zba/src/core/ppu.zig

1564 lines
60 KiB
Zig
Raw Normal View History

2022-01-04 01:47:26 +00:00
const std = @import("std");
const io = @import("bus/io.zig");
2022-10-29 02:43:29 +00:00
const util = @import("../util.zig");
2022-01-04 01:47:26 +00:00
2022-02-16 05:09:06 +00:00
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const dma = @import("bus/dma.zig");
const Oam = @import("ppu/Oam.zig");
const Palette = @import("ppu/Palette.zig");
const Vram = @import("ppu/Vram.zig");
const Scheduler = @import("scheduler.zig").Scheduler;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const FrameBuffer = @import("../util.zig").FrameBuffer;
2022-02-16 05:09:06 +00:00
2022-01-08 00:00:42 +00:00
const Allocator = std.mem.Allocator;
2022-03-10 22:48:44 +00:00
const log = std.log.scoped(.PPU);
2022-10-29 02:43:29 +00:00
2022-10-30 05:36:46 +00:00
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const setQuart = util.setQuart;
2022-03-18 09:27:37 +00:00
2022-01-12 04:46:20 +00:00
pub const width = 240;
pub const height = 160;
2022-03-18 09:27:37 +00:00
pub const framebuf_pitch = width * @sizeOf(u32);
2022-01-04 01:47:26 +00:00
2022-10-29 02:43:29 +00:00
pub fn read(comptime T: type, ppu: *const Ppu, addr: u32) ?T {
const byte_addr = @truncate(u8, addr);
2022-10-29 02:43:29 +00:00
return switch (T) {
u32 => switch (byte_addr) {
2022-10-29 04:08:58 +00:00
0x00 => ppu.dispcnt.raw, // Green Swap is in high half-word
2022-10-29 02:43:29 +00:00
0x04 => @as(T, ppu.vcount.raw) << 16 | ppu.dispstat.raw,
0x08 => @as(T, ppu.bg[1].bg1Cnt()) << 16 | ppu.bg[0].bg0Cnt(),
2022-10-29 04:08:58 +00:00
0x0C => @as(T, ppu.bg[3].cnt.raw) << 16 | ppu.bg[2].cnt.raw,
0x10, 0x14, 0x18, 0x1C => null, // BGXHOFS/VOFS
0x20, 0x24, 0x28, 0x2C => null, // BG2 Rot/Scaling
0x30, 0x34, 0x38, 0x3C => null, // BG3 Rot/Scaling
0x40, 0x44 => null, // WINXH/V Registers
0x48 => @as(T, ppu.win.getOut()) << 16 | ppu.win.getIn(),
2022-10-29 04:08:58 +00:00
0x4C => null, // MOSAIC, undefined in high byte
0x50 => @as(T, ppu.bld.getAlpha()) << 16 | ppu.bld.getCnt(),
2022-10-29 04:08:58 +00:00
0x54 => null, // BLDY, undefined in high half-wrd
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
2022-10-29 02:43:29 +00:00
},
u16 => switch (byte_addr) {
2022-10-29 02:43:29 +00:00
0x00 => ppu.dispcnt.raw,
2022-10-29 04:08:58 +00:00
0x02 => null, // Green Swap
2022-10-29 02:43:29 +00:00
0x04 => ppu.dispstat.raw,
0x06 => ppu.vcount.raw,
0x08 => ppu.bg[0].bg0Cnt(),
0x0A => ppu.bg[1].bg1Cnt(),
2022-10-29 02:43:29 +00:00
0x0C => ppu.bg[2].cnt.raw,
0x0E => ppu.bg[3].cnt.raw,
0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E => null, // BGXHOFS/VOFS
0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E => null, // BG2 Rot/Scaling
0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E => null, // BG3 Rot/Scaling
0x40, 0x42, 0x44, 0x46 => null, // WINXH/V Registers
0x48 => ppu.win.getIn(),
0x4A => ppu.win.getOut(),
2022-10-29 04:08:58 +00:00
0x4C => null, // MOSAIC
0x4E => null,
0x50 => ppu.bld.getCnt(),
0x52 => ppu.bld.getAlpha(),
2022-10-29 04:08:58 +00:00
0x54 => null, // BLDY
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
2022-10-29 02:43:29 +00:00
},
u8 => switch (byte_addr) {
0x00, 0x01 => @truncate(T, ppu.dispcnt.raw >> getHalf(byte_addr)),
0x02, 0x03 => null,
0x04, 0x05 => @truncate(T, ppu.dispstat.raw >> getHalf(byte_addr)),
