduler.zig").Scheduler;
const FilePaths = @import("../util.zig").FilePaths;
const Logger = @import("../util.zig").Logger;
const File = std.fs.File;
// ARM Instructions
pub const arm = struct {
pub const InstrFn = *const fn (*Arm7tdmi, *Bus, u32) void;
const lut: [0x1000]InstrFn = populate();
const processing = @import("cpu/arm/data_processing.zig").dataProcessing;
const psrTransfer = @import("cpu/arm/psr_transfer.zig").psrTransfer;
const transfer = @import("cpu/arm/single_data_transfer.zig").singleDataTransfer;
const halfSignedTransfer = @import("cpu/arm/half_signed_data_transfer.zig").halfAndSignedDataTransfer;
const blockTransfer = @import("cpu/arm/block_data_transfer.zig").blockDataTransfer;
const branch = @import("cpu/arm/branch.zig").branch;
const branchExchange = @import("cpu/arm/branch.zig").branchAndExchange;
const swi = @import("cpu/arm/software_interrupt.zig").armSoftwareInterrupt;
const swap = @import("cpu/arm/single_data_swap.zig").singleDataSwap;
const multiply = @import("cpu/arm/multiply.zig").multiply;
const multiplyLong = @import("cpu/arm/multiply.zig").multiplyLong;
/// Determine index into ARM InstrFn LUT
fn idx(opcode: u32) u12 {
return @truncate(u12, opcode >> 20 & 0xFF) << 4 | @truncate(u12, opcode >> 4 & 0xF);
}
// Undefined ARM Instruction handler
fn und(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const id = idx(opcode);
cpu.panic("[CPU/Decode] ID: 0x{X:0>3} 0x{X:0>8} is an illegal opcode", .{ id, opcode });
}
fn populate() [0x1000]InstrFn {
return comptime {
@setEvalBranchQuota(0xE000);
var ret = [_]InstrFn{und} ** 0x1000;
var i: usize = 0;
while (i < ret.len) : (i += 1) {
ret[i] = switch (@as(u2, i >> 10)) {
0b00 => if (i == 0x121) blk: {
break :blk branchExchange;
} else if (i & 0xFCF == 0x009) blk: {
const A = i >> 5 & 1 == 1;
const S = i >> 4 & 1 == 1;
break :blk multiply(A, S);
} else if (i & 0xFBF == 0x109) blk: {
const B = i >> 6 & 1 == 1;
break :blk swap(B);
} else if (i & 0xF8F == 0x089) blk: {
const U = i >> 6 & 1 == 1;
const A = i >> 5 & 1 == 1;
const S = i >> 4 & 1 == 1;
break :blk multiplyLong(U, A, S);
} else if (i & 0xE49 == 0x009 or i & 0xE49 == 0x049) blk: {
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const I = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
break :blk halfSignedTransfer(P, U, I, W, L);
} else if (i & 0xD90 == 0x100) blk: {
const I = i >> 9 & 1 == 1;
const R = i >> 6 & 1 == 1;
const kind = i >> 4 & 0x3;
break :blk psrTransfer(I, R, kind);
} else blk: {
const I = i >> 9 & 1 == 1;
const S = i >> 4 & 1 == 1;
const instrKind = i >> 5 & 0xF;
break :blk processing(I, S, instrKind);
},
0b01 => if (i >> 9 & 1 == 1 and i & 1 == 1) und else blk: {
const I = i >> 9 & 1 == 1;
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const B = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
break :blk transfer(I, P, U, B, W, L);
},
else => switch (@as(u2, i >> 9 & 0x3)) {
// MSB is guaranteed to be 1
0b00 => blk: {
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const S = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
break :blk blockTransfer(P, U, S, W, L);
},
0b01 => blk: {
const L = i >> 8 & 1 == 1;
break :blk branch(L);
},
0b10 => und, // COP Data Transfer
0b11 => if (i >> 8 & 1 == 1) swi() else und, // COP Data Operation + Register Transfer
},
};
}
return ret;
};
}
};
// THUMB Instructions
pub const thumb = struct {
pub const InstrFn = *const fn (*Arm7tdmi, *Bus, u16) void;
const lut: [0x400]InstrFn = populate();
const processing = @import("cpu/thumb/data_processing.zig");
const alu = @import("cpu/thumb/alu.zig").fmt4;
const transfer = @import("cpu/thumb/data_transfer.zig");
const block_transfer = @import("cpu/thumb/block_data_transfer.zig");
const swi = @import("cpu/thumb/software_interrupt.zig").fmt17;
const branch = @import("cpu/thumb/branch.zig");
/// Determine index into THUMB InstrFn LUT
fn idx(opcode: u16) u10 {
return @truncate(u10, opcode >> 6);
}
/// Undefined THUMB Instruction Handler
fn und(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const id = idx(opcode);
cpu.panic("[CPU/Decode] ID: 0b{b:0>10} 0x{X:0>2} is an illegal opcode", .{ id, opcode });
}
fn populate() [0x400]InstrFn {
return comptime {
@setEvalBranchQuota(5025); // This is exact
var ret = [_]InstrFn{und} ** 0x400;
var i: usize = 0;
while (i < ret.len) : (i += 1) {
ret[i] = switch (@as(u3, i >> 7 & 0x7)) {
0b000 => if (i >> 5 & 0x3 == 0b11) blk: {
const I = i >> 4 & 1 == 1;
const is_sub = i >> 3 & 1 == 1;
const rn = i & 0x7;
break :blk processing.fmt2(I, is_sub, rn);
} else blk: {
const op = i >> 5 & 0x3;
const offset = i & 0x1F;
break :blk processing.fmt1(op, offset);
},
0b001 => blk: {
const op = i >> 5 & 0x3;
const rd = i >> 2 & 0x7;
break :blk processing.fmt3(op, rd);
},
0b010 => switch (@as(u2, i >> 5 & 0x3)) {
0b00 => if (i >> 4 & 1 == 1) blk: {
const op = i >> 2 & 0x3;
const h1 = i >> 1 & 1;
const h2 = i & 1;
break :blk processing.fmt5(op, h1, h2);
} else blk: {
const op = i & 0xF;
break :blk alu(op);
},
0b01 => blk: {
const rd = i >> 2 & 0x7;
break :blk transfer.fmt6(rd);
},
else => blk: {
const op = i >> 4 & 0x3;
const T = i >> 3 & 1 == 1;
break :blk transfer.fmt78(op, T);
},
},
0b011 => blk: {
const B = i >> 6 & 1 == 1;
const L = i >> 5 & 1 == 1;
const offset = i & 0x1F;
break :blk transfer.fmt9(B, L, offset);
},
else => switch (@as(u3, i >> 6 & 0x7)) {
// MSB is guaranteed to be 1
0b000 => blk: {
const L = i >> 5 & 1 == 1;
const offset = i & 0x1F;
break :blk transfer.fmt10(L, offset);
},
0b001 => blk: {
const L = i >> 5 & 1 == 1;
const rd = i >> 2 & 0x7;
break :blk transfer.fmt11(L, rd);
},
0b010 => blk: {
const isSP = i >> 5 & 1 == 1;
const rd = i >> 2 & 0x7;
break :blk processing.fmt12(isSP, rd);
},
0b011 => if (i >> 4 & 1 == 1) blk: {
const L = i >> 5 & 1 == 1;
const R = i >> 2 & 1 == 1;
break :blk block_transfer.fmt14(L, R);
} else blk: {
const S = i >> 1 & 1 == 1;
break :blk processing.fmt13(S);
},
0b100 => blk: {
const L = i >> 5 & 1 == 1;
const rb = i >> 2 & 0x7;
break :blk block_transfer.fmt15(L, rb);
},
0b101 => if (i >> 2 & 0xF == 0b1111) blk: {
break :blk thumb.swi();
} else blk: {
const cond = i >> 2 & 0xF;
break :blk branch.fmt16(cond);
},
0b110 => branch.fmt18(),
0b111 => blk: {
const is_low = i >> 5 & 1 == 1;
break :blk branch.fmt19(is_low);
},
},
};
}
return ret;
};
}
};
const log = std.log.scoped(.Arm7Tdmi);
pub const Arm7tdmi = struct {
const Self = @This();
r: [16]u32,
pipe: Pipeline,
sched: *Scheduler,
bus: *Bus,
cpsr: PSR,
spsr: PSR,
/// Storage for R8_fiq -> R12_fiq and their normal counterparts
/// e.g [r[0 + 8], fiq_r[0 + 8], r[1 + 8], fiq_r[1 + 8]...]
banked_fiq: [2 * 5]u32,
/// Storage for r13_<mode>, r14_<mode>
/// e.g. [r13, r14, r13_svc, r14_svc]
banked_r: [2 * 6]u32,
banked_spsr: [5]PSR,
logger: ?Logger,
pub fn init(sched: *Scheduler, bus: *Bus, log_file: ?std.fs.File) Self {
return Self{
.r = [_]u32{0x00} ** 16,
.pipe = Pipeline.init(),
.sched = sched,
.bus = bus,
.cpsr = .{ .raw = 0x0000_001F },
.spsr = .{ .raw = 0x0000_0000 },
.banked_fiq = [_]u32{0x00} ** 10,
.banked_r = [_]u32{0x00} ** 12,
.banked_spsr = [_]PSR{.{ .raw = 0x0000_0000 }} ** 5,
.logger = if (log_file) |file| Logger.init(file) else null,
};
}
inline fn bankedIdx(mode: Mode, kind: BankedKind) usize {
const idx: usize = switch (mode) {
.User, .System => 0,
.Supervisor => 1,
.Abort => 2,
.Undefined => 3,
.Irq => 4,
.Fiq => 5,
};
return (idx * 2) + if (kind == .R14) @as(usize, 1) else 0;
}
inline fn bankedSpsrIndex(mode: Mode) usize {
return switch (mode) {
.Supervisor => 0,
.Abort => 1,
.Undefined => 2,
.Irq => 3,
.Fiq => 4,
else => std.debug.panic("[CPU/Mode] {} does not have a SPSR Register", .{mode}),
};
}
inline fn bankedFiqIdx(i: usize, mode: Mode) usize {
return (i * 2) + if (mode == .Fiq) @as(usize, 1) else 0;
}
pub inline fn hasSPSR(self: *const Self) bool {
const mode = getModeChecked(self, self.cpsr.mode.read());
return switch (mode) {
.System, .User => false,
else => true,
};
}
pub inline fn isPrivileged(self: *const Self) bool {
const mode = getModeChecked(self, self.cpsr.mode.read());
return switch (mode) {
.User => false,
else => true,
};
}
pub inline fn isHalted(self: *const Self) bool {
return self.bus.io.haltcnt == .Halt;
}
pub fn setCpsr(self: *Self, value: u32) void {
if (value & 0x1F != self.cpsr.raw & 0x1F) self.changeModeFromIdx(@truncate(u5, value & 0x1F));
self.cpsr.raw = value;
}
fn changeModeFromIdx(self: *Self, next: u5) void {
self.changeMode(getModeChecked(self, next));
}
pub fn setUserModeRegister(self: *Self, idx: usize, value: u32) void {
const current = getModeChecked(self, self.cpsr.mode.read());
switch (idx) {
8...12 => {
if (current == .Fiq) {
self.banked_fiq[bankedFiqIdx(idx - 8, .User)] = value;
} else self.r[idx] = value;
},
13, 14 => switch (current) {
.User, .System => self.r[idx] = value,
else => {
const kind = std.meta.intToEnum(BankedKind, idx - 13) catch unreachable;
self.banked_r[bankedIdx(.User, kind)] = value;
},
},
else => self.r[idx] = value, // R0 -> R7 and R15
}
}
pub fn getUserModeRegister(self: *Self, idx: usize) u32 {
const current = getModeChecked(self, self.cpsr.mode.read());
return switch (idx) {
8...12 => if (current == .Fiq) self.banked_fiq[bankedFiqIdx(idx - 8, .User)] else self.r[idx],
13, 14 => switch (current) {
.User, .System => self.r[idx],
else => blk: {
const kind = std.meta.intToEnum(BankedKind, idx - 13) catch unreachable;
break :blk self.banked_r[bankedIdx(.User, kind)];
},
},
else => self.r[idx], // R0 -> R7 and R15
};
}
pub fn changeMode(self: *Self, next: Mode) void {
const now = getModeChecked(self, self.cpsr.mode.read());
// Bank R8 -> r12
var i: usize = 0;
while (i < 5) : (i += 1) {
self.banked_fiq[bankedFiqIdx(i, now)] = self.r[8 + i];
}
// Bank r13, r14, SPSR
switch (now) {
.User, .System => {
self.banked_r[bankedIdx(now, .R13)] = self.r[13];
self.banked_r[bankedIdx(now, .R14)] = self.r[14];
},
else => {
self.banked_r[bankedIdx(now, .R13)] = self.r[13];
self.banked_r[bankedIdx(now, .R14)] = self.r[14];
self.banked_spsr[bankedSpsrIndex(now)] = self.spsr;
},
}
// Grab R8 -> R12
i = 0;
while (i < 5) : (i += 1) {
self.r[8 + i] = self.banked_fiq[bankedFiqIdx(i, next)];
}
// Grab r13, r14, SPSR
switch (next) {
.User, .System => {
self.r[13] = self.banked_r[bankedIdx(next, .R13)];
self.r[14] = self.banked_r[bankedIdx(next, .R14)];
},
else => {
self.r[13] = self.banked_r[bankedIdx(next, .R13)];
self.r[14] = self.banked_r[bankedIdx(next, .R14)];
self.spsr = self.banked_spsr[bankedSpsrIndex(next)];
},
}
self.cpsr.mode.write(@enumToInt(next));
}
/// Advances state so that the BIOS is skipped
///
/// Note: This accesses the CPU's bus ptr so it only may be called
/// once the Bus has been properly initialized
///
/// TODO: Make above notice impossible to do in code
pub fn fastBoot(self: *Self) void {
self.r = std.mem.zeroes([16]u32);
// self.r[0] = 0x08000000;
// self.r[1] = 0x000000EA;
self.r[13] = 0x0300_7F00;
self.r[15] = 0x0800_0000;
self.banked_r[bankedIdx(.Irq, .R13)] = 0x0300_7FA0;
self.banked_r[bankedIdx(.Supervisor, .R13)] = 0x0300_7FE0;
// self.cpsr.raw = 0x6000001F;
self.cpsr.raw = 0x0000_001F;
self.bus.bios.addr_latch = 0x0000_00DC + 8;
}
pub fn step(self: *Self) void {
defer {
if (!self.pipe.flushed) self.r[15] += if (self.cpsr.t.read()) 2 else @as(u32, 4);
self.pipe.flushed = false;
}
if (self.cpsr.t.read()) {
const opcode = @truncate(u16, self.pipe.step(self, u16) orelse return);
if (self.logger) |*trace| trace.mgbaLog(self, opcode);
thumb.lut[thumb.idx(opcode)](self, self.bus, opcode);
} else {
const opcode = self.pipe.step(self, u32) orelse return;
if (self.logger) |*trace| trace.mgbaLog(self, opcode);
if (checkCond(self.cpsr, @truncate(u4, opcode >> 28))) {
arm.lut[arm.idx(opcode)](self, self.bus, opcode);
}
}
}
pub fn stepDmaTransfer(self: *Self) bool {
const dma0 = &self.bus.dma[0];
const dma1 = &self.bus.dma[1];
const dma2 = &self.bus.dma[2];
const dma3 = &self.bus.dma[3];
if (dma0.in_progress) {
dma0.step(self);
return true;
}
if (dma1.in_progress) {
dma1.step(self);
return true;
}
if (dma2.in_progress) {
dma2.step(self);
return true;
}
if (dma3.in_progress) {
dma3.step(self);
return true;
}
return false;
}
pub fn handleInterrupt(self: *Self) void {
const should_handle = self.bus.io.ie.raw & self.bus.io.irq.raw;
// Return if IME is disabled, CPSR I is set or there is nothing to handle
if (!self.bus.io.ime or self.cpsr.i.read() or should_handle == 0) return;
// If Pipeline isn't full, we have a bug
std.debug.assert(self.pipe.isFull());
// log.debug("Handling Interrupt!", .{});
self.bus.io.haltcnt = .Execute;
// FIXME: This seems weird, but retAddr.gba suggests I need to make these changes
const ret_addr = self.r[15] - if (self.cpsr.t.read()) 0 else @as(u32, 4);
const new_spsr = self.cpsr.raw;
self.changeMode(.Irq);
self.cpsr.t.write(false);
self.cpsr.i.write(true);
self.r[14] = ret_addr;
self.spsr.raw = new_spsr;
self.r[15] = 0x0000_0018;
self.pipe.reload(self);
}
inline fn fetch(self: *Self, comptime T: type, address: u32) T {
comptime std.debug.assert(T == u32 or T == u16); // Opcode may be 32-bit (ARM) or 16-bit (THUMB)
// Bus.read will advance the scheduler. There are different timings for CPU fetches,
// so we want to undo what Bus.read will apply. We can do this by caching the current tick
// This is very dumb.
//
// FIXME: Please rework this
const tick_cache = self.sched.tick;
defer self.sched.tick = tick_cache + Bus.fetch_timings[@boolToInt(T == u32)][@truncate(u4, address >> 24)];
return self.bus.read(T, address);
}
pub fn panic(self: *const Self, comptime format: []const u8, args: anytype) noreturn {
var i: usize = 0;
while (i < 16) : (i += 4) {
const i_1 = i + 1;
const i_2 = i + 2;
const i_3 = i + 3;
std.debug.print("R{}: 0x{X:0>8}\tR{}: 0x{X:0>8}\tR{}: 0x{X:0>8}\tR{}: 0x{X:0>8}\n", .{ i, self.r[i], i_1, self.r[i_1], i_2, self.r[i_2], i_3, self.r[i_3] });
}
std.debug.print("cpsr: 0x{X:0>8} ", .{self.cpsr.raw});
prettyPrintPsr(&self.cpsr);
std.debug.print("spsr: 0x{X:0>8} ", .{self.spsr.raw});
prettyPrintPsr(&self.spsr);
std.debug.print("pipeline: {??X:0>8}\n", .{self.pipe.stage});
if (self.cpsr.t.read()) {
const opcode = self.bus.dbgRead(u16, self.r[15] - 4);
const id = thumb.idx(opcode);
std.debug.print("opcode: ID: 0x{b:0>10} 0x{X:0>4}\n", .{ id, opcode });
} else {
const opcode = self.bus.dbgRead(u32, self.r[15] - 4);
const id = arm.idx(opcode);
std.debug.print("opcode: ID: 0x{X:0>3} 0x{X:0>8}\n", .{ id, opcode });
}
std.debug.print("tick: {}\n\n", .{self.sched.tick});
std.debug.panic(format, args);
}
fn prettyPrintPsr(psr: *const PSR) void {
std.debug.print("[", .{});
if (psr.n.read()) std.debug.print("N", .{}) else std.debug.print("-", .{});
if (psr.z.read()) std.debug.print("Z", .{}) else std.debug.print("-", .{});
if (psr.c.read()) std.debug.print("C", .{}) else std.debug.print("-", .{});
if (psr.v.read()) std.debug.print("V", .{}) else std.debug.print("-", .{});
if (psr.i.read()) std.debug.print("I", .{}) else std.debug.print("-", .{});
if (psr.f.read()) std.debug.print("F", .{}) else std.debug.print("-", .{});
if (psr.t.read()) std.debug.print("T", .{}) else std.debug.print("-", .{});
std.debug.print("|", .{});
if (getMode(psr.mode.read())) |mode| std.debug.print("{s}", .{modeString(mode)}) else std.debug.print("---", .{});
std.debug.print("]\n", .{});
}
fn modeString(mode: Mode) []const u8 {
return switch (mode) {
.User => "usr",
.Fiq => "fiq",
.Irq => "irq",
.Supervisor => "svc",
.Abort => "abt",
.Undefined => "und",
.System => "sys",
};
}
fn mgbaLog(self: *const Self, file: *const File, opcode: u32) !void {
const thumb_fmt = "{X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} cpsr: {X:0>8} | {X:0>4}:\n";
const arm_fmt = "{X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} {X:0>8} cpsr: {X:0>8} | {X:0>8}:\n";
var buf: [0x100]u8 = [_]u8{0x00} ** 0x100; // this is larger than it needs to be
const r0 = self.r[0];
const r1 = self.r[1];
const r2 = self.r[2];
const r3 = self.r[3];
const r4 = self.r[4];
const r5 = self.r[5];
const r6 = self.r[6];
const r7 = self.r[7];
const r8 = self.r[8];
const r9 = self.r[9];
const r10 = self.r[10];
const r11 = self.r[11];
const r12 = self.r[12];
const r13 = self.r[13];
const r14 = self.r[14];
const r15 = self.r[15] -| if (self.cpsr.t.read()) 2 else @as(u32, 4);
const c_psr = self.cpsr.raw;
var log_str: []u8 = undefined;
if (self.cpsr.t.read()) {
if (opcode >> 11 == 0x1E) {
// Instruction 1 of a BL Opcode, print in ARM mode
const other_half = self.bus.debugRead(u16, self.r[15] - 2);
const bl_opcode = @as(u32, opcode) << 16 | other_half;
log_str = try std.fmt.bufPrint(&buf, arm_fmt, .{ r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, c_psr, bl_opcode });
} else {
log_str = try std.fmt.bufPrint(&buf, thumb_fmt, .{ r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, c_psr, opcode });
}
} else {
log_str = try std.fmt.bufPrint(&buf, arm_fmt, .{ r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, c_psr, opcode });
}
_ = try file.writeAll(log_str);
}
};
pub fn checkCond(cpsr: PSR, cond: u4) bool {
return switch (cond) {
0x0 => cpsr.z.read(), // EQ - Equal
0x1 => !cpsr.z.read(), // NE - Not equal
0x2 => cpsr.c.read(), // CS - Unsigned higher or same
0x3 => !cpsr.c.read(), // CC - Unsigned lower
0x4 => cpsr.n.read(), // MI - Negative
0x5 => !cpsr.n.read(), // PL - Positive or zero
0x6 => cpsr.v.read(), // VS - Overflow
0x7 => !cpsr.v.read(), // VC - No overflow
0x8 => cpsr.c.read() and !cpsr.z.read(), // HI - unsigned higher
0x9 => !cpsr.c.read() or cpsr.z.read(), // LS - unsigned lower or same
0xA => cpsr.n.read() == cpsr.v.read(), // GE - Greater or equal
0xB => cpsr.n.read() != cpsr.v.read(), // LT - Less than
0xC => !cpsr.z.read() and (cpsr.n.read() == cpsr.v.read()), // GT - Greater than
0xD => cpsr.z.read() or (cpsr.n.read() != cpsr.v.read()), // LE - Less than or equal
0xE => true, // AL - Always
0xF => false, // NV - Never (reserved in ARMv3 and up, but seems to have not changed?)
};
}
const Pipeline = struct {
const Self = @This();
stage: [2]?u32,
flushed: bool,
fn init() Self {
return .{
.stage = [_]?u32{null} ** 2,
.flushed = false,
};
}
pub fn isFull(self: *const Self) bool {
return self.stage[0] != null and self.stage[1] != null;
}
pub fn step(self: *Self, cpu: *Arm7tdmi, comptime T: type) ?u32 {
comptime std.debug.assert(T == u32 or T == u16);
// FIXME: https://github.com/ziglang/zig/issues/12642
var opcode = self.stage[0];
self.stage[0] = self.stage[1];
self.stage[1] = cpu.fetch(T, cpu.r[15]);
return opcode;
}
pub fn reload(self: *Self, cpu: *Arm7tdmi) void {
if (cpu.cpsr.t.read()) {
self.stage[0] = cpu.fetch(u16, cpu.r[15]);
self.stage[1] = cpu.fetch(u16, cpu.r[15] + 2);
cpu.r[15] += 4;
} else {
self.stage[0] = cpu.fetch(u32, cpu.r[15]);
self.stage[1] = cpu.fetch(u32, cpu.r[15] + 4);
cpu.r[15] += 8;
}
self.flushed = true;
}
};
pub const PSR = extern union {
mode: Bitfield(u32, 0, 5),
t: Bit(u32, 5),
f: Bit(u32, 6),
i: Bit(u32, 7),
v: Bit(u32, 28),
c: Bit(u32, 29),
z: Bit(u32, 30),
n: Bit(u32, 31),
raw: u32,
};
const Mode = enum(u5) {
User = 0b10000,
Fiq = 0b10001,
Irq = 0b10010,
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
};
const BankedKind = enum(u1) {
R13 = 0,
R14,
};
fn getMode(bits: u5) ?Mode {
return std.meta.intToEnum(Mode, bits) catch null;
}
fn getModeChecked(cpu: *const Arm7tdmi, bits: u5) Mode {
return getMode(bits) orelse cpu.panic("[CPU/CPSR] 0b{b:0>5} is an invalid CPU mode", .{bits});
}

View File

@@ -1,112 +0,0 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
pub fn blockDataTransfer(comptime P: bool, comptime U: bool, comptime S: bool, comptime W: bool, comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = @truncate(u4, opcode >> 16 & 0xF);
const rlist = opcode & 0xFFFF;
const r15 = rlist >> 15 & 1 == 1;
var count: u32 = 0;
var i: u5 = 0;
var first: u4 = 0;
var write_to_base = true;
while (i < 16) : (i += 1) {
const r = @truncate(u4, 15 - i);
if (rlist >> r & 1 == 1) {
first = r;
count += 1;
}
}
var start = cpu.r[rn];
if (U) {
start += if (P) 4 else 0;
} else {
start = start - (4 * count) + if (!P) 4 else 0;
}
var end = cpu.r[rn];
if (U) {
end = end + (4 * count) - if (!P) 4 else 0;
} else {
end -= if (P) 4 else 0;
}
var new_base = cpu.r[rn];
if (U) {
new_base += 4 * count;
} else {
new_base -= 4 * count;
}
var address = start;
if (rlist == 0) {
var und_addr = cpu.r[rn];
if (U) {
und_addr += if (P) 4 else 0;
} else {
und_addr -= 0x40 - if (!P) 4 else 0;
}
if (L) {
cpu.r[15] = bus.read(u32, und_addr);
cpu.pipe.reload(cpu);
} else {
// FIXME: Should r15 on write be +12 ahead?
bus.write(u32, und_addr, cpu.r[15] + 4);
}
cpu.r[rn] = if (U) cpu.r[rn] + 0x40 else cpu.r[rn] - 0x40;
return;
}
i = first;
while (i < 16) : (i += 1) {
if (rlist >> i & 1 == 1) {
transfer(cpu, bus, r15, i, address);
address += 4;
if (W and !L and write_to_base) {
cpu.r[rn] = new_base;
write_to_base = false;
}
}
}
if (W and L and rlist >> rn & 1 == 0) cpu.r[rn] = new_base;
}
fn transfer(cpu: *Arm7tdmi, bus: *Bus, r15_present: bool, i: u5, address: u32) void {
if (L) {
if (S and !r15_present) {
// Always Transfer User mode Registers
cpu.setUserModeRegister(i, bus.read(u32, address));
} else {
const value = bus.read(u32, address);
cpu.r[i] = value;
if (i == 0xF) {
cpu.r[i] &= ~@as(u32, 3); // Align r15
cpu.pipe.reload(cpu);
if (S) cpu.setCpsr(cpu.spsr.raw);
}
}
} else {
if (S) {
// Always Transfer User mode Registers
// This happens regardless if r15 is in the list
const value = cpu.getUserModeRegister(i);
bus.write(u32, address, value + if (i == 0xF) 4 else @as(u32, 0)); // PC is already 8 ahead to make 12
} else {
bus.write(u32, address, cpu.r[i] + if (i == 0xF) 4 else @as(u32, 0));
}
}
}
}.inner;
}

View File

@@ -1,28 +0,0 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const sext = @import("../../../util.zig").sext;
pub fn branch(comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
if (L) cpu.r[14] = cpu.r[15] - 4;
cpu.r[15] +%= sext(u32, u24, opcode) << 2;
cpu.pipe.reload(cpu);
}
}.inner;
}
pub fn branchAndExchange(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rn = opcode & 0xF;
const thumb = cpu.r[rn] & 1 == 1;
cpu.r[15] = cpu.r[rn] & if (thumb) ~@as(u32, 1) else ~@as(u32, 3);
cpu.cpsr.t.write(thumb);
cpu.pipe.reload(cpu);
}

View File

@@ -1,183 +0,0 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const exec = @import("../barrel_shifter.zig").exec;
const ror = @import("../barrel_shifter.zig").ror;
pub fn dataProcessing(comptime I: bool, comptime S: bool, comptime kind: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd = @truncate(u4, opcode >> 12 & 0xF);
const rn = opcode >> 16 & 0xF;
const old_carry = @boolToInt(cpu.cpsr.c.read());
// If certain conditions are met, PC is 12 ahead instead of 8
// TODO: Why these conditions?
if (!I and opcode >> 4 & 1 == 1) cpu.r[15] += 4;
const op1 = cpu.r[rn];
const amount = @truncate(u8, (opcode >> 8 & 0xF) << 1);
const op2 = if (I) ror(S, &cpu.cpsr, opcode & 0xFF, amount) else exec(S, cpu, opcode);
// Undo special condition from above
if (!I and opcode >> 4 & 1 == 1) cpu.r[15] -= 4;
var result: u32 = undefined;
var overflow: bool = undefined;
// Perform Data Processing Logic
switch (kind) {
0x0 => result = op1 & op2, // AND
0x1 => result = op1 ^ op2, // EOR
0x2 => result = op1 -% op2, // SUB
0x3 => result = op2 -% op1, // RSB
0x4 => result = add(&overflow, op1, op2), // ADD
0x5 => result = adc(&overflow, op1, op2, old_carry), // ADC
0x6 => result = sbc(op1, op2, old_carry), // SBC
0x7 => result = sbc(op2, op1, old_carry), // RSC
0x8 => {
// TST
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
result = op1 & op2;
},
0x9 => {
// TEQ
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
result = op1 ^ op2;
},
0xA => {
// CMP
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
result = op1 -% op2;
},
0xB => {
// CMN
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
overflow = @addWithOverflow(u32, op1, op2, &result);
},
0xC => result = op1 | op2, // ORR
0xD => result = op2, // MOV
0xE => result = op1 & ~op2, // BIC
0xF => result = ~op2, // MVN
}
// Write to Destination Register
switch (kind) {
0x8, 0x9, 0xA, 0xB => {}, // Test Operations
else => {
cpu.r[rd] = result;
if (rd == 0xF) {
if (S) cpu.setCpsr(cpu.spsr.raw);
cpu.pipe.reload(cpu);
}
},
}
// Write Flags
switch (kind) {
0x0, 0x1, 0xC, 0xD, 0xE, 0xF => if (S and rd != 0xF) {
// Logic Operation Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// C set by Barrel Shifter, V is unaffected
},
0x2, 0x3 => if (S and rd != 0xF) {
// SUB, RSB Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0x2) {
// SUB specific
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else {
// RSB Specific
cpu.cpsr.c.write(op1 <= op2);
cpu.cpsr.v.write(((op2 ^ result) & (~op1 ^ result)) >> 31 & 1 == 1);
}
},
0x4, 0x5 => if (S and rd != 0xF) {
// ADD, ADC Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(overflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
},
0x6, 0x7 => if (S and rd != 0xF) {
// SBC, RSC Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0x6) {
// SBC specific
const subtrahend = @as(u64, op2) -% old_carry +% 1;
cpu.cpsr.c.write(subtrahend <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else {
// RSC Specific
const subtrahend = @as(u64, op1) -% old_carry +% 1;
cpu.cpsr.c.write(subtrahend <= op2);
cpu.cpsr.v.write(((op2 ^ result) & (~op1 ^ result)) >> 31 & 1 == 1);
}
},
0x8, 0x9, 0xA, 0xB => {
// Test Operation Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0xA) {
// CMP specific
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else if (kind == 0xB) {
// CMN specific
cpu.cpsr.c.write(overflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
} else {
// TST, TEQ specific
// Barrel Shifter should always calc CPSR C in TST
if (!S) _ = exec(true, cpu, opcode);
}
},
}
}
}.inner;
}
pub fn sbc(left: u32, right: u32, old_carry: u1) u32 {
// TODO: Make your own version (thanks peach.bot)
const subtrahend = @as(u64, right) -% old_carry +% 1;
const ret = @truncate(u32, left -% subtrahend);
return ret;
}
pub fn add(overflow: *bool, left: u32, right: u32) u32 {
var ret: u32 = undefined;
overflow.* = @addWithOverflow(u32, left, right, &ret);
return ret;
}
pub fn adc(overflow: *bool, left: u32, right: u32, old_carry: u1) u32 {
var ret: u32 = undefined;
const first = @addWithOverflow(u32, left, right, &ret);
const second = @addWithOverflow(u32, ret, old_carry, &ret);
overflow.* = first or second;
return ret;
}
fn undefinedTestBehaviour(cpu: *Arm7tdmi) void {
@setCold(true);
cpu.setCpsr(cpu.spsr.raw);
}

View File

@@ -1,58 +0,0 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const sext = @import("../../../util.zig").sext;
const rotr = @import("../../../util.zig").rotr;
pub fn halfAndSignedDataTransfer(comptime P: bool, comptime U: bool, comptime I: bool, comptime W: bool, comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
const rm = opcode & 0xF;
const imm_offset_high = opcode >> 8 & 0xF;
const base = cpu.r[rn] + if (!L and rn == 0xF) 4 else @as(u32, 0);
const offset = if (I) imm_offset_high << 4 | rm else cpu.r[rm];
const modified_base = if (U) base +% offset else base -% offset;
var address = if (P) modified_base else base;
var result: u32 = undefined;
if (L) {
switch (@truncate(u2, opcode >> 5)) {
0b01 => {
// LDRH
const value = bus.read(u16, address);
result = rotr(u32, value, 8 * (address & 1));
},
0b10 => {
// LDRSB
result = sext(u32, u8, bus.read(u8, address));
},
0b11 => {
// LDRSH
result = if (address & 1 == 1) blk: {
break :blk sext(u32, u8, bus.read(u8, address));
} else blk: {
break :blk sext(u32, u16, bus.read(u16, address));
};
},
0b00 => unreachable, // SWP
}
} else {
if (opcode >> 5 & 0x01 == 0x01) {
// STRH
bus.write(u16, address, @truncate(u16, cpu.r[rd]));
} else unreachable; // SWP
}
address = modified_base;
if (W and P or !P) cpu.r[rn] = address;
if (L) cpu.r[rd] = result; // // This emulates the LDR rd == rn behaviour
}
}.inner;
}

View File

@@ -1,57 +0,0 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
pub fn multiply(comptime A: bool, comptime S: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd = opcode >> 16 & 0xF;
const rn = opcode >> 12 & 0xF;
const rs = opcode >> 8 & 0xF;
const rm = opcode & 0xF;
const temp: u64 = @as(u64, cpu.r[rm]) * @as(u64, cpu.r[rs]) + if (A) cpu.r[rn] else 0;
const result = @truncate(u32, temp);
cpu.r[rd] = result;
if (S) {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// V is unaffected, C is *actually* undefined in ARMv4
}
}
}.inner;
}
pub fn multiplyLong(comptime U: bool, comptime A: bool, comptime S: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd_hi = opcode >> 16 & 0xF;
const rd_lo = opcode >> 12 & 0xF;
const rs = opcode >> 8 & 0xF;
const rm = opcode & 0xF;
if (U) {
// Signed (WHY IS IT U THEN?)
var result: i64 = @as(i64, @bitCast(i32, cpu.r[rm])) * @as(i64, @bitCast(i32, cpu.r[rs]));
if (A) result +%= @bitCast(i64, @as(u64, cpu.r[rd_hi]) << 32 | @as(u64, cpu.r[rd_lo]));
cpu.r[rd_hi] = @bitCast(u32, @truncate(i32, result >> 32));
cpu.r[rd_lo] = @bitCast(u32, @truncate(i32, result));
} else {
// Unsigned
var result: u64 = @as(u64, cpu.r[rm]) * @as(u64, cpu.r[rs]);
if (A) result +%= @as(u64, cpu.r[rd_hi]) << 32 | @as(u64, cpu.r[rd_lo]);
cpu.r[rd_hi] = @truncate(u32, result >> 32);
cpu.r[rd_lo] = @truncate(u32, result);
}
if (S) {
cpu.cpsr.z.write(cpu.r[rd_hi] == 0 and cpu.r[rd_lo] == 0);
cpu.cpsr.n.write(cpu.r[rd_hi] >> 31 & 1 == 1);
// C and V are set to meaningless values
}
}
}.inner;
}

View File

@@ -1,59 +0,0 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const PSR = @import("../../cpu.zig").PSR;
const log = std.log.scoped(.PsrTransfer);
const rotr = @import("../../../util.zig").rotr;
pub fn psrTransfer(comptime I: bool, comptime R: bool, comptime kind: u2) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
switch (kind) {
0b00 => {
// MRS
const rd = opcode >> 12 & 0xF;
if (R and !cpu.hasSPSR()) log.err("Tried to read SPSR from User/System Mode", .{});
cpu.r[rd] = if (R) cpu.spsr.raw else cpu.cpsr.raw;
},
0b10 => {
// MSR
const field_mask = @truncate(u4, opcode >> 16 & 0xF);
const rm_idx = opcode & 0xF;
const right = if (I) rotr(u32, opcode & 0xFF, (opcode >> 8 & 0xF) * 2) else cpu.r[rm_idx];
if (R and !cpu.hasSPSR()) log.err("Tried to write to SPSR in User/System Mode", .{});
if (R) {
// arm.gba seems to expect the SPSR to do somethign in SYS mode,
// so we just assume that despite writing to the SPSR in USR or SYS mode
// being UNPREDICTABLE, it just magically has a working SPSR somehow
cpu.spsr.raw = fieldMask(&cpu.spsr, field_mask, right);
} else {
if (cpu.isPrivileged()) cpu.setCpsr(fieldMask(&cpu.cpsr, field_mask, right));
}
},
else => cpu.panic("[CPU/PSR Transfer] Bits 21:220 of {X:0>8} are undefined", .{opcode}),
}
}
}.inner;
}
fn fieldMask(psr: *const PSR, field_mask: u4, right: u32) u32 {
// This bitwise ORs bits 3 and 0 of the field mask into a u2
// We do this because we only care about bits 7:0 and 31:28 of the CPSR
const bits = @truncate(u2, (field_mask >> 2 & 0x2) | (field_mask & 1));
const mask: u32 = switch (bits) {
0b00 => 0x0000_0000,
0b01 => 0x0000_00FF,
0b10 => 0xF000_0000,
0b11 => 0xF000_00FF,
};
return (psr.raw & ~mask) | (right & mask);
}

View File

@@ -1,31 +0,0 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const rotr = @import("../../../util.zig").rotr;
pub fn singleDataSwap(comptime B: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
const rm = opcode & 0xF;
const address = cpu.r[rn];
if (B) {
// SWPB
const value = bus.read(u8, address);
bus.write(u8, address, @truncate(u8, cpu.r[rm]));
cpu.r[rd] = value;
} else {
// SWP
const value = rotr(u32, bus.read(u32, address), 8 * (address & 0x3));
bus.write(u32, address, cpu.r[rm]);
cpu.r[rd] = value;
}
}
}.inner;
}

View File

@@ -1,60 +0,0 @@
const std = @import("std");
const util = @import("../../../util.zig");
const shifter = @import("../barrel_shifter.zig");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const rotr = @import("../../../util.zig").rotr;
pub fn singleDataTransfer(comptime I: bool, comptime P: bool, comptime U: bool, comptime B: bool, comptime W: bool, comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u32) void {
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
// rn is r15 and L is not set, the PC is 12 ahead
const base = cpu.r[rn] + if (!L and rn == 0xF) 4 else @as(u32, 0);
const offset = if (I) shifter.immediate(false, cpu, opcode) else opcode & 0xFFF;
const modified_base = if (U) base +% offset else base -% offset;
var address = if (P) modified_base else base;
var result: u32 = undefined;
if (L) {
if (B) {
// LDRB
result = bus.read(u8, address);
} else {
// LDR
const value = bus.read(u32, address);
result = rotr(u32, value, 8 * (address & 0x3));
}
} else {
if (B) {
// STRB
const value = cpu.r[rd] + if (rd == 0xF) 4 else @as(u32, 0); // PC is 12 ahead
bus.write(u8, address, @truncate(u8, value));
} else {
// STR
const value = cpu.r[rd] + if (rd == 0xF) 4 else @as(u32, 0);
bus.write(u32, address, value);
}
}
address = modified_base;
if (W and P or !P) {
cpu.r[rn] = address;
if (rn == 0xF) cpu.pipe.reload(cpu);
}
if (L) {
// This emulates the LDR rd == rn behaviour
cpu.r[rd] = result;
if (rd == 0xF) cpu.pipe.reload(cpu);
}
}
}.inner;
}

View File

@@ -1,23 +0,0 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;
pub fn armSoftwareInterrupt() InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, _: u32) void {
// Copy Values from Current Mode
const ret_addr = cpu.r[15] - 4;
const cpsr = cpu.cpsr.raw;
// Switch Mode
cpu.changeMode(.Supervisor);
cpu.cpsr.t.write(false); // Force ARM Mode
cpu.cpsr.i.write(true); // Disable normal interrupts
cpu.r[14] = ret_addr; // Resume Execution
cpu.spsr.raw = cpsr; // Previous mode CPSR
cpu.r[15] = 0x0000_0008;
cpu.pipe.reload(cpu);
}
}.inner;
}