0x06, 0x07 => @truncate(T, ppu.vcount.raw >> getHalf(byte_addr)),
0x08, 0x09 => @truncate(T, ppu.bg[0].bg0Cnt() >> getHalf(byte_addr)),
0x0A, 0x0B => @truncate(T, ppu.bg[1].bg1Cnt() >> getHalf(byte_addr)),
0x0C, 0x0D => @truncate(T, ppu.bg[2].cnt.raw >> getHalf(byte_addr)),
0x0E, 0x0F => @truncate(T, ppu.bg[3].cnt.raw >> getHalf(byte_addr)),
2022-10-29 04:08:58 +00:00
0x10...0x1F => null, // BGXHOFS/VOFS
0x20...0x2F => null, // BG2 Rot/Scaling
0x30...0x3F => null, // BG3 Rot/Scaling
2022-10-29 04:08:58 +00:00
0x40...0x47 => null, // WINXH/V Registers
0x48, 0x49 => @truncate(T, ppu.win.getIn() >> getHalf(byte_addr)),
0x4A, 0x4B => @truncate(T, ppu.win.getOut() >> getHalf(byte_addr)),
0x4C, 0x4D => null, // MOSAIC
0x4E, 0x4F => null,
0x50, 0x51 => @truncate(T, ppu.bld.getCnt() >> getHalf(byte_addr)),
0x52, 0x53 => @truncate(T, ppu.bld.getAlpha() >> getHalf(byte_addr)),
0x54, 0x55 => null, // BLDY
else => util.io.read.err(T, log, "unexpected {} read from 0x{X:0>8}", .{ T, addr }),
2022-10-29 02:43:29 +00:00
},
else => @compileError("PPU: Unsupported read width"),
};
}
pub fn write(comptime T: type, ppu: *Ppu, addr: u32, value: T) void {
2022-10-30 05:36:46 +00:00
const byte_addr = @truncate(u8, addr); // prefixed with 0x0400_00
2022-10-29 02:43:29 +00:00
switch (T) {
2022-10-30 05:36:46 +00:00
u32 => switch (byte_addr) {
2022-10-29 02:43:29 +00:00
0x00 => ppu.dispcnt.raw = @truncate(u16, value),
0x04 => {
ppu.dispstat.set(@truncate(u16, value));
2022-10-29 02:43:29 +00:00
ppu.vcount.raw = @truncate(u16, value >> 16);
},
0x08 => ppu.setAdjCnts(0, value),
0x0C => ppu.setAdjCnts(2, value),
2022-10-30 05:36:46 +00:00
2022-10-29 02:43:29 +00:00
0x10 => ppu.setBgOffsets(0, value),
0x14 => ppu.setBgOffsets(1, value),
0x18 => ppu.setBgOffsets(2, value),
0x1C => ppu.setBgOffsets(3, value),
2022-10-30 05:36:46 +00:00
2022-10-29 02:43:29 +00:00
0x20 => ppu.aff_bg[0].writePaPb(value),
0x24 => ppu.aff_bg[0].writePcPd(value),
0x28 => ppu.aff_bg[0].setX(ppu.dispstat.vblank.read(), value),
0x2C => ppu.aff_bg[0].setY(ppu.dispstat.vblank.read(), value),
2022-10-30 05:36:46 +00:00
2022-10-29 02:43:29 +00:00
0x30 => ppu.aff_bg[1].writePaPb(value),
0x34 => ppu.aff_bg[1].writePcPd(value),
0x38 => ppu.aff_bg[1].setX(ppu.dispstat.vblank.read(), value),
0x3C => ppu.aff_bg[1].setY(ppu.dispstat.vblank.read(), value),
2022-10-30 05:36:46 +00:00
2022-10-29 02:43:29 +00:00
0x40 => ppu.win.setH(value),
0x44 => ppu.win.setV(value),
0x48 => ppu.win.setIo(value),
0x4C => log.debug("Wrote 0x{X:0>8} to MOSAIC", .{value}),
2022-10-30 05:36:46 +00:00
2022-10-29 02:43:29 +00:00
0x50 => {
ppu.bld.cnt.raw = @truncate(u16, value);
ppu.bld.alpha.raw = @truncate(u16, value >> 16);
2022-10-29 02:43:29 +00:00
},
0x54 => ppu.bld.y.raw = @truncate(u16, value),
2022-10-29 02:43:29 +00:00
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
2022-10-30 05:36:46 +00:00
u16 => switch (byte_addr) {
2022-10-29 02:43:29 +00:00
0x00 => ppu.dispcnt.raw = value,
2022-10-30 05:36:46 +00:00
0x02 => {}, // Green Swap
0x04 => ppu.dispstat.set(value),
2022-10-30 05:36:46 +00:00
0x06 => {}, // VCOUNT
2022-10-29 02:43:29 +00:00
0x08 => ppu.bg[0].cnt.raw = value,
0x0A => ppu.bg[1].cnt.raw = value,
0x0C => ppu.bg[2].cnt.raw = value,
0x0E => ppu.bg[3].cnt.raw = value,
2022-10-30 05:36:46 +00:00
2022-10-29 02:43:29 +00:00
0x10 => ppu.bg[0].hofs.raw = value, // TODO: Don't write out every HOFS / VOFS?