View File

@@ -1,149 +0,0 @@
const std = @import("std");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const CPSR = @import("../cpu.zig").PSR;
const rotr = @import("../../util.zig").rotr;
pub fn exec(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
var result: u32 = undefined;
if (opcode >> 4 & 1 == 1) {
result = register(S, cpu, opcode);
} else {
result = immediate(S, cpu, opcode);
}
return result;
}
fn register(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
const rs_idx = opcode >> 8 & 0xF;
const rm = cpu.r[opcode & 0xF];
const rs = @truncate(u8, cpu.r[rs_idx]);
return switch (@truncate(u2, opcode >> 5)) {
0b00 => lsl(S, &cpu.cpsr, rm, rs),
0b01 => lsr(S, &cpu.cpsr, rm, rs),
0b10 => asr(S, &cpu.cpsr, rm, rs),
0b11 => ror(S, &cpu.cpsr, rm, rs),
};
}
pub fn immediate(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
const amount = @truncate(u8, opcode >> 7 & 0x1F);
const rm = cpu.r[opcode & 0xF];
var result: u32 = undefined;
if (amount == 0) {
switch (@truncate(u2, opcode >> 5)) {
0b00 => {
// LSL #0
result = rm;
},
0b01 => {
// LSR #0 aka LSR #32
if (S) cpu.cpsr.c.write(rm >> 31 & 1 == 1);
result = 0x0000_0000;
},
0b10 => {
// ASR #0 aka ASR #32
result = @bitCast(u32, @bitCast(i32, rm) >> 31);
if (S) cpu.cpsr.c.write(result >> 31 & 1 == 1);
},
0b11 => {
// ROR #0 aka RRX
const carry: u32 = @boolToInt(cpu.cpsr.c.read());
if (S) cpu.cpsr.c.write(rm & 1 == 1);
result = (carry << 31) | (rm >> 1);
},
}
} else {
switch (@truncate(u2, opcode >> 5)) {
0b00 => result = lsl(S, &cpu.cpsr, rm, amount),
0b01 => result = lsr(S, &cpu.cpsr, rm, amount),
0b10 => result = asr(S, &cpu.cpsr, rm, amount),
0b11 => result = ror(S, &cpu.cpsr, rm, amount),
}
}
return result;
}
pub fn lsl(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 {
const amount = @truncate(u5, total_amount);
const bit_count: u8 = @typeInfo(u32).Int.bits;
var result: u32 = 0x0000_0000;
if (total_amount < bit_count) {
// We can perform a well-defined shift here
result = rm << amount;
if (S and total_amount != 0) {
const carry_bit = @truncate(u5, bit_count - amount);
cpsr.c.write(rm >> carry_bit & 1 == 1);
}
} else {
if (S) {
if (total_amount == bit_count) {
// Shifted all bits out, carry bit is bit 0 of rm
cpsr.c.write(rm & 1 == 1);
} else {
cpsr.c.write(false);
}
}
}
return result;
}
pub fn lsr(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u32) u32 {
const amount = @truncate(u5, total_amount);
const bit_count: u8 = @typeInfo(u32).Int.bits;
var result: u32 = 0x0000_0000;
if (total_amount < bit_count) {
// We can perform a well-defined shift
result = rm >> amount;
if (S and total_amount != 0) cpsr.c.write(rm >> (amount - 1) & 1 == 1);
} else {
if (S) {
if (total_amount == bit_count) {
// LSR #32
cpsr.c.write(rm >> 31 & 1 == 1);
} else {
// All bits have been shifted out, including carry bit
cpsr.c.write(false);
}
}
}
return result;
}
pub fn asr(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 {
const amount = @truncate(u5, total_amount);
const bit_count: u8 = @typeInfo(u32).Int.bits;
var result: u32 = 0x0000_0000;
if (total_amount < bit_count) {
result = @bitCast(u32, @bitCast(i32, rm) >> amount);
if (S and total_amount != 0) cpsr.c.write(rm >> (amount - 1) & 1 == 1);
} else {
// ASR #32 and ASR #>32 have the same result
result = @bitCast(u32, @bitCast(i32, rm) >> 31);
if (S) cpsr.c.write(result >> 31 & 1 == 1);
}
return result;
}
pub fn ror(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 {
const result = rotr(u32, rm, total_amount);
if (S and total_amount != 0) {
cpsr.c.write(result >> 31 & 1 == 1);
}
return result;
}

View File

@@ -1,102 +0,0 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
const adc = @import("../arm/data_processing.zig").adc;
const sbc = @import("../arm/data_processing.zig").sbc;
const lsl = @import("../barrel_shifter.zig").lsl;
const lsr = @import("../barrel_shifter.zig").lsr;
const asr = @import("../barrel_shifter.zig").asr;
const ror = @import("../barrel_shifter.zig").ror;
pub fn fmt4(comptime op: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const rs = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
const carry = @boolToInt(cpu.cpsr.c.read());
const op1 = cpu.r[rd];
const op2 = cpu.r[rs];
var result: u32 = undefined;
var overflow: bool = undefined;
switch (op) {
0x0 => result = op1 & op2, // AND
0x1 => result = op1 ^ op2, // EOR
0x2 => result = lsl(true, &cpu.cpsr, op1, @truncate(u8, op2)), // LSL
0x3 => result = lsr(true, &cpu.cpsr, op1, @truncate(u8, op2)), // LSR
0x4 => result = asr(true, &cpu.cpsr, op1, @truncate(u8, op2)), // ASR
0x5 => result = adc(&overflow, op1, op2, carry), // ADC
0x6 => result = sbc(op1, op2, carry), // SBC
0x7 => result = ror(true, &cpu.cpsr, op1, @truncate(u8, op2)), // ROR
0x8 => result = op1 & op2, // TST
0x9 => result = 0 -% op2, // NEG
0xA => result = op1 -% op2, // CMP
0xB => overflow = @addWithOverflow(u32, op1, op2, &result), // CMN
0xC => result = op1 | op2, // ORR
0xD => result = @truncate(u32, @as(u64, op2) * @as(u64, op1)),
0xE => result = op1 & ~op2,
0xF => result = ~op2,
}
// Write to Destination Register
switch (op) {
0x8, 0xA, 0xB => {},
else => cpu.r[rd] = result,
}
// Write Flags
switch (op) {
0x0, 0x1, 0x2, 0x3, 0x4, 0x7, 0xC, 0xE, 0xF => {
// Logic Operations
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// C set by Barrel Shifter, V is unaffected
},
0x8, 0xA => {
// Test Flags
// CMN (0xB) is handled with ADC
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (op == 0xA) {
// CMP specific
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
}
},
0x5, 0xB => {
// ADC, CMN
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(overflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
},
0x6 => {
// SBC
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
const subtrahend = @as(u64, op2) -% carry +% 1;
cpu.cpsr.c.write(subtrahend <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0x9 => {
// NEG
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(op2 <= 0);
cpu.cpsr.v.write(((0 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0xD => {
// Multiplication
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// V is unaffected, assuming similar behaviour to ARMv4 MUL C is undefined
},
}
}
}.inner;
}

View File

@@ -1,101 +0,0 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
pub fn fmt14(comptime L: bool, comptime R: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const count = @boolToInt(R) + countRlist(opcode);
const start = cpu.r[13] - if (!L) count * 4 else 0;
var end = cpu.r[13];
if (L) {
end += count * 4;
} else {
end -= 4;
}
var address = start;
var i: u4 = 0;
while (i < 8) : (i += 1) {
if (opcode >> i & 1 == 1) {
if (L) {
cpu.r[i] = bus.read(u32, address);
} else {
bus.write(u32, address, cpu.r[i]);
}
address += 4;
}
}
if (R) {
if (L) {
const value = bus.read(u32, address);
cpu.r[15] = value & ~@as(u32, 1);
cpu.pipe.reload(cpu);
} else {
bus.write(u32, address, cpu.r[14]);
}
address += 4;
}
cpu.r[13] = if (L) end else start;
}
}.inner;
}
pub fn fmt15(comptime L: bool, comptime rb: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
var address = cpu.r[rb];
const end_address = cpu.r[rb] + 4 * countRlist(opcode);
if (opcode & 0xFF == 0) {
if (L) {
cpu.r[15] = bus.read(u32, address);
cpu.pipe.reload(cpu);
} else {
bus.write(u32, address, cpu.r[15] + 2);
}
cpu.r[rb] += 0x40;
return;
}
var i: u4 = 0;
var first_write = true;
while (i < 8) : (i += 1) {
if (opcode >> i & 1 == 1) {
if (L) {
cpu.r[i] = bus.read(u32, address);
} else {
bus.write(u32, address, cpu.r[i]);
}
if (!L and first_write) {
cpu.r[rb] = end_address;
first_write = false;
}
address += 4;
}
}
if (L and opcode >> rb & 1 != 1) cpu.r[rb] = address;
}
}.inner;
}
inline fn countRlist(opcode: u16) u32 {
var count: u32 = 0;
comptime var i: u4 = 0;
inline while (i < 8) : (i += 1) {
if (opcode >> (7 - i) & 1 == 1) count += 1;
}
return count;
}

View File

@@ -1,54 +0,0 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
const checkCond = @import("../../cpu.zig").checkCond;
const sext = @import("../../../util.zig").sext;
pub fn fmt16(comptime cond: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// B
if (cond == 0xE or cond == 0xF)
cpu.panic("[CPU/THUMB.16] Undefined conditional branch with condition {}", .{cond});
if (!checkCond(cpu.cpsr, cond)) return;
cpu.r[15] +%= sext(u32, u8, opcode & 0xFF) << 1;
cpu.pipe.reload(cpu);
}
}.inner;
}
pub fn fmt18() InstrFn {
return struct {
// B but conditional
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
cpu.r[15] +%= sext(u32, u11, opcode & 0x7FF) << 1;
cpu.pipe.reload(cpu);
}
}.inner;
}
pub fn fmt19(comptime is_low: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// BL
const offset = opcode & 0x7FF;
if (is_low) {
// Instruction 2
const next_opcode = cpu.r[15] - 2;
cpu.r[15] = cpu.r[14] +% (offset << 1);
cpu.r[14] = next_opcode | 1;
cpu.pipe.reload(cpu);
} else {
// Instruction 1
const lr_offset = sext(u32, u11, offset) << 12;
cpu.r[14] = (cpu.r[15] +% lr_offset) & ~@as(u32, 1);
}
}
}.inner;
}

View File

@@ -1,201 +0,0 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
const add = @import("../arm/data_processing.zig").add;
const lsl = @import("../barrel_shifter.zig").lsl;
const lsr = @import("../barrel_shifter.zig").lsr;
const asr = @import("../barrel_shifter.zig").asr;
pub fn fmt1(comptime op: u2, comptime offset: u5) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const rs = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
const result = switch (op) {
0b00 => blk: {
// LSL
if (offset == 0) {
break :blk cpu.r[rs];
} else {
break :blk lsl(true, &cpu.cpsr, cpu.r[rs], offset);
}
},
0b01 => blk: {
// LSR
if (offset == 0) {
cpu.cpsr.c.write(cpu.r[rs] >> 31 & 1 == 1);
break :blk @as(u32, 0);
} else {
break :blk lsr(true, &cpu.cpsr, cpu.r[rs], offset);
}
},
0b10 => blk: {
// ASR
if (offset == 0) {
cpu.cpsr.c.write(cpu.r[rs] >> 31 & 1 == 1);
break :blk @bitCast(u32, @bitCast(i32, cpu.r[rs]) >> 31);
} else {
break :blk asr(true, &cpu.cpsr, cpu.r[rs], offset);
}
},
else => cpu.panic("[CPU/THUMB.1] 0b{b:0>2} is not a valid op", .{op}),
};
// Equivalent to an ARM MOVS
cpu.r[rd] = result;
// Write Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
}
}.inner;
}
pub fn fmt5(comptime op: u2, comptime h1: u1, comptime h2: u1) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const rs = @as(u4, h2) << 3 | (opcode >> 3 & 0x7);
const rd = @as(u4, h1) << 3 | (opcode & 0x7);
const op1 = cpu.r[rd];
const op2 = cpu.r[rs];
var result: u32 = undefined;
var overflow: bool = undefined;
switch (op) {
0b00 => result = add(&overflow, op1, op2), // ADD
0b01 => result = op1 -% op2, // CMP
0b10 => result = op2, // MOV
0b11 => {},
}
// Write to Destination Register
switch (op) {
0b01 => {}, // Test Instruction
0b11 => {
// BX
const is_thumb = op2 & 1 == 1;
cpu.r[15] = op2 & ~@as(u32, 1);
cpu.cpsr.t.write(is_thumb);
cpu.pipe.reload(cpu);
},
else => {
cpu.r[rd] = result;
if (rd == 0xF) {
cpu.r[15] &= ~@as(u32, 1);
cpu.pipe.reload(cpu);
}
},
}
// Write Flags
switch (op) {
0b01 => {
// CMP
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0b00, 0b10, 0b11 => {}, // MOV and Branch Instruction
}
}
}.inner;
}
pub fn fmt2(comptime I: bool, is_sub: bool, rn: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const rs = opcode >> 3 & 0x7;
const rd = @truncate(u3, opcode);
const op1 = cpu.r[rs];
const op2: u32 = if (I) rn else cpu.r[rn];
if (is_sub) {
// SUB
const result = op1 -% op2;
cpu.r[rd] = result;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else {
// ADD
var overflow: bool = undefined;
const result = add(&overflow, op1, op2);
cpu.r[rd] = result;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(overflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
}
}
}.inner;
}
pub fn fmt3(comptime op: u2, comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const op1 = cpu.r[rd];
const op2: u32 = opcode & 0xFF; // Offset
var overflow: bool = undefined;
const result: u32 = switch (op) {
0b00 => op2, // MOV
0b01 => op1 -% op2, // CMP
0b10 => add(&overflow, op1, op2), // ADD
0b11 => op1 -% op2, // SUB
};
// Write to Register
if (op != 0b01) cpu.r[rd] = result;
// Write Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
switch (op) {
0b00 => {}, // MOV | C set by Barrel Shifter, V is unaffected
0b01, 0b11 => {
// SUB, CMP
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0b10 => {
// ADD
cpu.cpsr.c.write(overflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
},
}
}
}.inner;
}
pub fn fmt12(comptime isSP: bool, comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// ADD
const left = if (isSP) cpu.r[13] else cpu.r[15] & ~@as(u32, 2);
const right = (opcode & 0xFF) << 2;
cpu.r[rd] = left + right;
}
}.inner;
}
pub fn fmt13(comptime S: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// ADD
const offset = (opcode & 0x7F) << 2;
cpu.r[13] = if (S) cpu.r[13] - offset else cpu.r[13] + offset;
}
}.inner;
}

View File

@@ -1,150 +0,0 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
const rotr = @import("../../../util.zig").rotr;
const sext = @import("../../../util.zig").sext;
pub fn fmt6(comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
// LDR
const offset = (opcode & 0xFF) << 2;
// Bit 1 of the PC intentionally ignored
cpu.r[rd] = bus.read(u32, (cpu.r[15] & ~@as(u32, 2)) + offset);
}
}.inner;
}
pub fn fmt78(comptime op: u2, comptime T: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const ro = opcode >> 6 & 0x7;
const rb = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
const address = cpu.r[rb] +% cpu.r[ro];
if (T) {
// Format 8
switch (op) {
0b00 => {
// STRH
bus.write(u16, address, @truncate(u16, cpu.r[rd]));
},
0b01 => {
// LDSB
cpu.r[rd] = sext(u32, u8, bus.read(u8, address));
},
0b10 => {
// LDRH
const value = bus.read(u16, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 1));
},
0b11 => {
// LDRSH
cpu.r[rd] = if (address & 1 == 1) blk: {
break :blk sext(u32, u8, bus.read(u8, address));
} else blk: {
break :blk sext(u32, u16, bus.read(u16, address));
};
},
}
} else {
// Format 7
switch (op) {
0b00 => {
// STR
bus.write(u32, address, cpu.r[rd]);
},
0b01 => {
// STRB
bus.write(u8, address, @truncate(u8, cpu.r[rd]));
},
0b10 => {
// LDR
const value = bus.read(u32, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 0x3));
},
0b11 => {
// LDRB
cpu.r[rd] = bus.read(u8, address);
},
}
}
}
}.inner;
}
pub fn fmt9(comptime B: bool, comptime L: bool, comptime offset: u5) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const rb = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
if (L) {
if (B) {
// LDRB
const address = cpu.r[rb] + offset;
cpu.r[rd] = bus.read(u8, address);
} else {
// LDR
const address = cpu.r[rb] + (@as(u32, offset) << 2);
const value = bus.read(u32, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 0x3));
}
} else {
if (B) {
// STRB
const address = cpu.r[rb] + offset;
bus.write(u8, address, @truncate(u8, cpu.r[rd]));
} else {
// STR
const address = cpu.r[rb] + (@as(u32, offset) << 2);
bus.write(u32, address, cpu.r[rd]);
}
}
}
}.inner;
}
pub fn fmt10(comptime L: bool, comptime offset: u5) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const rb = opcode >> 3 & 0x7;
const rd = opcode & 0x7;
const address = cpu.r[rb] + (@as(u6, offset) << 1);
if (L) {
// LDRH
const value = bus.read(u16, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 1));
} else {
// STRH
bus.write(u16, address, @truncate(u16, cpu.r[rd]));
}
}
}.inner;
}
pub fn fmt11(comptime L: bool, comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
const offset = (opcode & 0xFF) << 2;
const address = cpu.r[13] + offset;
if (L) {
// LDR
const value = bus.read(u32, address);
cpu.r[rd] = rotr(u32, value, 8 * (address & 0x3));
} else {
// STR
bus.write(u32, address, cpu.r[rd]);
}
}
}.inner;
}

View File

@@ -1,23 +0,0 @@
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;
pub fn fmt17() InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, _: u16) void {
// Copy Values from Current Mode
const ret_addr = cpu.r[15] - 2;
const cpsr = cpu.cpsr.raw;
// Switch Mode
cpu.changeMode(.Supervisor);
cpu.cpsr.t.write(false); // Force ARM Mode
cpu.cpsr.i.write(true); // Disable normal interrupts
cpu.r[14] = ret_addr; // Resume Execution
cpu.spsr.raw = cpsr; // Previous mode CPSR
cpu.r[15] = 0x0000_0008;
cpu.pipe.reload(cpu);
}
}.inner;
}

75
src/core/cpu_util.zig Normal file
View File

@@ -0,0 +1,75 @@
const std = @import("std");
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Bank = @import("arm32").Arm7tdmi.Bank;
const Bus = @import("Bus.zig");
pub inline fn isHalted(cpu: *const Arm7tdmi) bool {
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
return bus_ptr.io.haltcnt == .Halt;
}
pub fn stepDmaTransfer(cpu: *Arm7tdmi) bool {
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
inline for (0..4) |i| {
if (bus_ptr.dma[i].in_progress) {
bus_ptr.dma[i].step(cpu);
return true;
}
}
return false;
}
pub fn handleInterrupt(cpu: *Arm7tdmi) void {
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
const should_handle = bus_ptr.io.ie.raw & bus_ptr.io.irq.raw;
// Return if IME is disabled, CPSR I is set or there is nothing to handle
if (!bus_ptr.io.ime or cpu.cpsr.i.read() or should_handle == 0) return;
// If Pipeline isn't full, we have a bug
std.debug.assert(cpu.pipe.isFull());
// log.debug("Handling Interrupt!", .{});
bus_ptr.io.haltcnt = .Execute;
// FIXME: This seems weird, but retAddr.gba suggests I need to make these changes
const ret_addr = cpu.r[15] - if (cpu.cpsr.t.read()) 0 else @as(u32, 4);
const new_spsr = cpu.cpsr.raw;
cpu.changeMode(.Irq);
cpu.cpsr.t.write(false);
cpu.cpsr.i.write(true);
cpu.r[14] = ret_addr;
cpu.spsr.raw = new_spsr;
cpu.r[15] = 0x0000_0018;
cpu.pipe.reload(cpu);
}
/// Advances state so that the BIOS is skipped
///
/// Note: This accesses the CPU's bus ptr so it only may be called
/// once the Bus has been properly initialized
///
/// TODO: Make above notice impossible to do in code
pub fn fastBoot(cpu: *Arm7tdmi) void {
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
cpu.r = std.mem.zeroes([16]u32);
// cpu.r[0] = 0x08000000;
// cpu.r[1] = 0x000000EA;
cpu.r[13] = 0x0300_7F00;
cpu.r[15] = 0x0800_0000;
cpu.bank.r[Bank.regIdx(.Irq, .R13)] = 0x0300_7FA0;
cpu.bank.r[Bank.regIdx(.Supervisor, .R13)] = 0x0300_7FE0;
// cpu.cpsr.raw = 0x6000001F;
cpu.cpsr.raw = 0x0000_001F;
bus_ptr.bios.addr_latch = 0x0000_00DC + 8;
}

View File

@@ -1,30 +1,60 @@
const std = @import("std");
const SDL = @import("sdl2");
const config = @import("../config.zig");
const c = @import("../lib.zig").c;
const Bus = @import("Bus.zig");
const Scheduler = @import("scheduler.zig").Scheduler;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const FpsTracker = @import("../util.zig").FpsTracker;
const FilePaths = @import("../util.zig").FilePaths;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Bus = @import("Bus.zig");
const Tracker = @import("../util.zig").FpsTracker;
const Channel = @import("../util.zig").Queue;
const stepDmaTransfer = @import("cpu_util.zig").stepDmaTransfer;
const isHalted = @import("cpu_util.zig").isHalted;
const Timer = std.time.Timer;
const Thread = std.Thread;
const Atomic = std.atomic.Atomic;
const Allocator = std.mem.Allocator;
// 228 Lines which consist of 308 dots (which are 4 cycles long)
const cycles_per_frame: u64 = 228 * (308 * 4); //280896
const clock_rate: u64 = 1 << 24; // 16.78MHz
pub const Synchro = struct {
const AtomicBool = std.atomic.Value(bool);
// TODO: Don't truncate this, be more accurate w/ timing
// 59.6046447754ns (truncated to just 59ns)
const clock_period: u64 = std.time.ns_per_s / clock_rate;
const frame_period = (clock_period * cycles_per_frame);
// FIXME: This Enum ends up being really LARGE!!!
pub const Message = union(enum) {
rom_path: [std.fs.max_path_bytes]u8,
bios_path: [std.fs.max_path_bytes]u8,
restart: void,
};
// 59.7275005696Hz
pub const frame_rate = @intToFloat(f64, std.time.ns_per_s) /
((@intToFloat(f64, std.time.ns_per_s) / @intToFloat(f64, clock_rate)) * @intToFloat(f64, cycles_per_frame));
paused: AtomicBool = AtomicBool.init(true), // FIXME: can ui_busy and paused be the same?
should_quit: AtomicBool = AtomicBool.init(false),
ch: Channel(Message),
pub fn init(allocator: std.mem.Allocator) !@This() {
const msg_buf = try allocator.alloc(Message, 1);
return .{ .ch = Channel(Message).init(msg_buf) };
}
pub fn deinit(self: *@This(), allocator: std.mem.Allocator) void {
allocator.free(self.ch.inner.buf);
self.* = undefined;
}
};
/// 4 Cycles in 1 dot
const cycles_per_dot = 4;
/// The GBA draws 228 Horizontal which each consist 308 dots
/// (note: not all lines are visible)
const cycles_per_frame = 228 * (308 * cycles_per_dot); //280896
/// The GBA ARM7TDMI runs at 2^24 Hz
const clock_rate = 1 << 24; // 16.78MHz
/// The # of nanoseconds a frame should take
const frame_period = (std.time.ns_per_s * cycles_per_frame) / clock_rate;
/// Exact Value: 59.7275005696Hz
/// The inverse of the frame period
pub const frame_rate: f64 = @as(f64, @floatFromInt(clock_rate)) / cycles_per_frame;
const log = std.log.scoped(.Emulation);
@@ -35,30 +65,37 @@ const RunKind = enum {
LimitedFPS,
};
pub fn run(quit: *Atomic(bool), scheduler: *Scheduler, cpu: *Arm7tdmi, tracker: *FpsTracker) void {
const audio_sync = config.config().guest.audio_sync;
pub fn run(cpu: *Arm7tdmi, scheduler: *Scheduler, tracker: *Tracker, sync: *Synchro) void {
const audio_sync = config.config().guest.audio_sync and !config.config().host.mute;
if (audio_sync) log.info("Audio sync enabled", .{});
if (config.config().guest.video_sync) {
inner(.LimitedFPS, audio_sync, quit, scheduler, cpu, tracker);
inner(.LimitedFPS, audio_sync, cpu, scheduler, tracker, sync);
} else {
inner(.UnlimitedFPS, audio_sync, quit, scheduler, cpu, tracker);
inner(.UnlimitedFPS, audio_sync, cpu, scheduler, tracker, sync);
}
}
fn inner(comptime kind: RunKind, audio_sync: bool, quit: *Atomic(bool), scheduler: *Scheduler, cpu: *Arm7tdmi, tracker: ?*FpsTracker) void {
fn inner(comptime kind: RunKind, audio_sync: bool, cpu: *Arm7tdmi, scheduler: *Scheduler, tracker: ?*Tracker, sync: *Synchro) void {
if (kind == .UnlimitedFPS or kind == .LimitedFPS) {
std.debug.assert(tracker != null);
log.info("FPS tracking enabled", .{});
}
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
// FIXME: audioSync accesses emulator state without any guarantees
switch (kind) {
.Unlimited, .UnlimitedFPS => {
log.info("Emulation w/out video sync", .{});
while (!quit.load(.SeqCst)) {
while (!sync.should_quit.load(.monotonic)) {
handleChannel(cpu, &sync.ch);
if (sync.paused.load(.monotonic)) continue;
runFrame(scheduler, cpu);
audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
audioSync(audio_sync, bus_ptr.apu.stream, &bus_ptr.apu.is_buffer_full);
if (kind == .UnlimitedFPS) tracker.?.tick();
}
@@ -68,7 +105,10 @@ fn inner(comptime kind: RunKind, audio_sync: bool, quit: *Atomic(bool), schedule
var timer = Timer.start() catch @panic("failed to initalize std.timer.Timer");
var wake_time: u64 = frame_period;
while (!quit.load(.SeqCst)) {
while (!sync.should_quit.load(.monotonic)) {
handleChannel(cpu, &sync.ch);
if (sync.paused.load(.monotonic)) continue;
runFrame(scheduler, cpu);
const new_wake_time = videoSync(&timer, wake_time);
@@ -77,7 +117,7 @@ fn inner(comptime kind: RunKind, audio_sync: bool, quit: *Atomic(bool), schedule
// the amount of time needed for audio to catch up rather than
// our expected wake-up time
audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
audioSync(audio_sync, bus_ptr.apu.stream, &bus_ptr.apu.is_buffer_full);
if (!audio_sync) spinLoop(&timer, wake_time);
wake_time = new_wake_time;
@@ -87,14 +127,30 @@ fn inner(comptime kind: RunKind, audio_sync: bool, quit: *Atomic(bool), schedule
}
}
inline fn handleChannel(cpu: *Arm7tdmi, channel: *Channel(Synchro.Message)) void {
const message = channel.pop() orelse return;
switch (message) {
.rom_path => |path_buf| {
const path = std.mem.sliceTo(&path_buf, 0);
replaceGamepak(cpu, path) catch |e| log.err("failed to replace GamePak: {}", .{e});
},
.bios_path => |path_buf| {
const path = std.mem.sliceTo(&path_buf, 0);
replaceBios(cpu, path) catch |e| log.err("failed to replace BIOS: {}", .{e});
},
.restart => reset(cpu),
}
}
pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void {
const frame_end = sched.tick + cycles_per_frame;
while (sched.tick < frame_end) {
if (!cpu.stepDmaTransfer()) {
if (cpu.isHalted()) {
if (!stepDmaTransfer(cpu)) {
if (isHalted(cpu)) {
// Fast-forward to next Event
sched.tick = sched.queue.peek().?.tick;
sched.tick = sched.nextTimestamp();
} else {
cpu.step();
}
@@ -104,21 +160,35 @@ pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void {
}
}
fn audioSync(audio_sync: bool, stream: *SDL.SDL_AudioStream, is_buffer_full: *bool) void {
fn audioSync(audio_sync: bool, stream: *c.SDL_AudioStream, is_buffer_full: *bool) void {
// comptime std.debug.assert(@import("../platform.zig").sample_format == SDL.AUDIO_U16);
const sample_size = 2 * @sizeOf(u16);
const max_buf_size: c_int = 0x400;
// Determine whether the APU is busy right at this moment
var still_full: bool = SDL.SDL_AudioStreamAvailable(stream) > sample_size * if (is_buffer_full.*) max_buf_size >> 1 else max_buf_size;
defer is_buffer_full.* = still_full; // Update APU Busy status right before exiting scope
_ = audio_sync;
_ = stream;
_ = is_buffer_full;
// If Busy is false, there's no need to sync here
if (!still_full) return;
_ = sample_size;
_ = max_buf_size;
while (true) {
still_full = SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1;
if (!audio_sync or !still_full) break;
}
// TODO(paoda): re-enable
// // Determine whether the APU is busy right at this moment
// var still_full: bool = SDL.SDL_AudioStreamAvailable(stream) > sample_size * if (is_buffer_full.*) max_buf_size >> 1 else max_buf_size;
// defer is_buffer_full.* = still_full; // Update APU Busy status right before exiting scope
// // If Busy is false, there's no need to sync here
// if (!still_full) return;
// // TODO: Refactor!!!!
// // while (SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1)
// // std.atomic.spinLoopHint();
// while (true) {
// still_full = SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1;
// if (!audio_sync or !still_full) break;
// }
}
fn videoSync(timer: *Timer, wake_time: u64) u64 {
@@ -132,11 +202,10 @@ fn videoSync(timer: *Timer, wake_time: u64) u64 {
// TODO: Better sleep impl?
fn sleep(timer: *Timer, wake_time: u64) ?u64 {
// const step = std.time.ns_per_ms * 10; // 10ms
const timestamp = timer.read();
// ns_late is non zero if we are late.
const ns_late = timestamp -| wake_time;
var ns_late = timestamp -| wake_time;
// If we're more than a frame late, skip the rest of this loop
// Recalculate what our new wake time should be so that we can
@@ -144,19 +213,145 @@ fn sleep(timer: *Timer, wake_time: u64) ?u64 {
if (ns_late > frame_period) return timestamp + frame_period;
const sleep_for = frame_period - ns_late;
// // Employ several sleep calls in periods of 10ms
// // By doing this the behaviour should average out to be
// // more consistent
// const loop_count = sleep_for / step; // How many groups of 10ms
const step = 2 * std.time.ns_per_ms; // Granularity of 2ms
const times = sleep_for / step;
// var i: usize = 0;
// while (i < loop_count) : (i += 1) std.time.sleep(step);
for (0..times) |_| {
std.Thread.sleep(step);
std.time.sleep(sleep_for);
// Upon wakeup, check to see if this particular sleep was longer than expected
// if so we should exit early, but probably not skip a whole frame period
ns_late = timer.read() -| wake_time;
if (ns_late > frame_period) return null;
}
return null;
}
fn spinLoop(timer: *Timer, wake_time: u64) void {
while (true) if (timer.read() > wake_time) break;
while (timer.read() < wake_time)
std.atomic.spinLoopHint();
}
pub const EmuThing = struct {
const Self = @This();
const Interface = @import("gdbstub").Emulator;
const Allocator = std.mem.Allocator;
pub const target =
\\<target version="1.0">
\\ <architecture>armv4t</architecture>
\\ <feature name="org.gnu.gdb.arm.core">
\\ <reg name="r0" bitsize="32" type="uint32"/>
\\ <reg name="r1" bitsize="32" type="uint32"/>
\\ <reg name="r2" bitsize="32" type="uint32"/>
\\ <reg name="r3" bitsize="32" type="uint32"/>
\\ <reg name="r4" bitsize="32" type="uint32"/>
\\ <reg name="r5" bitsize="32" type="uint32"/>
\\ <reg name="r6" bitsize="32" type="uint32"/>
\\ <reg name="r7" bitsize="32" type="uint32"/>
\\ <reg name="r8" bitsize="32" type="uint32"/>
\\ <reg name="r9" bitsize="32" type="uint32"/>
\\ <reg name="r10" bitsize="32" type="uint32"/>
\\ <reg name="r11" bitsize="32" type="uint32"/>
\\ <reg name="r12" bitsize="32" type="uint32"/>
\\ <reg name="sp" bitsize="32" type="data_ptr"/>
\\ <reg name="lr" bitsize="32"/>
\\ <reg name="pc" bitsize="32" type="code_ptr"/>
\\
\\ <reg name="cpsr" bitsize="32" regnum="25"/>
\\ </feature>
\\</target>
;
// Game Pak SRAM isn't included
// TODO: Can i be more specific here?
pub const map =
\\ <memory-map version="1.0">
\\ <memory type="rom" start="0x00000000" length="0x00004000"/>
\\ <memory type="ram" start="0x02000000" length="0x00040000"/>
\\ <memory type="ram" start="0x03000000" length="0x00008000"/>
\\ <memory type="ram" start="0x04000000" length="0x00000400"/>
\\ <memory type="ram" start="0x05000000" length="0x00000400"/>
\\ <memory type="ram" start="0x06000000" length="0x00018000"/>
\\ <memory type="ram" start="0x07000000" length="0x00000400"/>
\\ <memory type="rom" start="0x08000000" length="0x02000000"/>
\\ <memory type="rom" start="0x0A000000" length="0x02000000"/>
\\ <memory type="rom" start="0x0C000000" length="0x02000000"/>
\\ </memory-map>
;
cpu: *Arm7tdmi,
scheduler: *Scheduler,
pub fn init(cpu: *Arm7tdmi, scheduler: *Scheduler) Self {
return .{ .cpu = cpu, .scheduler = scheduler };
}
pub fn interface(self: *Self) Interface {
return Interface.init(self);
}
pub fn read(self: *const Self, addr: u32) u8 {
return self.cpu.bus.dbgRead(u8, addr);
}
pub fn write(self: *Self, addr: u32, value: u8) void {
self.cpu.bus.dbgWrite(u8, addr, value);
}
pub fn registers(self: *const Self) *[16]u32 {
return &self.cpu.r;
}
pub fn cpsr(self: *const Self) u32 {
return self.cpu.cpsr.raw;
}
pub fn step(self: *Self) void {
const cpu = self.cpu;
const sched = self.scheduler;
// Is true when we have executed one (1) instruction
var did_step: bool = false;
// TODO: How can I make it easier to keep this in lock-step with runFrame?
while (!did_step) {
if (!stepDmaTransfer(cpu)) {
if (isHalted(cpu)) {
// Fast-forward to next Event
sched.tick = sched.queue.peek().?.tick;
} else {
cpu.step();
did_step = true;
}
}
if (sched.tick >= sched.nextTimestamp()) sched.handleEvent(cpu);
}
}
};
fn reset(cpu: *Arm7tdmi) void {
// @breakpoint();
cpu.sched.reset(); // Yes this is order sensitive, see the PPU reset for why
cpu.bus.reset();
cpu.reset();
}
fn replaceGamepak(cpu: *Arm7tdmi, file_path: []const u8) !void {
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
try bus_ptr.replaceGamepak(file_path);
reset(cpu);
}
fn replaceBios(cpu: *Arm7tdmi, file_path: []const u8) !void {
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
const allocator = bus_ptr.bios.allocator;
const bios_len = 0x4000;
bus_ptr.bios.buf = try allocator.alloc(u8, bios_len);
try bus_ptr.bios.load(file_path);
}

File diff suppressed because it is too large Load Diff

44
src/core/ppu/Oam.zig Normal file
View File

@@ -0,0 +1,44 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const buf_len = 0x400;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FF;
return switch (T) {
u32, u16, u8 => std.mem.readInt(T, self.buf[addr..][0..@sizeOf(T)], .little),
else => @compileError("OAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x3FF;
switch (T) {
u32, u16 => std.mem.writeInt(T, self.buf[addr..][0..@sizeOf(T)], value, .little),
u8 => return, // 8-bit writes are explicitly ignored
else => @compileError("OAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
@memset(buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn reset(self: *Self) void {
@memset(self.buf, 0);
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}

51
src/core/ppu/Palette.zig Normal file
View File

@@ -0,0 +1,51 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const buf_len = 0x400;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FF;
return switch (T) {
u32, u16, u8 => std.mem.readInt(T, self.buf[addr..][0..@sizeOf(T)], .little),
else => @compileError("PALRAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x3FF;
switch (T) {
u32, u16 => std.mem.writeInt(T, self.buf[addr..][0..@sizeOf(T)], value, .little),
u8 => {
const align_addr = addr & ~@as(u32, 1); // Aligned to Halfword boundary
std.mem.writeInt(u16, self.buf[align_addr..][0..@sizeOf(u16)], @as(u16, value) * 0x101, .little);
},
else => @compileError("PALRAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
@memset(buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn reset(self: *Self) void {
@memset(self.buf, 0);
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub inline fn backdrop(self: *const Self) u16 {
return std.mem.readInt(u16, self.buf[0..2], .little);
}

64
src/core/ppu/Vram.zig Normal file
View File

@@ -0,0 +1,64 @@
const std = @import("std");
const io = @import("../bus/io.zig");
const Allocator = std.mem.Allocator;
const buf_len = 0x18000;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = Self.mirror(address);
return switch (T) {
u32, u16, u8 => std.mem.readInt(T, self.buf[addr..][0..@sizeOf(T)], .little),
else => @compileError("VRAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, dispcnt: io.DisplayControl, address: usize, value: T) void {
const mode: u3 = dispcnt.bg_mode.read();
const idx = Self.mirror(address);
switch (T) {
u32, u16 => std.mem.writeInt(T, self.buf[idx..][0..@sizeOf(T)], value, .little),
u8 => {
// Ignore write if it falls within the boundaries of OBJ VRAM
switch (mode) {
0, 1, 2 => if (0x0001_0000 <= idx) return,
else => if (0x0001_4000 <= idx) return,
}
const align_idx = idx & ~@as(u32, 1); // Aligned to a halfword boundary
std.mem.writeInt(u16, self.buf[align_idx..][0..@sizeOf(u16)], @as(u16, value) * 0x101, .little);
},
else => @compileError("VRAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
@memset(buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn reset(self: *Self) void {
@memset(self.buf, 0);
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub fn mirror(address: usize) usize {
// Mirrored in steps of 128K (64K + 32K + 32K) (abcc)
const addr = address & 0x1FFFF;
// If the address is within 96K we don't do anything,
// otherwise we want to mirror the last 32K (addresses between 64K and 96K)
return if (addr < buf_len) addr else 0x10000 + (addr & 0x7FFF);
}

View File

@@ -1,7 +1,7 @@
const std = @import("std");
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Bus = @import("Bus.zig");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Clock = @import("bus/gpio.zig").Clock;
const Order = std.math.Order;
@@ -12,11 +12,11 @@ const log = std.log.scoped(.Scheduler);
pub const Scheduler = struct {
const Self = @This();
tick: u64,
tick: u64 = 0,
queue: PriorityQueue(Event, void, lessThan),
pub fn init(allocator: Allocator) Self {
var sched = Self{ .tick = 0, .queue = PriorityQueue(Event, void, lessThan).init(allocator, {}) };
var sched = Self{ .queue = PriorityQueue(Event, void, lessThan).init(allocator, {}) };
sched.queue.add(.{ .kind = .HeatDeath, .tick = std.math.maxInt(u64) }) catch unreachable;
return sched;
@@ -27,69 +27,73 @@ pub const Scheduler = struct {
self.* = undefined;
}
pub fn reset(self: *Self) void {
// `std.PriorityQueue` provides no reset function, so we will just create a new one
const allocator = self.queue.allocator;
self.queue.deinit();
var new_queue = PriorityQueue(Event, void, lessThan).init(allocator, {});
new_queue.add(.{ .kind = .HeatDeath, .tick = std.math.maxInt(u64) }) catch unreachable;
self.* = .{ .queue = new_queue };
}
pub inline fn now(self: *const Self) u64 {
return self.tick;
}
pub fn handleEvent(self: *Self, cpu: *Arm7tdmi) void {
if (self.queue.removeOrNull()) |event| {
const late = self.tick - event.tick;
const event = self.queue.remove();
const late = self.tick - event.tick;
switch (event.kind) {
.HeatDeath => {
log.err("u64 overflow. This *actually* should never happen.", .{});
unreachable;
},
.Draw => {
// The end of a VDraw
cpu.bus.ppu.drawScanline();
cpu.bus.ppu.onHdrawEnd(cpu, late);
},
.TimerOverflow => |id| {
switch (id) {
0 => cpu.bus.tim[0].onTimerExpire(cpu, late),
1 => cpu.bus.tim[1].onTimerExpire(cpu, late),
2 => cpu.bus.tim[2].onTimerExpire(cpu, late),
3 => cpu.bus.tim[3].onTimerExpire(cpu, late),
}
},
.ApuChannel => |id| {
switch (id) {
0 => cpu.bus.apu.ch1.onToneSweepEvent(late),
1 => cpu.bus.apu.ch2.onToneEvent(late),
2 => cpu.bus.apu.ch3.onWaveEvent(late),
3 => cpu.bus.apu.ch4.onNoiseEvent(late),
}
},
.RealTimeClock => {
const device = &cpu.bus.pak.gpio.device;
if (device.kind != .Rtc or device.ptr == null) return;
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), device.ptr.?));
clock.onClockUpdate(late);
},
.FrameSequencer => cpu.bus.apu.onSequencerTick(late),
.SampleAudio => cpu.bus.apu.sampleAudio(late),
.HBlank => cpu.bus.ppu.onHblankEnd(cpu, late), // The end of a HBlank
.VBlank => cpu.bus.ppu.onHdrawEnd(cpu, late), // The end of a VBlank
}
switch (event.kind) {
.HeatDeath => {
log.err("u64 overflow. This *actually* should never happen.", .{});
unreachable;
},
.Draw => {
// The end of a VDraw
bus_ptr.ppu.drawScanline();
bus_ptr.ppu.onHdrawEnd(cpu, late);
},
.TimerOverflow => |id| {
switch (id) {
inline 0...3 => |idx| bus_ptr.tim[idx].onTimerExpire(cpu, late),
}
},
.ApuChannel => |id| {
switch (id) {
0 => bus_ptr.apu.ch1.onToneSweepEvent(late),
1 => bus_ptr.apu.ch2.onToneEvent(late),
2 => bus_ptr.apu.ch3.onWaveEvent(late),
3 => bus_ptr.apu.ch4.onNoiseEvent(late),
}
},
.RealTimeClock => {
const device = &bus_ptr.pak.gpio.device;
if (device.kind != .Rtc or device.ptr == null) return;
const clock: *Clock = @ptrCast(@alignCast(device.ptr.?));
clock.onClockUpdate(late);
},
.FrameSequencer => bus_ptr.apu.onSequencerTick(late),
.SampleAudio => bus_ptr.apu.sampleAudio(late),
.HBlank => bus_ptr.ppu.onHblankEnd(cpu, late), // The end of a HBlank
.VBlank => bus_ptr.ppu.onHdrawEnd(cpu, late), // The end of a VBlank
}
}
/// Removes the **first** scheduled event of type `needle`
pub fn removeScheduledEvent(self: *Self, needle: EventKind) void {
var it = self.queue.iterator();
var i: usize = 0;
while (it.next()) |event| : (i += 1) {
for (self.queue.items, 0..) |event, i| {
if (std.meta.eql(event.kind, needle)) {
// This invalidates the iterator
// invalidates the slice we're iterating over
_ = self.queue.removeIndex(i);
// Since removing something from the PQ invalidates the iterator,
// this implementation can safely only remove the first instance of
// a Scheduled Event. Exit Early
// log.debug("Removed {?}@{}", .{ event.kind, event.tick });
break;
}
}

516
src/imgui.zig Normal file
View File

@@ -0,0 +1,516 @@
//! Namespace for dealing with ZBA's immediate-mode GUI
//! Currently, ZBA uses zgui from https://github.com/michal-z/zig-gamedev
//! which provides Zig bindings for https://github.com/ocornut/imgui under the hood
const std = @import("std");
const zgui = @import("zgui");
const gl = @import("gl");
const nfd = @import("nfd");
const config = @import("config.zig");
const emu = @import("core/emu.zig");
const Gui = @import("platform.zig").Gui;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Scheduler = @import("core/scheduler.zig").Scheduler;
const Bus = @import("core/Bus.zig");
const Synchro = @import("core/emu.zig").Synchro;
const RingBuffer = @import("zba_util").RingBuffer;
const Dimensions = @import("platform.zig").Dimensions;
const Allocator = std.mem.Allocator;
const GLuint = gl.uint;
const gba_width = @import("core/ppu.zig").width;
const gba_height = @import("core/ppu.zig").height;
const log = std.log.scoped(.Imgui);
// two seconds worth of fps values into the past
const histogram_len = 0x80;
/// Immediate-Mode GUI State
pub const State = struct {
title: [12:0]u8,
fps_hist: RingBuffer(u32),
should_quit: bool = false,
emulation: Emulation,
win_stat: WindowStatus = .{},
const WindowStatus = struct {
show_deps: bool = false,
show_regs: bool = false,
show_schedule: bool = false,
show_perf: bool = false,
show_palette: bool = false,
};
const Emulation = union(enum) {
Active,
Inactive,
Transition: enum { Active, Inactive },
};
/// if zba is initialized with a ROM already provided, this initializer should be called
/// with `title_opt` being non-null
pub fn init(allocator: Allocator, title_opt: ?*const [12]u8) !@This() {
const history = try allocator.alloc(u32, histogram_len);
return .{
.title = handleTitle(title_opt),
.emulation = if (title_opt == null) .Inactive else .{ .Transition = .Active },
.fps_hist = RingBuffer(u32).init(history),
};
}
pub fn deinit(self: *@This(), allocator: Allocator) void {
allocator.free(self.fps_hist.buf);
self.* = undefined;
}
};
pub fn draw(state: *State, sync: *Synchro, dim: Dimensions, cpu: *const Arm7tdmi, tex_id: GLuint) bool {
const scn_scale = config.config().host.win_scale;
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
zgui.backend.newFrame(dim.width, dim.height);
state.title = handleTitle(&bus_ptr.pak.title);
{
_ = zgui.beginMainMenuBar();
defer zgui.endMainMenuBar();
if (zgui.beginMenu("File", true)) {
defer zgui.endMenu();
if (zgui.menuItem("Quit", .{}))
state.should_quit = true;
if (zgui.menuItem("Insert ROM", .{})) blk: {
const file_path = tmp: {
const path_opt = nfd.openFileDialog("gba", null) catch |e| {
log.err("file dialog failed to open: {}", .{e});
break :blk;
};
break :tmp path_opt orelse {
log.warn("did not receive a file path", .{});
break :blk;
};
};
defer nfd.freePath(file_path);
log.info("user chose: \"{s}\"", .{file_path});
const message = tmp: {
var msg: Synchro.Message = .{ .rom_path = undefined };
@memcpy(msg.rom_path[0..file_path.len], file_path);
break :tmp msg;
};
sync.ch.push(message) catch |e| {
log.err("failed to send file path to emu thread: {}", .{e});
break :blk;
};
state.emulation = .{ .Transition = .Active };
}
if (zgui.menuItem("Load BIOS", .{})) blk: {
const file_path = tmp: {
const path_opt = nfd.openFileDialog("bin", null) catch |e| {
log.err("file dialog failed to open: {}", .{e});
break :blk;
};
break :tmp path_opt orelse {
log.warn("did not receive a file path", .{});
break :blk;
};
};
defer nfd.freePath(file_path);
log.info("user chose: \"{s}\"", .{file_path});
const message = tmp: {
var msg: Synchro.Message = .{ .bios_path = undefined };
@memcpy(msg.bios_path[0..file_path.len], file_path);
break :tmp msg;
};
sync.ch.push(message) catch |e| {
log.err("failed to send file path to emu thread: {}", .{e});
break :blk;
};
}
}
if (zgui.beginMenu("Emulation", true)) {
defer zgui.endMenu();
if (zgui.menuItem("Registers", .{ .selected = state.win_stat.show_regs }))
state.win_stat.show_regs = true;
if (zgui.menuItem("Palette", .{ .selected = state.win_stat.show_palette }))
state.win_stat.show_palette = true;
if (zgui.menuItem("Schedule", .{ .selected = state.win_stat.show_schedule }))
state.win_stat.show_schedule = true;
if (zgui.menuItem("Paused", .{ .selected = state.emulation == .Inactive })) {
state.emulation = switch (state.emulation) {
.Active => .{ .Transition = .Inactive },
.Inactive => .{ .Transition = .Active },
else => state.emulation,
};
}
if (zgui.menuItem("Restart", .{}))
sync.ch.push(.restart) catch |e| log.err("failed to send restart req to emu thread: {}", .{e});
}
if (zgui.beginMenu("Stats", true)) {
defer zgui.endMenu();
if (zgui.menuItem("Performance", .{ .selected = state.win_stat.show_perf }))
state.win_stat.show_perf = true;
}
if (zgui.beginMenu("Help", true)) {
defer zgui.endMenu();
if (zgui.menuItem("Dependencies", .{ .selected = state.win_stat.show_deps }))
state.win_stat.show_deps = true;
}
}
{
const w: f32 = @floatFromInt(gba_width * scn_scale);
const h: f32 = @floatFromInt(gba_height * scn_scale);
const window_title = std.mem.sliceTo(&state.title, 0);
_ = zgui.begin(window_title, .{ .flags = .{ .no_resize = true, .always_auto_resize = true } });
defer zgui.end();
// FIXME(paoda): go look at some documentation here
zgui.image(.{ .tex_data = null, .tex_id = @enumFromInt(tex_id) }, .{ .w = w, .h = h });
}
// TODO: Any other steps to respect the copyright of the libraries I use?
if (state.win_stat.show_deps) {
_ = zgui.begin("Dependencies", .{ .popen = &state.win_stat.show_deps });
defer zgui.end();
zgui.bulletText("known-folders by ziglibs", .{});
zgui.bulletText("nfd-zig ported by Fabio Arnold", .{});
{
zgui.indent(.{});
defer zgui.unindent(.{});
zgui.bulletText("nativefiledialog by Michael Labbe", .{});
}
zgui.bulletText("SDL ported by Carl Åstholm", .{});
{
zgui.indent(.{});
defer zgui.unindent(.{});
zgui.bulletText("SDL by Sam Lantinga", .{});
}
// zgui.bulletText("tomlz by Matthew Hall", .{});
zgui.bulletText("zba-gdbstub by Rekai Musuka", .{});
zgui.bulletText("zba-util by Rekai Musuka", .{});
zgui.bulletText("zgui ported by Michal Ziulek et al.", .{});
{
zgui.indent(.{});
defer zgui.unindent(.{});
zgui.bulletText("DearImGui by Omar Cornut", .{});
}
zgui.bulletText("zig-clap by Jimmi Holst Christensen", .{});
zgui.bulletText("zig-datetime by Jairus Martin", .{});
zgui.newLine();
zgui.bulletText("bitfield.zig by Hannes Bredberg et al.", .{});
zgui.bulletText("zigglgen ported by Carl Åstholm", .{});
{
zgui.indent(.{});
defer zgui.unindent(.{});
zgui.bulletText("OpenGL-Registry by The Khronos Group", .{});
}
}
if (state.win_stat.show_regs) {
_ = zgui.begin("Guest Registers", .{ .popen = &state.win_stat.show_regs });
defer zgui.end();
for (0..8) |i| {
zgui.text("R{}: 0x{X:0>8}", .{ i, cpu.r[i] });
zgui.sameLine(.{});
const padding = if (8 + i < 10) " " else "";
zgui.text("{s}R{}: 0x{X:0>8}", .{ padding, 8 + i, cpu.r[8 + i] });
}
zgui.separator();
widgets.psr("CPSR", cpu.cpsr);
widgets.psr("SPSR", cpu.spsr);
zgui.separator();
widgets.interrupts(" IE", bus_ptr.io.ie);
widgets.interrupts("IRQ", bus_ptr.io.irq);
}
if (state.win_stat.show_perf) {
_ = zgui.begin("Performance", .{ .popen = &state.win_stat.show_perf });
defer zgui.end();
// const tmp = blk: {
// var buf: [histogram_len]u32 = undefined;
// const len = state.fps_hist.copy(&buf);
// break :blk .{ buf, len };
// };
// const values = tmp[0];
// const len = tmp[1];
// if (len == values.len) _ = state.fps_hist.pop();
// const sorted = blk: {
// var buf: @TypeOf(values) = undefined;
// @memcpy(buf[0..len], values[0..len]);
// std.mem.sort(u32, buf[0..len], {}, std.sort.asc(u32));
// break :blk buf;
// };
// const y_max: f64 = 2 * if (len != 0) @as(f64, @floatFromInt(sorted[len - 1])) else emu.frame_rate;
// const x_max: f64 = @floatFromInt(values.len);
// const y_args = .{ .flags = .{ .no_grid_lines = true } };
// const x_args = .{ .flags = .{ .no_grid_lines = true, .no_tick_labels = true, .no_tick_marks = true } };
// if (zgui.plot.beginPlot("Emulation FPS", .{ .w = 0.0, .flags = .{ .no_title = true, .no_frame = true } })) {
// defer zgui.plot.endPlot();
// zgui.plot.setupLegend(.{ .north = true, .east = true }, .{});
// zgui.plot.setupAxis(.x1, x_args);
// zgui.plot.setupAxis(.y1, y_args);
// zgui.plot.setupAxisLimits(.y1, .{ .min = 0.0, .max = y_max, .cond = .always });
// zgui.plot.setupAxisLimits(.x1, .{ .min = 0.0, .max = x_max, .cond = .always });
// zgui.plot.setupFinish();
// zgui.plot.plotLineValues("FPS", u32, .{ .v = values[0..len] });
// }
// const stats: struct { u32, u32, u32 } = blk: {
// if (len == 0) break :blk .{ 0, 0, 0 };
// const average: u32 = average: {
// var sum: u32 = 0;
// for (sorted[0..len]) |value| sum += value;
// break :average @intCast(sum / len);
// };
// const median = sorted[len / 2];
// const low = sorted[len / 100]; // 1% Low
// break :blk .{ average, median, low };
// };
// zgui.text("Average: {:0>3} fps", .{stats[0]});
// zgui.text(" Median: {:0>3} fps", .{stats[1]});
// zgui.text(" 1% Low: {:0>3} fps", .{stats[2]});
}
if (state.win_stat.show_schedule) {
_ = zgui.begin("Schedule", .{ .popen = &state.win_stat.show_schedule });
defer zgui.end();
const scheduler = cpu.sched;
_ = scheduler;
// zgui.text("tick: {X:0>16}", .{scheduler.now()});
zgui.text("tick: (TODO: FIX THIS)", .{});
zgui.separator();
const sched_ptr: *Scheduler = @ptrCast(@alignCast(cpu.sched.ptr));
const Event = std.meta.Child(@TypeOf(sched_ptr.queue.items));
var items: [20]Event = undefined;
const len = @min(sched_ptr.queue.items.len, items.len);
@memcpy(items[0..len], sched_ptr.queue.items[0..len]);
std.mem.sort(Event, items[0..len], {}, widgets.eventDesc(Event));
for (items[0..len]) |event| {
// zgui.text("{X:0>16} | {?}", .{ event.tick, event.kind });
_ = event;
zgui.text("TODO: Fix This", .{});
}
}
if (state.win_stat.show_palette) {
_ = zgui.begin("Palette", .{ .popen = &state.win_stat.show_palette });
defer zgui.end();
widgets.paletteGrid(.Background, cpu);
zgui.sameLine(.{ .spacing = 20.0 });
widgets.paletteGrid(.Object, cpu);
}
// {
// zgui.showDemoWindow(null);
// }
return true; // request redraw
}
const widgets = struct {
const PaletteKind = enum { Background, Object };
fn paletteGrid(comptime kind: PaletteKind, cpu: *const Arm7tdmi) void {
_ = zgui.beginGroup();
defer zgui.endGroup();
const address: u32 = switch (kind) {
.Background => 0x0500_0000,
.Object => 0x0500_0200,
};
for (0..0x100) |i| {
const offset: u32 = @truncate(i);
const bgr555 = cpu.bus.dbgRead(u16, address + offset * @sizeOf(u16));
widgets.colourSquare(bgr555);
if ((i + 1) % 0x10 != 0) zgui.sameLine(.{});
}
zgui.text(@tagName(kind), .{});
}
fn colourSquare(bgr555: u16) void {
// FIXME: working with the packed struct enum is currently broken :pensive:
const ImguiColorEditFlags_NoInputs: u32 = 1 << 5;
const ImguiColorEditFlags_NoPicker: u32 = 1 << 2;
const flags: zgui.ColorEditFlags = @bitCast(ImguiColorEditFlags_NoInputs | ImguiColorEditFlags_NoPicker);
const b: f32 = @floatFromInt(bgr555 >> 10 & 0x1f);
const g: f32 = @floatFromInt(bgr555 >> 5 & 0x1F);
const r: f32 = @floatFromInt(bgr555 & 0x1F);
var col = [_]f32{ r / 31.0, g / 31.0, b / 31.0 };
_ = zgui.colorEdit3("", .{ .col = &col, .flags = flags });
}
fn interrupts(comptime label: []const u8, int: anytype) void {
const h = 15.0;
const w = 9.0 * 2 + 3.5;
const ww = 9.0 * 3;
{
zgui.text(label ++ ":", .{});
zgui.sameLine(.{});
_ = zgui.selectable("VBL", .{ .w = w, .h = h, .selected = int.vblank.read() });
zgui.sameLine(.{});
_ = zgui.selectable("HBL", .{ .w = w, .h = h, .selected = int.hblank.read() });
zgui.sameLine(.{});
_ = zgui.selectable("VCT", .{ .w = w, .h = h, .selected = int.coincidence.read() });
{
zgui.sameLine(.{});
_ = zgui.selectable("TIM0", .{ .w = ww, .h = h, .selected = int.tim0.read() });
zgui.sameLine(.{});
_ = zgui.selectable("TIM1", .{ .w = ww, .h = h, .selected = int.tim1.read() });
zgui.sameLine(.{});
_ = zgui.selectable("TIM2", .{ .w = ww, .h = h, .selected = int.tim2.read() });
zgui.sameLine(.{});
_ = zgui.selectable("TIM3", .{ .w = ww, .h = h, .selected = int.tim3.read() });
}
zgui.sameLine(.{});
_ = zgui.selectable("SRL", .{ .w = w, .h = h, .selected = int.serial.read() });
{
zgui.sameLine(.{});
_ = zgui.selectable("DMA0", .{ .w = ww, .h = h, .selected = int.dma0.read() });
zgui.sameLine(.{});
_ = zgui.selectable("DMA1", .{ .w = ww, .h = h, .selected = int.dma1.read() });
zgui.sameLine(.{});
_ = zgui.selectable("DMA2", .{ .w = ww, .h = h, .selected = int.dma2.read() });
zgui.sameLine(.{});
_ = zgui.selectable("DMA3", .{ .w = ww, .h = h, .selected = int.dma3.read() });
}
zgui.sameLine(.{});
_ = zgui.selectable("KPD", .{ .w = w, .h = h, .selected = int.keypad.read() });
zgui.sameLine(.{});
_ = zgui.selectable("GPK", .{ .w = w, .h = h, .selected = int.game_pak.read() });
}
}
fn psr(comptime label: []const u8, register: anytype) void {
const Mode = @import("arm32").arm.Mode;
const maybe_mode = std.meta.intToEnum(Mode, register.mode.read()) catch null;
const mode = if (maybe_mode) |mode| mode.toString() else "???";
const w = 9.0;
const h = 15.0;
zgui.text(label ++ ": 0x{X:0>8}", .{register.raw});
zgui.sameLine(.{});
_ = zgui.selectable("N", .{ .w = w, .h = h, .selected = register.n.read() });
zgui.sameLine(.{});
_ = zgui.selectable("Z", .{ .w = w, .h = h, .selected = register.z.read() });
zgui.sameLine(.{});
_ = zgui.selectable("C", .{ .w = w, .h = h, .selected = register.c.read() });
zgui.sameLine(.{});
_ = zgui.selectable("V", .{ .w = w, .h = h, .selected = register.v.read() });
zgui.sameLine(.{});
zgui.text("{s}", .{mode});
}
fn eventDesc(comptime T: type) fn (void, T, T) bool {
return struct {
fn inner(_: void, left: T, right: T) bool {
return left.tick > right.tick;
}
}.inner;
}
};
fn handleTitle(title_opt: ?*const [12]u8) [12:0]u8 {
if (title_opt == null) return "[N/A Title]\x00".*; // No ROM present
const title = title_opt.?;
// ROM Title is an empty string (ImGui hates these)
if (title[0] == '\x00') return "[No Title]\x00\x00".*;
return title.* ++ [_:0]u8{};
}

28
src/lib.zig Normal file
View File

@@ -0,0 +1,28 @@
pub const c = @cImport({
@cDefine("SDL_DISABLE_OLD_NAMES", {});
@cDefine("SDL_MAIN_HANDLED", {});
@cInclude("SDL3/SDL.h");
@cInclude("SDL3/SDL_main.h");
});
// https://github.com/castholm/zig-examples/blob/77a829c85b5ddbad673026d504626015db4093ac/opengl-sdl/main.zig#L200-L219
pub inline fn errify(value: anytype) error{sdl_error}!switch (@typeInfo(@TypeOf(value))) {
.bool => void,
.pointer, .optional => @TypeOf(value.?),
.int => |info| switch (info.signedness) {
.signed => @TypeOf(@max(0, value)),
.unsigned => @TypeOf(value),
},
else => @compileError("unerrifiable type: " ++ @typeName(@TypeOf(value))),
} {
return switch (@typeInfo(@TypeOf(value))) {
.bool => if (!value) error.sdl_error,
.pointer, .optional => value orelse error.sdl_error,
.int => |info| switch (info.signedness) {
.signed => if (value >= 0) @max(0, value) else error.sdl_error,
.unsigned => if (value != 0) value else error.sdl_error,
},
else => comptime unreachable,
};
}

548
src/lib/fifo.zig Normal file
View File

@@ -0,0 +1,548 @@
// FIFO of fixed size items
// Usually used for e.g. byte buffers
const std = @import("std");
const math = std.math;
const mem = std.mem;
const Allocator = mem.Allocator;
const assert = std.debug.assert;
const testing = std.testing;
pub const LinearFifoBufferType = union(enum) {
/// The buffer is internal to the fifo; it is of the specified size.
static: usize,
/// The buffer is passed as a slice to the initialiser.
slice,
/// The buffer is managed dynamically using a `mem.Allocator`.
dynamic,
};
pub fn LinearFifo(
comptime T: type,
comptime buffer_type: LinearFifoBufferType,
) type {
const autoalign = false;
const powers_of_two = switch (buffer_type) {
.static => std.math.isPowerOfTwo(buffer_type.static),
.slice => false, // Any size slice could be passed in
.dynamic => true, // This could be configurable in future
};
return struct {
allocator: if (buffer_type == .dynamic) Allocator else void,
buf: if (buffer_type == .static) [buffer_type.static]T else []T,
head: usize,
count: usize,
const Self = @This();
pub const Reader = std.io.Reader(*Self, error{}, readFn);
pub const Writer = std.io.Writer(*Self, error{OutOfMemory}, appendWrite);
// Type of Self argument for slice operations.
// If buffer is inline (Static) then we need to ensure we haven't
// returned a slice into a copy on the stack
const SliceSelfArg = if (buffer_type == .static) *Self else Self;
pub const init = switch (buffer_type) {
.static => initStatic,
.slice => initSlice,
.dynamic => initDynamic,
};
fn initStatic() Self {
comptime assert(buffer_type == .static);
return .{
.allocator = {},
.buf = undefined,
.head = 0,
.count = 0,
};
}
fn initSlice(buf: []T) Self {
comptime assert(buffer_type == .slice);
return .{
.allocator = {},
.buf = buf,
.head = 0,
.count = 0,
};
}
fn initDynamic(allocator: Allocator) Self {
comptime assert(buffer_type == .dynamic);
return .{
.allocator = allocator,
.buf = &.{},
.head = 0,
.count = 0,
};
}
pub fn deinit(self: Self) void {
if (buffer_type == .dynamic) self.allocator.free(self.buf);
}
pub fn realign(self: *Self) void {
if (self.buf.len - self.head >= self.count) {
mem.copyForwards(T, self.buf[0..self.count], self.buf[self.head..][0..self.count]);
self.head = 0;
} else {
var tmp: [4096 / 2 / @sizeOf(T)]T = undefined;
while (self.head != 0) {
const n = @min(self.head, tmp.len);
const m = self.buf.len - n;
@memcpy(tmp[0..n], self.buf[0..n]);
mem.copyForwards(T, self.buf[0..m], self.buf[n..][0..m]);
@memcpy(self.buf[m..][0..n], tmp[0..n]);
self.head -= n;
}
}
{ // set unused area to undefined
const unused = mem.sliceAsBytes(self.buf[self.count..]);
@memset(unused, undefined);
}
}
/// Reduce allocated capacity to `size`.
pub fn shrink(self: *Self, size: usize) void {
assert(size >= self.count);
if (buffer_type == .dynamic) {
self.realign();
self.buf = self.allocator.realloc(self.buf, size) catch |e| switch (e) {
error.OutOfMemory => return, // no problem, capacity is still correct then.
};
}
}
/// Ensure that the buffer can fit at least `size` items
pub fn ensureTotalCapacity(self: *Self, size: usize) !void {
if (self.buf.len >= size) return;
if (buffer_type == .dynamic) {
self.realign();
const new_size = if (powers_of_two) math.ceilPowerOfTwo(usize, size) catch return error.OutOfMemory else size;
self.buf = try self.allocator.realloc(self.buf, new_size);
} else {
return error.OutOfMemory;
}
}
/// Makes sure at least `size` items are unused
pub fn ensureUnusedCapacity(self: *Self, size: usize) error{OutOfMemory}!void {
if (self.writableLength() >= size) return;
return try self.ensureTotalCapacity(math.add(usize, self.count, size) catch return error.OutOfMemory);
}
/// Returns number of items currently in fifo
pub fn readableLength(self: Self) usize {
return self.count;
}
/// Returns a writable slice from the 'read' end of the fifo
fn readableSliceMut(self: SliceSelfArg, offset: usize) []T {
if (offset > self.count) return &[_]T{};
var start = self.head + offset;
if (start >= self.buf.len) {
start -= self.buf.len;
return self.buf[start .. start + (self.count - offset)];
} else {
const end = @min(self.head + self.count, self.buf.len);
return self.buf[start..end];
}
}
/// Returns a readable slice from `offset`
pub fn readableSlice(self: SliceSelfArg, offset: usize) []const T {
return self.readableSliceMut(offset);
}
pub fn readableSliceOfLen(self: *Self, len: usize) []const T {
assert(len <= self.count);
const buf = self.readableSlice(0);
if (buf.len >= len) {
return buf[0..len];
} else {
self.realign();
return self.readableSlice(0)[0..len];
}
}
/// Discard first `count` items in the fifo
pub fn discard(self: *Self, count: usize) void {
assert(count <= self.count);
{ // set old range to undefined. Note: may be wrapped around
const slice = self.readableSliceMut(0);
if (slice.len >= count) {
const unused = mem.sliceAsBytes(slice[0..count]);
@memset(unused, undefined);
} else {
const unused = mem.sliceAsBytes(slice[0..]);
@memset(unused, undefined);
const unused2 = mem.sliceAsBytes(self.readableSliceMut(slice.len)[0 .. count - slice.len]);
@memset(unused2, undefined);
}
}
if (autoalign and self.count == count) {
self.head = 0;
self.count = 0;
} else {
var head = self.head + count;
if (powers_of_two) {
// Note it is safe to do a wrapping subtract as
// bitwise & with all 1s is a noop
head &= self.buf.len -% 1;
} else {
head %= self.buf.len;
}
self.head = head;
self.count -= count;
}
}
/// Read the next item from the fifo
pub fn readItem(self: *Self) ?T {
if (self.count == 0) return null;
const c = self.buf[self.head];
self.discard(1);
return c;
}
/// Read data from the fifo into `dst`, returns number of items copied.
pub fn read(self: *Self, dst: []T) usize {
var dst_left = dst;
while (dst_left.len > 0) {
const slice = self.readableSlice(0);
if (slice.len == 0) break;
const n = @min(slice.len, dst_left.len);
@memcpy(dst_left[0..n], slice[0..n]);
self.discard(n);
dst_left = dst_left[n..];
}
return dst.len - dst_left.len;
}
/// Same as `read` except it returns an error union
/// The purpose of this function existing is to match `std.io.Reader` API.
fn readFn(self: *Self, dest: []u8) error{}!usize {
return self.read(dest);
}
pub fn reader(self: *Self) Reader {
return .{ .context = self };
}
/// Returns number of items available in fifo
pub fn writableLength(self: Self) usize {
return self.buf.len - self.count;
}
/// Returns the first section of writable buffer.
/// Note that this may be of length 0
pub fn writableSlice(self: SliceSelfArg, offset: usize) []T {
if (offset > self.buf.len) return &[_]T{};
const tail = self.head + offset + self.count;
if (tail < self.buf.len) {
return self.buf[tail..];
} else {
return self.buf[tail - self.buf.len ..][0 .. self.writableLength() - offset];
}
}
/// Returns a writable buffer of at least `size` items, allocating memory as needed.
/// Use `fifo.update` once you've written data to it.
pub fn writableWithSize(self: *Self, size: usize) ![]T {
try self.ensureUnusedCapacity(size);
// try to avoid realigning buffer
var slice = self.writableSlice(0);
if (slice.len < size) {
self.realign();
slice = self.writableSlice(0);
}
return slice;
}
/// Update the tail location of the buffer (usually follows use of writable/writableWithSize)
pub fn update(self: *Self, count: usize) void {
assert(self.count + count <= self.buf.len);
self.count += count;
}
/// Appends the data in `src` to the fifo.
/// You must have ensured there is enough space.
pub fn writeAssumeCapacity(self: *Self, src: []const T) void {
assert(self.writableLength() >= src.len);
var src_left = src;
while (src_left.len > 0) {
const writable_slice = self.writableSlice(0);
assert(writable_slice.len != 0);
const n = @min(writable_slice.len, src_left.len);
@memcpy(writable_slice[0..n], src_left[0..n]);
self.update(n);
src_left = src_left[n..];
}
}
/// Write a single item to the fifo
pub fn writeItem(self: *Self, item: T) !void {
try self.ensureUnusedCapacity(1);
return self.writeItemAssumeCapacity(item);
}
pub fn writeItemAssumeCapacity(self: *Self, item: T) void {
var tail = self.head + self.count;
if (powers_of_two) {
tail &= self.buf.len - 1;
} else {
tail %= self.buf.len;
}
self.buf[tail] = item;
self.update(1);
}
/// Appends the data in `src` to the fifo.
/// Allocates more memory as necessary
pub fn write(self: *Self, src: []const T) !void {
try self.ensureUnusedCapacity(src.len);
return self.writeAssumeCapacity(src);
}
/// Same as `write` except it returns the number of bytes written, which is always the same
/// as `bytes.len`. The purpose of this function existing is to match `std.io.Writer` API.
fn appendWrite(self: *Self, bytes: []const u8) error{OutOfMemory}!usize {
try self.write(bytes);
return bytes.len;
}
pub fn writer(self: *Self) Writer {
return .{ .context = self };
}
/// Make `count` items available before the current read location
fn rewind(self: *Self, count: usize) void {
assert(self.writableLength() >= count);
var head = self.head + (self.buf.len - count);
if (powers_of_two) {
head &= self.buf.len - 1;
} else {
head %= self.buf.len;
}
self.head = head;
self.count += count;
}
/// Place data back into the read stream
pub fn unget(self: *Self, src: []const T) !void {
try self.ensureUnusedCapacity(src.len);
self.rewind(src.len);
const slice = self.readableSliceMut(0);
if (src.len < slice.len) {
@memcpy(slice[0..src.len], src);
} else {
@memcpy(slice, src[0..slice.len]);
const slice2 = self.readableSliceMut(slice.len);
@memcpy(slice2[0 .. src.len - slice.len], src[slice.len..]);
}
}
/// Returns the item at `offset`.
/// Asserts offset is within bounds.
pub fn peekItem(self: Self, offset: usize) T {
assert(offset < self.count);
var index = self.head + offset;
if (powers_of_two) {
index &= self.buf.len - 1;
} else {
index %= self.buf.len;
}
return self.buf[index];
}
/// Pump data from a reader into a writer.
/// Stops when reader returns 0 bytes (EOF).
/// Buffer size must be set before calling; a buffer length of 0 is invalid.
pub fn pump(self: *Self, src_reader: anytype, dest_writer: anytype) !void {
assert(self.buf.len > 0);
while (true) {
if (self.writableLength() > 0) {
const n = try src_reader.read(self.writableSlice(0));
if (n == 0) break; // EOF
self.update(n);
}
self.discard(try dest_writer.write(self.readableSlice(0)));
}
// flush remaining data
while (self.readableLength() > 0) {
self.discard(try dest_writer.write(self.readableSlice(0)));
}
}
pub fn toOwnedSlice(self: *Self) Allocator.Error![]T {
if (self.head != 0) self.realign();
assert(self.head == 0);
assert(self.count <= self.buf.len);
const allocator = self.allocator;
if (allocator.resize(self.buf, self.count)) {
const result = self.buf[0..self.count];
self.* = Self.init(allocator);
return result;
}
const new_memory = try allocator.dupe(T, self.buf[0..self.count]);
allocator.free(self.buf);
self.* = Self.init(allocator);
return new_memory;
}
};
}
test "LinearFifo(u8, .Dynamic) discard(0) from empty buffer should not error on overflow" {
var fifo = LinearFifo(u8, .dynamic).init(testing.allocator);
defer fifo.deinit();
// If overflow is not explicitly allowed this will crash in debug / safe mode
fifo.discard(0);
}
test "LinearFifo(u8, .Dynamic)" {
var fifo = LinearFifo(u8, .dynamic).init(testing.allocator);
defer fifo.deinit();
try fifo.write("HELLO");
try testing.expectEqual(@as(usize, 5), fifo.readableLength());
try testing.expectEqualSlices(u8, "HELLO", fifo.readableSlice(0));
{
var i: usize = 0;
while (i < 5) : (i += 1) {
try fifo.write(&[_]u8{fifo.peekItem(i)});
}
try testing.expectEqual(@as(usize, 10), fifo.readableLength());
try testing.expectEqualSlices(u8, "HELLOHELLO", fifo.readableSlice(0));
}
{
try testing.expectEqual(@as(u8, 'H'), fifo.readItem().?);
try testing.expectEqual(@as(u8, 'E'), fifo.readItem().?);
try testing.expectEqual(@as(u8, 'L'), fifo.readItem().?);
try testing.expectEqual(@as(u8, 'L'), fifo.readItem().?);
try testing.expectEqual(@as(u8, 'O'), fifo.readItem().?);
}
try testing.expectEqual(@as(usize, 5), fifo.readableLength());
{ // Writes that wrap around
try testing.expectEqual(@as(usize, 11), fifo.writableLength());
try testing.expectEqual(@as(usize, 6), fifo.writableSlice(0).len);
fifo.writeAssumeCapacity("6<chars<11");
try testing.expectEqualSlices(u8, "HELLO6<char", fifo.readableSlice(0));
try testing.expectEqualSlices(u8, "s<11", fifo.readableSlice(11));
try testing.expectEqualSlices(u8, "11", fifo.readableSlice(13));
try testing.expectEqualSlices(u8, "", fifo.readableSlice(15));
fifo.discard(11);
try testing.expectEqualSlices(u8, "s<11", fifo.readableSlice(0));
fifo.discard(4);
try testing.expectEqual(@as(usize, 0), fifo.readableLength());
}
{
const buf = try fifo.writableWithSize(12);
try testing.expectEqual(@as(usize, 12), buf.len);
var i: u8 = 0;
while (i < 10) : (i += 1) {
buf[i] = i + 'a';
}
fifo.update(10);
try testing.expectEqualSlices(u8, "abcdefghij", fifo.readableSlice(0));
}
{
try fifo.unget("prependedstring");
var result: [30]u8 = undefined;
try testing.expectEqualSlices(u8, "prependedstringabcdefghij", result[0..fifo.read(&result)]);
try fifo.unget("b");
try fifo.unget("a");
try testing.expectEqualSlices(u8, "ab", result[0..fifo.read(&result)]);
}
fifo.shrink(0);
{
try fifo.writer().print("{s}, {s}!", .{ "Hello", "World" });
var result: [30]u8 = undefined;
try testing.expectEqualSlices(u8, "Hello, World!", result[0..fifo.read(&result)]);
try testing.expectEqual(@as(usize, 0), fifo.readableLength());
}
{
try fifo.writer().writeAll("This is a test");
var result: [30]u8 = undefined;
try testing.expectEqualSlices(u8, "This", (try fifo.reader().readUntilDelimiterOrEof(&result, ' ')).?);
try testing.expectEqualSlices(u8, "is", (try fifo.reader().readUntilDelimiterOrEof(&result, ' ')).?);
try testing.expectEqualSlices(u8, "a", (try fifo.reader().readUntilDelimiterOrEof(&result, ' ')).?);
try testing.expectEqualSlices(u8, "test", (try fifo.reader().readUntilDelimiterOrEof(&result, ' ')).?);
}
{
try fifo.ensureTotalCapacity(1);
var in_fbs = std.io.fixedBufferStream("pump test");
var out_buf: [50]u8 = undefined;
var out_fbs = std.io.fixedBufferStream(&out_buf);
try fifo.pump(in_fbs.reader(), out_fbs.writer());
try testing.expectEqualSlices(u8, in_fbs.buffer, out_fbs.getWritten());
}
}
test LinearFifo {
inline for ([_]type{ u1, u8, u16, u64 }) |T| {
inline for ([_]LinearFifoBufferType{ LinearFifoBufferType{ .static = 32 }, .slice, .dynamic }) |bt| {
const FifoType = LinearFifo(T, bt);
var buf: if (bt == .slice) [32]T else void = undefined;
var fifo = switch (bt) {
.static => FifoType.init(),
.slice => FifoType.init(buf[0..]),
.dynamic => FifoType.init(testing.allocator),
};
defer fifo.deinit();
try fifo.write(&[_]T{ 0, 1, 1, 0, 1 });
try testing.expectEqual(@as(usize, 5), fifo.readableLength());
{
try testing.expectEqual(@as(T, 0), fifo.readItem().?);
try testing.expectEqual(@as(T, 1), fifo.readItem().?);
try testing.expectEqual(@as(T, 1), fifo.readItem().?);
try testing.expectEqual(@as(T, 0), fifo.readItem().?);
try testing.expectEqual(@as(T, 1), fifo.readItem().?);
try testing.expectEqual(@as(usize, 0), fifo.readableLength());
}
{
try fifo.writeItem(1);
try fifo.writeItem(1);
try fifo.writeItem(1);
try testing.expectEqual(@as(usize, 3), fifo.readableLength());
}
{
var readBuf: [3]T = undefined;
const n = fifo.read(&readBuf);
try testing.expectEqual(@as(usize, 3), n); // NOTE: It should be the number of items.
}
}
}
}

View File

@@ -4,17 +4,21 @@ const known_folders = @import("known_folders");
const clap = @import("clap");
const config = @import("config.zig");
const emu = @import("core/emu.zig");
const Synchro = @import("core/emu.zig").Synchro;
const Gui = @import("platform.zig").Gui;
const Bus = @import("core/Bus.zig");
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Scheduler = @import("core/scheduler.zig").Scheduler;
const FilePaths = @import("util.zig").FilePaths;
const FpsTracker = @import("util.zig").FpsTracker;
const Allocator = std.mem.Allocator;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const IBus = @import("arm32").Bus;
const IScheduler = @import("arm32").Scheduler;
const log = std.log.scoped(.Cli);
const width = @import("core/ppu.zig").width;
const height = @import("core/ppu.zig").height;
pub const log_level = if (builtin.mode != .Debug) .info else std.log.default_level;
// CLI Arguments + Help Text
@@ -22,41 +26,74 @@ const params = clap.parseParamsComptime(
\\-h, --help Display this help and exit.
\\-s, --skip Skip BIOS.
\\-b, --bios <str> Optional path to a GBA BIOS ROM.
\\ --gdb Run ZBA from the context of a GDB Server
\\<str> Path to the GBA GamePak ROM.
\\
);
pub fn main() anyerror!void {
pub fn main() void {
// Main Allocator for ZBA
var gpa = std.heap.GeneralPurposeAllocator(.{}){};
defer std.debug.assert(!gpa.deinit());
defer std.debug.assert(gpa.deinit() == .ok);
const allocator = gpa.allocator();
// Determine the Data Directory (stores saves, config file, etc.)
// Determine the Data Directory (stores saves)
const data_path = blk: {
const result = known_folders.getPath(allocator, .data);
const option = result catch |e| exitln("interrupted while attempting to find a data directory: {}", .{e});
break :blk option orelse exitln("no valid data directory could be found", .{});
const option = result catch |e| exitln("interrupted while determining the data folder: {}", .{e});
const path = option orelse exitln("no valid data folder found", .{});
ensureDataDirsExist(path) catch |e| exitln("failed to create folders under \"{s}\": {}", .{ path, e });
break :blk path;
};
defer allocator.free(data_path);
// Determine the Config Directory
const config_path = blk: {
const result = known_folders.getPath(allocator, .roaming_configuration);
const option = result catch |e| exitln("interreupted while determining the config folder: {}", .{e});
const path = option orelse exitln("no valid config folder found", .{});
ensureConfigDirExists(path) catch |e| exitln("failed to create required folder \"{s}\": {}", .{ path, e });
break :blk path;
};
defer allocator.free(config_path);
// Parse CLI
const result = clap.parse(clap.Help, &params, clap.parsers.default, .{}) catch |e| exitln("failed to parse cli: {}", .{e});
const result = clap.parse(clap.Help, &params, clap.parsers.default, .{ .allocator = allocator }) catch |e| exitln("failed to parse cli: {}", .{e});
defer result.deinit();
// TODO: Move config file to XDG Config directory?
const config_path = configFilePath(allocator, data_path) catch |e| exitln("failed to determine the config file path for ZBA: {}", .{e});
defer allocator.free(config_path);
const cfg_file_path = configFilePath(allocator, config_path) catch |e| exitln("failed to ready config file for access: {}", .{e});
defer allocator.free(cfg_file_path);
config.load(allocator, config_path) catch |e| exitln("failed to read config file: {}", .{e});
config.load(allocator, cfg_file_path) catch |e| exitln("failed to load config file: {}", .{e});
const paths = handleArguments(allocator, data_path, &result) catch |e| exitln("failed to handle cli arguments: {}", .{e});
defer if (paths.save) |path| allocator.free(path);
var paths = handleArguments(allocator, data_path, &result) catch |e| exitln("failed to handle cli arguments: {}", .{e});
defer paths.deinit(allocator);
const log_file = if (config.config().debug.cpu_trace) blk: {
break :blk std.fs.cwd().createFile("zba.log", .{}) catch |e| exitln("failed to create trace log file: {}", .{e});
} else null;
// if paths.bios is null, then we want to see if it's in the data directory
if (paths.bios == null) blk: {
const bios_path = std.mem.join(allocator, "/", &.{ data_path, "zba", "gba_bios.bin" }) catch |e| exitln("failed to allocate backup bios dir path: {}", .{e});
defer allocator.free(bios_path);
_ = std.fs.cwd().statFile(bios_path) catch |e| switch (e) {
error.FileNotFound => { // ZBA will crash on attempt to read BIOS but that's fine
log.err("file located at {s} was not found", .{bios_path});
break :blk;
},
else => exitln("error when checking \"{s}\": {}", .{ bios_path, e }),
};
paths.bios = allocator.dupe(u8, bios_path) catch |e| exitln("failed to duplicate path to bios: {}", .{e});
}
const log_file = switch (config.config().debug.cpu_trace) {
true => std.fs.cwd().createFile("zba.log", .{}) catch |e| exitln("failed to create trace log file: {}", .{e}),
false => null,
};
defer if (log_file) |file| file.close();
// TODO: Take Emulator Init Code out of main.zig
@@ -64,29 +101,80 @@ pub fn main() anyerror!void {
defer scheduler.deinit();
var bus: Bus = undefined;
var cpu = Arm7tdmi.init(&scheduler, &bus, log_file);
const ischeduler = IScheduler.init(&scheduler);
const ibus = IBus.init(&bus);
var cpu = Arm7tdmi.init(ischeduler, ibus);
bus.init(allocator, &scheduler, &cpu, paths) catch |e| exitln("failed to init zba bus: {}", .{e});
defer bus.deinit();
if (config.config().guest.skip_bios or result.args.skip or paths.bios == null) {
cpu.fastBoot();
if (config.config().guest.skip_bios or result.args.skip != 0 or paths.bios == null) {
@import("core/cpu_util.zig").fastBoot(&cpu);
}
var gui = Gui.init(&bus.pak.title, &bus.apu, width, height);
const title_ptr = if (paths.rom != null) &bus.pak.title else null;
// TODO: Just copy the title instead of grabbing a pointer to it
var gui = Gui.init(allocator, &bus.apu, title_ptr) catch |e| exitln("failed to init gui: {}", .{e});
defer gui.deinit();
gui.run(&cpu, &scheduler) catch |e| exitln("failed to run gui thread: {}", .{e});
var sync = Synchro.init(allocator) catch |e| exitln("failed to allocate sync types: {}", .{e});
defer sync.deinit(allocator);
if (result.args.gdb != 0) {
const Server = @import("gdbstub").Server;
const EmuThing = @import("core/emu.zig").EmuThing;
var wrapper = EmuThing.init(&cpu, &scheduler);
var emulator = wrapper.interface();
defer emulator.deinit(allocator);
log.info("Ready to connect", .{});
var server = Server.init(
emulator,
.{ .memory_map = EmuThing.map, .target = EmuThing.target },
) catch |e| exitln("failed to init gdb server: {}", .{e});
defer server.deinit(allocator);
log.info("Starting GDB Server Thread", .{});
const thread = std.Thread.spawn(.{}, Server.run, .{ &server, allocator, &sync.should_quit }) catch |e| exitln("gdb server thread crashed: {}", .{e});
defer thread.join();
gui.run(.{
.cpu = &cpu,
.scheduler = &scheduler,
.sync = &sync,
}) catch |e| exitln("main thread panicked: {}", .{e});
} else {
var tracker = FpsTracker.init();
const thread = std.Thread.spawn(.{}, emu.run, .{ &cpu, &scheduler, &tracker, &sync }) catch |e| exitln("emu thread panicked: {}", .{e});
defer thread.join();
gui.run(.{
.cpu = &cpu,
.scheduler = &scheduler,
.tracker = &tracker,
.sync = &sync,
}) catch |e| exitln("main thread panicked: {}", .{e});
}
}
pub fn handleArguments(allocator: Allocator, data_path: []const u8, result: *const clap.Result(clap.Help, &params, clap.parsers.default)) !FilePaths {
const rom_path = romPath(result);
log.info("ROM path: {s}", .{rom_path});
fn handleArguments(allocator: Allocator, data_path: []const u8, result: *const clap.Result(clap.Help, &params, clap.parsers.default)) !FilePaths {
const rom_path = try romPath(allocator, result);
errdefer if (rom_path) |path| allocator.free(path);
const bios_path = result.args.bios;
if (bios_path) |path| log.info("BIOS path: {s}", .{path}) else log.warn("No BIOS provided", .{});
const bios_path: ?[]const u8 = if (result.args.bios) |path| try allocator.dupe(u8, path) else null;
errdefer if (bios_path) |path| allocator.free(path);
const save_path = try savePath(allocator, data_path);
const save_path = try std.fs.path.join(allocator, &[_][]const u8{ data_path, "zba", "save" });
log.info("ROM path: {?s}", .{rom_path});
log.info("BIOS path: {?s}", .{bios_path});
log.info("Save path: {s}", .{save_path});
return .{
@@ -96,45 +184,55 @@ pub fn handleArguments(allocator: Allocator, data_path: []const u8, result: *con
};
}
fn configFilePath(allocator: Allocator, data_path: []const u8) ![]const u8 {
const path = try std.fs.path.join(allocator, &[_][]const u8{ data_path, "zba", "config.toml" });
fn configFilePath(allocator: Allocator, config_path: []const u8) ![]const u8 {
const path = try std.fs.path.join(allocator, &[_][]const u8{ config_path, "zba", "config.toml" });
errdefer allocator.free(path);
// We try to create the file exclusively, meaning that we err out if the file already exists.
// All we care about is a file being there so we can just ignore that error in particular and
// continue down the happy pathj
std.fs.accessAbsolute(path, .{}) catch {
const file_handle = try std.fs.createFileAbsolute(path, .{});
defer file_handle.close();
std.fs.accessAbsolute(path, .{}) catch |e| {
if (e != error.FileNotFound) return e;
// TODO: Write Default valeus to config file
const config_file = std.fs.createFileAbsolute(path, .{}) catch |err| exitln("failed to create \"{s}\": {}", .{ path, err });
defer config_file.close();
// FIXME(2025-09-22): re-enable
// try config_file.writeAll(@embedFile("example.toml"));
try config_file.writeAll("");
};
return path;
}
fn savePath(allocator: Allocator, data_path: []const u8) ![]const u8 {
fn ensureDataDirsExist(data_path: []const u8) !void {
var dir = try std.fs.openDirAbsolute(data_path, .{});
defer dir.close();
// Will either make the path recursively, or just exit early since it already exists
try dir.makePath("zba" ++ [_]u8{std.fs.path.sep} ++ "save");
// FIXME: Do we have to allocate? :sad:
return try std.fs.path.join(allocator, &[_][]const u8{ data_path, "zba", "save" });
// Will recursively create directories
try dir.makePath("zba" ++ std.fs.path.sep_str ++ "save");
}
fn romPath(result: *const clap.Result(clap.Help, &params, clap.parsers.default)) []const u8 {
fn ensureConfigDirExists(config_path: []const u8) !void {
var dir = try std.fs.openDirAbsolute(config_path, .{});
defer dir.close();
try dir.makePath("zba");
}
fn romPath(allocator: Allocator, result: *const clap.Result(clap.Help, &params, clap.parsers.default)) !?[]const u8 {
return switch (result.positionals.len) {
1 => result.positionals[0],
0 => exitln("ZBA requires a path to a GamePak ROM", .{}),
0 => null,
1 => if (result.positionals[0]) |path| try allocator.dupe(u8, path) else null,
else => exitln("ZBA received too many positional arguments.", .{}),
};
}
fn exitln(comptime format: []const u8, args: anytype) noreturn {
const stderr = std.io.getStdErr().writer();
var buf: [1024]u8 = undefined;
var stderr = std.fs.File.stderr().writer(&buf).interface;
stderr.print(format, args) catch {}; // Just exit already...
stderr.writeByte('\n') catch {};
std.os.exit(1);
std.process.exit(1);
}

View File

@@ -1,302 +1,406 @@
const std = @import("std");
const SDL = @import("sdl2");
const gl = @import("gl");
const zgui = @import("zgui");
const c = @import("lib.zig").c;
const emu = @import("core/emu.zig");
const config = @import("config.zig");
const imgui = @import("imgui.zig");
const Apu = @import("core/apu.zig").Apu;
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Arm7tdmi = @import("arm32").Arm7tdmi;
const Bus = @import("core/Bus.zig");
const Scheduler = @import("core/scheduler.zig").Scheduler;
const FpsTracker = @import("util.zig").FpsTracker;
const Synchro = @import("core/emu.zig").Synchro;
const KeyInput = @import("core/bus/io.zig").KeyInput;
const span = @import("util.zig").span;
const pitch = @import("core/ppu.zig").framebuf_pitch;
const gba_width = @import("core/ppu.zig").width;
const gba_height = @import("core/ppu.zig").height;
const default_title: []const u8 = "ZBA";
const GLsizei = gl.sizei;
const SDL_GLContext = *c.SDL_GLContextState;
const Allocator = std.mem.Allocator;
pub const Dimensions = struct { width: u32, height: u32 };
const default_dim: Dimensions = .{ .width = 1280, .height = 720 };
pub const sample_rate = 1 << 15;
// pub const sample_format = SDL.AUDIO_U16;
const window_title = "ZBA";
const errify = @import("lib.zig").errify;
var gl_procs: gl.ProcTable = undefined;
pub const Gui = struct {
const Self = @This();
const SDL_GLContext = *anyopaque; // SDL.SDL_GLContext is a ?*anyopaque
const log = std.log.scoped(.Gui);
// zig fmt: off
const vertices: [32]f32 = [_]f32{
// Positions // Colours // Texture Coords
1.0, -1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, // Top Right
1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, // Bottom Right
-1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, // Bottom Left
-1.0, -1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, // Top Left
};
const indices: [6]u32 = [_]u32{
0, 1, 3, // First Triangle
1, 2, 3, // Second Triangle
};
// zig fmt: on
window: *SDL.SDL_Window,
window: *c.SDL_Window,
ctx: SDL_GLContext,
title: []const u8,
audio: Audio,
program_id: gl.GLuint,
state: imgui.State,
allocator: Allocator,
pub fn init(title: *const [12]u8, apu: *Apu, width: i32, height: i32) Self {
if (SDL.SDL_Init(SDL.SDL_INIT_VIDEO | SDL.SDL_INIT_EVENTS | SDL.SDL_INIT_AUDIO) < 0) panic();
if (SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_PROFILE_MASK, SDL.SDL_GL_CONTEXT_PROFILE_CORE) < 0) panic();
if (SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_MAJOR_VERSION, 3) < 0) panic();
if (SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_MAJOR_VERSION, 3) < 0) panic();
pub fn init(allocator: Allocator, apu: *Apu, title_opt: ?*const [12]u8) !Self {
c.SDL_SetMainReady();
const win_scale = @intCast(c_int, config.config().host.win_scale);
try errify(c.SDL_Init(c.SDL_INIT_VIDEO | c.SDL_INIT_AUDIO | c.SDL_INIT_EVENTS));
const window = SDL.SDL_CreateWindow(
default_title.ptr,
SDL.SDL_WINDOWPOS_CENTERED,
SDL.SDL_WINDOWPOS_CENTERED,
@as(c_int, width * win_scale),
@as(c_int, height * win_scale),
SDL.SDL_WINDOW_OPENGL | SDL.SDL_WINDOW_SHOWN,
) orelse panic();
try errify(c.SDL_SetAppMetadata(window_title, "0.1.0", "moe.paoda.zba"));
try errify(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_MAJOR_VERSION, gl.info.version_major));
try errify(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_MINOR_VERSION, gl.info.version_minor));
try errify(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_PROFILE_MASK, c.SDL_GL_CONTEXT_PROFILE_CORE));
try errify(c.SDL_GL_SetAttribute(c.SDL_GL_CONTEXT_FLAGS, c.SDL_GL_CONTEXT_FORWARD_COMPATIBLE_FLAG));
const ctx = SDL.SDL_GL_CreateContext(window) orelse panic();
if (SDL.SDL_GL_MakeCurrent(window, ctx) < 0) panic();
const window: *c.SDL_Window = try errify(c.SDL_CreateWindow(window_title, default_dim.width, default_dim.height, c.SDL_WINDOW_OPENGL | c.SDL_WINDOW_RESIZABLE));
errdefer c.SDL_DestroyWindow(window);
gl.load(ctx, Self.glGetProcAddress) catch @panic("gl.load failed");
if (config.config().host.vsync) if (SDL.SDL_GL_SetSwapInterval(1) < 0) panic();
const gl_ctx = try errify(c.SDL_GL_CreateContext(window));
errdefer errify(c.SDL_GL_DestroyContext(gl_ctx)) catch {};
const program_id = compileShaders();
try errify(c.SDL_GL_MakeCurrent(window, gl_ctx));
errdefer errify(c.SDL_GL_MakeCurrent(window, null)) catch {};
if (!gl_procs.init(c.SDL_GL_GetProcAddress)) return error.gl_init_failed;
gl.makeProcTableCurrent(&gl_procs);
errdefer gl.makeProcTableCurrent(null);
try errify(c.SDL_GL_SetSwapInterval(@intFromBool(config.config().host.vsync)));
zgui.init(allocator);
zgui.plot.init();
zgui.backend.init(window, gl_ctx);
// zgui.io.setIniFilename(null);
return Self{
.window = window,
.title = span(title),
.ctx = ctx,
.program_id = program_id,
.audio = Audio.init(apu),
.ctx = gl_ctx,
.audio = try Audio.init(apu),
.allocator = allocator,
.state = try imgui.State.init(allocator, title_opt),
};
}
fn compileShaders() gl.GLuint {
// TODO: Panic on Shader Compiler Failure + Error Message
const vert_shader = @embedFile("shader/pixelbuf.vert");
const frag_shader = @embedFile("shader/pixelbuf.frag");
pub fn deinit(self: *Self) void {
self.audio.deinit();
self.state.deinit(self.allocator);
const vs = gl.createShader(gl.VERTEX_SHADER);
defer gl.deleteShader(vs);
zgui.backend.deinit();
zgui.plot.deinit();
zgui.deinit();
gl.shaderSource(vs, 1, &[_][*c]const u8{vert_shader}, 0);
gl.compileShader(vs);
errify(c.SDL_GL_DestroyContext(self.ctx)) catch {};
c.SDL_DestroyWindow(self.window);
c.SDL_Quit();
const fs = gl.createShader(gl.FRAGMENT_SHADER);
defer gl.deleteShader(fs);
gl.shaderSource(fs, 1, &[_][*c]const u8{frag_shader}, 0);
gl.compileShader(fs);
const program = gl.createProgram();
gl.attachShader(program, vs);
gl.attachShader(program, fs);
gl.linkProgram(program);
return program;
self.* = undefined;
}
// Returns the VAO ID since it's used in run()
fn generateBuffers() [3]c_uint {
var vao_id: c_uint = undefined;
var vbo_id: c_uint = undefined;
var ebo_id: c_uint = undefined;
gl.genVertexArrays(1, &vao_id);
gl.genBuffers(1, &vbo_id);
gl.genBuffers(1, &ebo_id);
const RunOptions = struct {
sync: *Synchro,
tracker: ?*FpsTracker = null,
cpu: *Arm7tdmi,
scheduler: *Scheduler,
};
gl.bindVertexArray(vao_id);
pub fn run(self: *Self, opt: RunOptions) !void {
const cpu = opt.cpu;
const tracker = opt.tracker;
const sync = opt.sync;
gl.bindBuffer(gl.ARRAY_BUFFER, vbo_id);
gl.bufferData(gl.ARRAY_BUFFER, @sizeOf(@TypeOf(vertices)), &vertices, gl.STATIC_DRAW);
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, ebo_id);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, @sizeOf(@TypeOf(indices)), &indices, gl.STATIC_DRAW);
const vao_id = opengl_impl.vao();
defer gl.DeleteVertexArrays(1, vao_id[0..]);
// Position
gl.vertexAttribPointer(0, 3, gl.FLOAT, gl.FALSE, 8 * @sizeOf(f32), @intToPtr(?*anyopaque, 0)); // lmao
gl.enableVertexAttribArray(0);
// Colour
gl.vertexAttribPointer(1, 3, gl.FLOAT, gl.FALSE, 8 * @sizeOf(f32), @intToPtr(?*anyopaque, (3 * @sizeOf(f32))));
gl.enableVertexAttribArray(1);
// Texture Coord
gl.vertexAttribPointer(2, 2, gl.FLOAT, gl.FALSE, 8 * @sizeOf(f32), @intToPtr(?*anyopaque, (6 * @sizeOf(f32))));
gl.enableVertexAttribArray(2);
const emu_tex = opengl_impl.screenTex(bus_ptr.ppu.framebuf.get(.Renderer));
defer gl.DeleteTextures(1, emu_tex[0..]);
return .{ vao_id, vbo_id, ebo_id };
}
const out_tex = opengl_impl.outTex();
defer gl.DeleteTextures(1, out_tex[0..]);
fn generateTexture(buf: []const u8) c_uint {
var tex_id: c_uint = undefined;
gl.genTextures(1, &tex_id);
gl.bindTexture(gl.TEXTURE_2D, tex_id);
const fbo_id = try opengl_impl.frameBuffer(out_tex[0]);
defer gl.DeleteFramebuffers(1, fbo_id[0..]);
// gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
// gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
const prog_id = try opengl_impl.program(); // Dynamic Shaders?
defer gl.DeleteProgram(prog_id);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gba_width, gba_height, 0, gl.RGBA, gl.UNSIGNED_INT_8_8_8_8, buf.ptr);
// gl.generateMipmap(gl.TEXTURE_2D); // TODO: Remove?
return tex_id;
}
pub fn run(self: *Self, cpu: *Arm7tdmi, scheduler: *Scheduler) !void {
var quit = std.atomic.Atomic(bool).init(false);
var tracker = FpsTracker.init();
const thread = try std.Thread.spawn(.{}, emu.run, .{ &quit, scheduler, cpu, &tracker });
defer thread.join();
var title_buf: [0x100]u8 = [_]u8{0} ** 0x100;
const vao_id = Self.generateBuffers()[0];
_ = Self.generateTexture(cpu.bus.ppu.framebuf.get(.Renderer));
var win_dim: Dimensions = default_dim;
emu_loop: while (true) {
var event: SDL.SDL_Event = undefined;
while (SDL.SDL_PollEvent(&event) != 0) {
// Outside of `SDL.SDL_QUIT` below, the DearImgui UI might signal that the program
// should exit, in which case we should also handle this
if (self.state.should_quit or sync.should_quit.load(.monotonic)) break :emu_loop;
var event: c.SDL_Event = undefined;
while (c.SDL_PollEvent(&event)) {
_ = zgui.backend.processEvent(&event);
switch (event.type) {
SDL.SDL_QUIT => break :emu_loop,
SDL.SDL_KEYDOWN => {
const io = &cpu.bus.io;
const key_code = event.key.keysym.sym;
c.SDL_EVENT_QUIT => break :emu_loop,
c.SDL_EVENT_KEY_DOWN => {
// TODO: Make use of compare_and_xor?
var keyinput: KeyInput = .{ .raw = 0x0000 };
switch (key_code) {
SDL.SDLK_UP => io.keyinput.up.unset(),
SDL.SDLK_DOWN => io.keyinput.down.unset(),
SDL.SDLK_LEFT => io.keyinput.left.unset(),
SDL.SDLK_RIGHT => io.keyinput.right.unset(),
SDL.SDLK_x => io.keyinput.a.unset(),
SDL.SDLK_z => io.keyinput.b.unset(),
SDL.SDLK_a => io.keyinput.shoulder_l.unset(),
SDL.SDLK_s => io.keyinput.shoulder_r.unset(),
SDL.SDLK_RETURN => io.keyinput.start.unset(),
SDL.SDLK_RSHIFT => io.keyinput.select.unset(),
switch (event.key.scancode) {
c.SDL_SCANCODE_UP => keyinput.up.write(true),
c.SDL_SCANCODE_DOWN => keyinput.down.write(true),
c.SDL_SCANCODE_LEFT => keyinput.left.write(true),
c.SDL_SCANCODE_RIGHT => keyinput.right.write(true),
c.SDL_SCANCODE_X => keyinput.a.write(true),
c.SDL_SCANCODE_Z => keyinput.b.write(true),
c.SDL_SCANCODE_A => keyinput.shoulder_l.write(true),
c.SDL_SCANCODE_S => keyinput.shoulder_r.write(true),
c.SDL_SCANCODE_RETURN => keyinput.start.write(true),
c.SDL_SCANCODE_RSHIFT => keyinput.select.write(true),
else => {},
}
bus_ptr.io.keyinput.fetchAnd(~keyinput.raw, .monotonic);
},
SDL.SDL_KEYUP => {
const io = &cpu.bus.io;
const key_code = event.key.keysym.sym;
c.SDL_EVENT_KEY_UP => {
// FIXME(paoda): merge with above?
// TODO: Make use of compare_and_xor?
var keyinput: KeyInput = .{ .raw = 0x0000 };
switch (key_code) {
SDL.SDLK_UP => io.keyinput.up.set(),
SDL.SDLK_DOWN => io.keyinput.down.set(),
SDL.SDLK_LEFT => io.keyinput.left.set(),
SDL.SDLK_RIGHT => io.keyinput.right.set(),
SDL.SDLK_x => io.keyinput.a.set(),
SDL.SDLK_z => io.keyinput.b.set(),
SDL.SDLK_a => io.keyinput.shoulder_l.set(),
SDL.SDLK_s => io.keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => io.keyinput.start.set(),
SDL.SDLK_RSHIFT => io.keyinput.select.set(),
SDL.SDLK_i => log.err("Sample Count: {}", .{@intCast(u32, SDL.SDL_AudioStreamAvailable(cpu.bus.apu.stream)) / (2 * @sizeOf(u16))}),
SDL.SDLK_j => log.err("Scheduler Capacity: {} | Scheduler Event Count: {}", .{ scheduler.queue.capacity(), scheduler.queue.count() }),
SDL.SDLK_k => {
// Dump IWRAM to file
log.info("PC: 0x{X:0>8}", .{cpu.r[15]});
log.info("LR: 0x{X:0>8}", .{cpu.r[14]});
// const iwram_file = try std.fs.cwd().createFile("iwram.bin", .{});
// defer iwram_file.close();
// try iwram_file.writeAll(cpu.bus.iwram.buf);
},
switch (event.key.scancode) {
c.SDL_SCANCODE_UP => keyinput.up.write(true),
c.SDL_SCANCODE_DOWN => keyinput.down.write(true),
c.SDL_SCANCODE_LEFT => keyinput.left.write(true),
c.SDL_SCANCODE_RIGHT => keyinput.right.write(true),
c.SDL_SCANCODE_X => keyinput.a.write(true),
c.SDL_SCANCODE_Z => keyinput.b.write(true),
c.SDL_SCANCODE_A => keyinput.shoulder_l.write(true),
c.SDL_SCANCODE_S => keyinput.shoulder_r.write(true),
c.SDL_SCANCODE_RETURN => keyinput.start.write(true),
c.SDL_SCANCODE_RSHIFT => keyinput.select.write(true),
else => {},
}
bus_ptr.io.keyinput.fetchOr(keyinput.raw, .monotonic);
},
c.SDL_EVENT_WINDOW_RESIZED => {
log.debug("window resized to: {}x{}", .{ event.window.data1, event.window.data2 });
win_dim.width = @intCast(event.window.data1);
win_dim.height = @intCast(event.window.data2);
},
else => {},
}
}
// Emulator has an internal Double Buffer
const framebuf = cpu.bus.ppu.framebuf.get(.Renderer);
gl.texSubImage2D(gl.TEXTURE_2D, 0, 0, 0, gba_width, gba_height, gl.RGBA, gl.UNSIGNED_INT_8_8_8_8, framebuf.ptr);
var zgui_redraw: bool = false;
gl.useProgram(self.program_id);
gl.bindVertexArray(vao_id);
gl.drawElements(gl.TRIANGLES, 6, gl.UNSIGNED_INT, null);
SDL.SDL_GL_SwapWindow(self.window);
switch (self.state.emulation) {
.Transition => |inner| switch (inner) {
.Active => {
sync.paused.store(false, .monotonic);
if (!config.config().host.mute) try errify(c.SDL_PauseAudioDevice(c.SDL_AUDIO_DEVICE_DEFAULT_PLAYBACK));
const dyn_title = std.fmt.bufPrint(&title_buf, "ZBA | {s} [Emu: {}fps] ", .{ self.title, tracker.value() }) catch unreachable;
SDL.SDL_SetWindowTitle(self.window, dyn_title.ptr);
self.state.emulation = .Active;
},
.Inactive => {
// Assert that double pausing is impossible
try errify(c.SDL_ResumeAudioDevice(c.SDL_AUDIO_DEVICE_DEFAULT_PLAYBACK));
sync.paused.store(true, .monotonic);
self.state.emulation = .Inactive;
},
},
.Active => {
// Add FPS count to the histogram
if (tracker) |t| self.state.fps_hist.push(t.value()) catch {};
// Draw GBA Screen to Texture
{
gl.BindFramebuffer(gl.FRAMEBUFFER, fbo_id[0]);
defer gl.BindFramebuffer(gl.FRAMEBUFFER, 0);
gl.Viewport(0, 0, gba_width, gba_height);
opengl_impl.drawScreen(emu_tex[0], prog_id, vao_id[0], bus_ptr.ppu.framebuf.get(.Renderer));
}
// FIXME: We only really care about locking the audio device (and therefore writing silence)
// since if nfd-zig is used the emu may be paused for way too long. Perhaps we should try and limit
// spurious calls to SDL_LockAudioDevice?
try errify(c.SDL_LockAudioStream(self.audio.stream));
defer errify(c.SDL_UnlockAudioStream(self.audio.stream)) catch @panic("TODO: FIXME");
zgui_redraw = imgui.draw(&self.state, sync, win_dim, cpu, out_tex[0]);
},
.Inactive => zgui_redraw = imgui.draw(&self.state, sync, win_dim, cpu, out_tex[0]),
}
if (zgui_redraw) {
// Background Colour
const size = zgui.io.getDisplaySize();
gl.Viewport(0, 0, @intFromFloat(size[0]), @intFromFloat(size[1]));
gl.ClearColor(0, 0, 0, 1.0);
gl.Clear(gl.COLOR_BUFFER_BIT);
zgui.backend.draw();
}
try errify(c.SDL_GL_SwapWindow(self.window));
}
quit.store(true, .SeqCst); // Terminate Emulator Thread
}
pub fn deinit(self: *Self) void {
self.audio.deinit();
// TODO: Buffer deletions
gl.deleteProgram(self.program_id);
SDL.SDL_GL_DeleteContext(self.ctx);
SDL.SDL_DestroyWindow(self.window);
SDL.SDL_Quit();
self.* = undefined;
}
fn glGetProcAddress(ctx: SDL.SDL_GLContext, proc: [:0]const u8) ?*anyopaque {
_ = ctx;
return SDL.SDL_GL_GetProcAddress(proc.ptr);
sync.should_quit.store(true, .monotonic);
}
};
const Audio = struct {
const Self = @This();
const log = std.log.scoped(.PlatformAudio);
const sample_rate = @import("core/apu.zig").host_sample_rate;
device: SDL.SDL_AudioDeviceID,
stream: *c.SDL_AudioStream,
fn init(apu: *Apu) Self {
var have: SDL.SDL_AudioSpec = undefined;
var want: SDL.SDL_AudioSpec = std.mem.zeroes(SDL.SDL_AudioSpec);
want.freq = sample_rate;
want.format = SDL.AUDIO_U16;
want.channels = 2;
want.samples = 0x100;
want.callback = Self.callback;
want.userdata = apu;
fn init(apu: *Apu) !Self {
var desired: c.SDL_AudioSpec = std.mem.zeroes(c.SDL_AudioSpec);
desired.freq = sample_rate;
desired.format = c.SDL_AUDIO_S16LE;
desired.channels = 2;
const device = SDL.SDL_OpenAudioDevice(null, 0, &want, &have, 0);
if (device == 0) panic();
log.info("Host Sample Rate: {}Hz, Host Format: SDL_AUDIO_S16LE", .{sample_rate});
SDL.SDL_PauseAudioDevice(device, 0); // Unpause Audio
const stream = try errify(c.SDL_OpenAudioDeviceStream(c.SDL_AUDIO_DEVICE_DEFAULT_PLAYBACK, &desired, null, null));
errdefer c.SDL_DestroyAudioStream(stream);
return .{ .device = device };
apu.stream = stream;
return .{ .stream = stream };
}
fn deinit(self: *Self) void {
SDL.SDL_CloseAudioDevice(self.device);
c.SDL_DestroyAudioStream(self.stream);
self.* = undefined;
}
export fn callback(userdata: ?*anyopaque, stream: [*c]u8, len: c_int) void {
const apu = @ptrCast(*Apu, @alignCast(@alignOf(*Apu), userdata));
// TODO: Find a better way to mute this
if (!config.config().host.mute) {
_ = SDL.SDL_AudioStreamGet(apu.stream, stream, len);
} else {
// FIXME: I don't think this hack to remove DC Offset is acceptable :thinking:
std.mem.set(u8, stream[0..@intCast(usize, len)], 0x40);
}
// If we don't write anything, play silence otherwise garbage will be played
// if (written == 0) std.mem.set(u8, stream[0..@intCast(usize, len)], 0x40);
}
};
fn panic() noreturn {
const str = @as(?[*:0]const u8, SDL.SDL_GetError()) orelse "unknown error";
@panic(std.mem.sliceTo(str, 0));
}
const opengl_impl = struct {
fn drawScreen(tex_id: gl.uint, prog_id: gl.uint, vao_id: gl.uint, buf: []const u8) void {
gl.BindTexture(gl.TEXTURE_2D, tex_id);
defer gl.BindTexture(gl.TEXTURE_2D, 0);
gl.TexSubImage2D(gl.TEXTURE_2D, 0, 0, 0, gba_width, gba_height, gl.RGBA, gl.UNSIGNED_INT_8_8_8_8, buf.ptr);
// Bind VAO
gl.BindVertexArray(vao_id);
defer gl.BindVertexArray(0);
// Use compiled frag + vertex shader
gl.UseProgram(prog_id);
defer gl.UseProgram(0);
gl.DrawArrays(gl.TRIANGLE_STRIP, 0, 3);
}
fn program() !gl.uint {
const vert_shader: [1][*]const u8 = .{@embedFile("shader/pixelbuf.vert")};
const frag_shader: [1][*]const u8 = .{@embedFile("shader/pixelbuf.frag")};
const vs = gl.CreateShader(gl.VERTEX_SHADER);
defer gl.DeleteShader(vs);
gl.ShaderSource(vs, 1, vert_shader[0..], null);
gl.CompileShader(vs);
if (!shader.didCompile(vs)) return error.VertexCompileError;
const fs = gl.CreateShader(gl.FRAGMENT_SHADER);
defer gl.DeleteShader(fs);
gl.ShaderSource(fs, 1, frag_shader[0..], null);
gl.CompileShader(fs);
if (!shader.didCompile(fs)) return error.FragmentCompileError;
const prog = gl.CreateProgram();
gl.AttachShader(prog, vs);
gl.AttachShader(prog, fs);
gl.LinkProgram(prog);
return prog;
}
fn vao() [1]gl.uint {
var vao_id: [1]gl.uint = undefined;
gl.GenVertexArrays(1, vao_id[0..]);
return vao_id;
}
fn screenTex(buf: []const u8) [1]gl.uint {
var tex_id: [1]gl.uint = undefined;
gl.GenTextures(1, tex_id[0..]);
gl.BindTexture(gl.TEXTURE_2D, tex_id[0]);
defer gl.BindTexture(gl.TEXTURE_2D, 0);
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.TexImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gba_width, gba_height, 0, gl.RGBA, gl.UNSIGNED_INT_8_8_8_8, buf.ptr);
return tex_id;
}
fn outTex() [1]gl.uint {
var tex_id: [1]gl.uint = undefined;
gl.GenTextures(1, tex_id[0..]);
gl.BindTexture(gl.TEXTURE_2D, tex_id[0]);
defer gl.BindTexture(gl.TEXTURE_2D, 0);
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.TexParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.TexImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gba_width, gba_height, 0, gl.RGBA, gl.UNSIGNED_INT_8_8_8_8, null);
return tex_id;
}
fn frameBuffer(tex_id: gl.uint) ![1]gl.uint {
var fbo_id: [1]gl.uint = undefined;
gl.GenFramebuffers(1, fbo_id[0..]);
gl.BindFramebuffer(gl.FRAMEBUFFER, fbo_id[0]);
defer gl.BindFramebuffer(gl.FRAMEBUFFER, 0);
gl.FramebufferTexture(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, tex_id, 0);
gl.DrawBuffers(1, &.{gl.COLOR_ATTACHMENT0});
if (gl.CheckFramebufferStatus(gl.FRAMEBUFFER) != gl.FRAMEBUFFER_COMPLETE)
return error.FrameBufferObejctInitFailed;
return fbo_id;
}
const shader = struct {
const log = std.log.scoped(.shader);
fn didCompile(id: gl.uint) bool {
var success: [1]gl.int = undefined;
gl.GetShaderiv(id, gl.COMPILE_STATUS, success[0..]);
if (success[0] == 0) err(id);
return success[0] == 1;
}
fn err(id: gl.uint) void {
const buf_len = 512;
var error_msg: [buf_len]u8 = undefined;
gl.GetShaderInfoLog(id, buf_len, null, &error_msg);
log.err("{s}", .{std.mem.sliceTo(&error_msg, 0)});
}
};
};

View File

@@ -1,7 +1,6 @@
#version 330 core
out vec4 frag_color;
in vec3 color;
in vec2 uv;
uniform sampler2D screen;

View File

@@ -1,13 +1,10 @@
#version 330 core
layout (location = 0) in vec3 pos;
layout (location = 1) in vec3 in_color;
layout (location = 2) in vec2 in_uv;
out vec3 color;
out vec2 uv;
const vec2 pos[3] = vec2[3](vec2(-1.0f, -1.0f), vec2(-1.0f, 3.0f), vec2(3.0f, -1.0f));
const vec2 uvs[3] = vec2[3](vec2( 0.0f, 0.0f), vec2( 0.0f, 2.0f), vec2(2.0f, 0.0f));
void main() {
color = in_color;
uv = in_uv;
gl_Position = vec4(pos, 1.0);
}
uv = uvs[gl_VertexID];
gl_Position = vec4(pos[gl_VertexID], 0.0, 1.0);
}

View File

@@ -3,51 +3,32 @@ const builtin = @import("builtin");
const config = @import("config.zig");
const Log2Int = std.math.Log2Int;
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Arm7tdmi = @import("arm32").Arm7tdmi;
// Sign-Extend value of type `T` to type `U`
pub fn sext(comptime T: type, comptime U: type, value: T) T {
// U must have less bits than T
comptime std.debug.assert(@typeInfo(U).Int.bits <= @typeInfo(T).Int.bits);
const iT = std.meta.Int(.signed, @typeInfo(T).Int.bits);
const ExtU = if (@typeInfo(U).Int.signedness == .unsigned) T else iT;
const shift = @intCast(Log2Int(T), @typeInfo(T).Int.bits - @typeInfo(U).Int.bits);
return @bitCast(T, @bitCast(iT, @as(ExtU, @truncate(U, value)) << shift) >> shift);
}
/// See https://godbolt.org/z/W3en9Eche
pub inline fn rotr(comptime T: type, x: T, r: anytype) T {
if (@typeInfo(T).Int.signedness == .signed)
@compileError("cannot rotate signed integer");
const ar = @intCast(Log2Int(T), @mod(r, @typeInfo(T).Int.bits));
return x >> ar | x << (1 +% ~ar);
}
const Allocator = std.mem.Allocator;
pub const FpsTracker = struct {
const Self = @This();
fps: u32,
count: std.atomic.Atomic(u32),
count: std.atomic.Value(u32),
timer: std.time.Timer,
pub fn init() Self {
return .{
.fps = 0,
.count = std.atomic.Atomic(u32).init(0),
.count = std.atomic.Value(u32).init(0),
.timer = std.time.Timer.start() catch unreachable,
};
}
pub fn tick(self: *Self) void {
_ = self.count.fetchAdd(1, .Monotonic);
_ = self.count.fetchAdd(1, .monotonic);
}
pub fn value(self: *Self) u32 {
if (self.timer.read() >= std.time.ns_per_s) {
self.fps = self.count.swap(0, .SeqCst);
self.fps = self.count.swap(0, .monotonic);
self.timer.reset();
}
@@ -55,68 +36,6 @@ pub const FpsTracker = struct {
}
};
pub fn intToBytes(comptime T: type, value: anytype) [@sizeOf(T)]u8 {
comptime std.debug.assert(@typeInfo(T) == .Int);
var result: [@sizeOf(T)]u8 = undefined;
var i: Log2Int(T) = 0;
while (i < result.len) : (i += 1) result[i] = @truncate(u8, value >> i * @bitSizeOf(u8));
return result;
}
/// The Title from the GBA Cartridge is an Uppercase ASCII string which is
/// null-padded to 12 bytes
///
/// This function returns a slice of the ASCII string without the null terminator(s)
/// (essentially, a proper Zig/Rust/Any modern language String)
pub fn span(title: *const [12]u8) []const u8 {
const end = std.mem.indexOfScalar(u8, title, '\x00');
return title[0 .. end orelse title.len];
}
test "span" {
var example: *const [12]u8 = "POKEMON_EMER";
try std.testing.expectEqualSlices(u8, "POKEMON_EMER", span(example));
example = "POKEMON_EME\x00";
try std.testing.expectEqualSlices(u8, "POKEMON_EME", span(example));
example = "POKEMON_EM\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMON_EM", span(example));
example = "POKEMON_E\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMON_E", span(example));
example = "POKEMON_\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMON_", span(example));
example = "POKEMON\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMON", span(example));
example = "POKEMO\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMO", span(example));
example = "POKEM\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEM", span(example));
example = "POKE\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKE", span(example));
example = "POK\x00\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POK", span(example));
example = "PO\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "PO", span(example));
example = "P\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "P", span(example));
example = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "", span(example));
}
/// Creates a copy of a title with all Filesystem-invalid characters replaced
///
/// e.g. POKEPIN R/S to POKEPIN R_S
@@ -131,9 +50,15 @@ pub fn escape(title: [12]u8) [12]u8 {
}
pub const FilePaths = struct {
rom: []const u8,
rom: ?[]const u8,
bios: ?[]const u8,
save: ?[]const u8,
save: []const u8,
pub fn deinit(self: @This(), allocator: Allocator) void {
if (self.rom) |path| allocator.free(path);
if (self.bios) |path| allocator.free(path);
allocator.free(self.save);
}
};
pub const io = struct {
@@ -143,7 +68,9 @@ pub const io = struct {
return 0;
}
pub fn undef(comptime T: type, log: anytype, comptime format: []const u8, args: anytype) ?T {
pub fn undef(comptime T: type, comptime log: anytype, comptime format: []const u8, args: anytype) ?T {
@branchHint(.cold);
const unhandled_io = config.config().debug.unhandled_io;
log.warn(format, args);
@@ -151,6 +78,13 @@ pub const io = struct {
return null;
}
pub fn err(comptime T: type, comptime log: anytype, comptime format: []const u8, args: anytype) ?T {
@branchHint(.cold);
log.err(format, args);
return null;
}
};
pub const write = struct {
@@ -165,6 +99,7 @@ pub const io = struct {
pub const Logger = struct {
const Self = @This();
const FmtArgTuple = std.meta.Tuple(&.{ u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32 });
buf: std.io.BufferedWriter(4096 << 2, std.fs.File.Writer),
@@ -187,7 +122,7 @@ pub const Logger = struct {
if (cpu.cpsr.t.read()) {
if (opcode >> 11 == 0x1E) {
// Instruction 1 of a BL Opcode, print in ARM mode
const low = cpu.bus.dbgRead(u16, cpu.r[15]);
const low = cpu.bus.dbgRead(u16, cpu.r[15] - 2);
const bl_opcode = @as(u32, opcode) << 16 | low;
self.print(arm_fmt, Self.fmtArgs(cpu, bl_opcode)) catch @panic("failed to write to log file");
@@ -223,8 +158,6 @@ pub const Logger = struct {
}
};
const FmtArgTuple = std.meta.Tuple(&.{ u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32 });
pub const audio = struct {
const _io = @import("core/bus/io.zig");
@@ -274,22 +207,37 @@ pub const audio = struct {
};
};
/// Sets the high bits of an integer to a value
pub inline fn setHi(comptime T: type, left: T, right: HalfInt(T)) T {
return switch (T) {
u32 => (left & 0xFFFF_0000) | right,
u16 => (left & 0xFF00) | right,
u8 => (left & 0xF0) | right,
else => @compileError("unsupported type"),
/// Sets a quarter (8) of the bits of the u32 `left` to the value of u8 `right`
pub inline fn setQuart(left: u32, addr: u8, right: u8) u32 {
const offset: u2 = @truncate(addr);
return switch (offset) {
0b00 => (left & 0xFFFF_FF00) | right,
0b01 => (left & 0xFFFF_00FF) | @as(u32, right) << 8,
0b10 => (left & 0xFF00_FFFF) | @as(u32, right) << 16,
0b11 => (left & 0x00FF_FFFF) | @as(u32, right) << 24,
};
}
/// sets the low bits of an integer to a value
pub inline fn setLo(comptime T: type, left: T, right: HalfInt(T)) T {
/// Calculates the correct shift offset for an aligned/unaligned u8 read
///
/// TODO: Support u16 reads of u32 values?
pub inline fn getHalf(byte: u8) u4 {
return @as(u4, @truncate(byte & 1)) << 3;
}
pub inline fn setHalf(comptime T: type, left: T, addr: u8, right: HalfInt(T)) T {
const offset: u1 = @truncate(addr >> if (T == u32) 1 else 0);
return switch (T) {
u32 => (left & 0x0000_FFFF) | @as(u32, right) << 16,
u16 => (left & 0x00FF) | @as(u16, right) << 8,
u8 => (left & 0x0F) | @as(u8, right) << 4,
u32 => switch (offset) {
0b0 => (left & 0xFFFF_0000) | right,
0b1 => (left & 0x0000_FFFF) | @as(u32, right) << 16,
},
u16 => switch (offset) {
0b0 => (left & 0xFF00) | right,
0b1 => (left & 0x00FF) | @as(u16, right) << 8,
},
else => @compileError("unsupported type"),
};
}
@@ -297,8 +245,81 @@ pub inline fn setLo(comptime T: type, left: T, right: HalfInt(T)) T {
/// The Integer type which corresponds to T with exactly half the amount of bits
fn HalfInt(comptime T: type) type {
const type_info = @typeInfo(T);
comptime std.debug.assert(type_info == .Int); // Type must be an integer
comptime std.debug.assert(type_info.Int.bits % 2 == 0); // Type must have an even amount of bits
comptime std.debug.assert(type_info == .int); // Type must be an integer
comptime std.debug.assert(type_info.int.bits % 2 == 0); // Type must have an even amount of bits
return std.meta.Int(type_info.Int.signedness, type_info.Int.bits >> 1);
return std.meta.Int(type_info.int.signedness, type_info.int.bits >> 1);
}
/// Double Buffering Implementation
pub const FrameBuffer = struct {
const Self = @This();
layers: [2][]u8,
buf: []u8,
current: u1 = 0,
allocator: Allocator,
// TODO: Rename
const Device = enum { Emulator, Renderer };
pub fn init(allocator: Allocator, comptime len: comptime_int) !Self {
const buf = try allocator.alloc(u8, len * 2);
@memset(buf, 0);
return .{
// Front and Back Framebuffers
.layers = [_][]u8{ buf[0..][0..len], buf[len..][0..len] },
.buf = buf,
.allocator = allocator,
};
}
pub fn reset(self: *Self) void {
@memset(self.buf, 0);
self.current = 0;
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub fn swap(self: *Self) void {
self.current = ~self.current;
}
pub fn get(self: *Self, comptime dev: Device) []u8 {
return self.layers[if (dev == .Emulator) self.current else ~self.current];
}
};
const RingBuffer = @import("zba_util").RingBuffer;
// TODO: Lock Free Queue?
pub fn Queue(comptime T: type) type {
return struct {
inner: RingBuffer(T),
mtx: std.Thread.Mutex = .{},
pub fn init(buf: []T) @This() {
return .{ .inner = RingBuffer(T).init(buf) };
}
pub fn push(self: *@This(), value: T) !void {
self.mtx.lock();
defer self.mtx.unlock();
try self.inner.push(value);
}
pub fn pop(self: *@This()) ?T {
self.mtx.lock();
defer self.mtx.unlock();
return self.inner.pop();
}
};
}