0x12 => ppu.bg[0].vofs.raw = value,
0x14 => ppu.bg[1].hofs.raw = value,
0x16 => ppu.bg[1].vofs.raw = value,
0x18 => ppu.bg[2].hofs.raw = value,
0x1A => ppu.bg[2].vofs.raw = value,
0x1C => ppu.bg[3].hofs.raw = value,
0x1E => ppu.bg[3].vofs.raw = value,
2022-10-30 05:36:46 +00:00
2022-10-29 02:43:29 +00:00
0x20 => ppu.aff_bg[0].pa = @bitCast(i16, value),
0x22 => ppu.aff_bg[0].pb = @bitCast(i16, value),
0x24 => ppu.aff_bg[0].pc = @bitCast(i16, value),
0x26 => ppu.aff_bg[0].pd = @bitCast(i16, value),
2022-10-30 05:36:46 +00:00
0x28, 0x2A => ppu.aff_bg[0].x = @bitCast(i32, setHalf(u32, @bitCast(u32, ppu.aff_bg[0].x), byte_addr, value)),
0x2C, 0x2E => ppu.aff_bg[0].y = @bitCast(i32, setHalf(u32, @bitCast(u32, ppu.aff_bg[0].y), byte_addr, value)),
2022-10-29 02:43:29 +00:00
0x30 => ppu.aff_bg[1].pa = @bitCast(i16, value),
0x32 => ppu.aff_bg[1].pb = @bitCast(i16, value),
0x34 => ppu.aff_bg[1].pc = @bitCast(i16, value),
0x36 => ppu.aff_bg[1].pd = @bitCast(i16, value),
2022-10-30 05:36:46 +00:00
0x38, 0x3A => ppu.aff_bg[1].x = @bitCast(i32, setHalf(u32, @bitCast(u32, ppu.aff_bg[1].x), byte_addr, value)),
0x3C, 0x3E => ppu.aff_bg[1].y = @bitCast(i32, setHalf(u32, @bitCast(u32, ppu.aff_bg[1].y), byte_addr, value)),
2022-10-29 02:43:29 +00:00
0x40 => ppu.win.h[0].raw = value,
0x42 => ppu.win.h[1].raw = value,
0x44 => ppu.win.v[0].raw = value,
0x46 => ppu.win.v[1].raw = value,
0x48 => ppu.win.in.raw = value,
0x4A => ppu.win.out.raw = value,
2022-10-29 02:43:29 +00:00
0x4C => log.debug("Wrote 0x{X:0>4} to MOSAIC", .{value}),
2022-10-30 05:36:46 +00:00
0x4E => {},
0x50 => ppu.bld.cnt.raw = value,
0x52 => ppu.bld.alpha.raw = value,
0x54 => ppu.bld.y.raw = value,
2022-10-29 02:43:29 +00:00
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
2022-10-30 05:36:46 +00:00
u8 => switch (byte_addr) {
0x00, 0x01 => ppu.dispcnt.raw = setHalf(u16, ppu.dispcnt.raw, byte_addr, value),
0x02, 0x03 => {}, // Green Swap
0x04, 0x05 => ppu.dispstat.set(setHalf(u16, ppu.dispstat.raw, byte_addr, value)),
2022-10-30 05:36:46 +00:00
0x06, 0x07 => {}, // VCOUNT
// BGXCNT
0x08, 0x09 => ppu.bg[0].cnt.raw = setHalf(u16, ppu.bg[0].cnt.raw, byte_addr, value),
0x0A, 0x0B => ppu.bg[1].cnt.raw = setHalf(u16, ppu.bg[1].cnt.raw, byte_addr, value),
0x0C, 0x0D => ppu.bg[2].cnt.raw = setHalf(u16, ppu.bg[2].cnt.raw, byte_addr, value),
0x0E, 0x0F => ppu.bg[3].cnt.raw = setHalf(u16, ppu.bg[3].cnt.raw, byte_addr, value),
// BGX HOFS/VOFS
0x10, 0x11 => ppu.bg[0].hofs.raw = setHalf(u16, ppu.bg[0].hofs.raw, byte_addr, value),
0x12, 0x13 => ppu.bg[0].vofs.raw = setHalf(u16, ppu.bg[0].vofs.raw, byte_addr, value),
0x14, 0x15 => ppu.bg[1].hofs.raw = setHalf(u16, ppu.bg[1].hofs.raw, byte_addr, value),
0x16, 0x17 => ppu.bg[1].vofs.raw = setHalf(u16, ppu.bg[1].vofs.raw, byte_addr, value),
0x18, 0x19 => ppu.bg[2].hofs.raw = setHalf(u16, ppu.bg[2].hofs.raw, byte_addr, value),
0x1A, 0x1B => ppu.bg[2].vofs.raw = setHalf(u16, ppu.bg[2].vofs.raw, byte_addr, value),
0x1C, 0x1D => ppu.bg[3].hofs.raw = setHalf(u16, ppu.bg[3].hofs.raw, byte_addr, value),
0x1E, 0x1F => ppu.bg[3].vofs.raw = setHalf(u16, ppu.bg[3].vofs.raw, byte_addr, value),
// BG2 Rot/Scaling
0x20, 0x21 => ppu.aff_bg[0].pa = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[0].pa), byte_addr, value)),
0x22, 0x23 => ppu.aff_bg[0].pb = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[0].pb), byte_addr, value)),
0x24, 0x25 => ppu.aff_bg[0].pc = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[0].pc), byte_addr, value)),
0x26, 0x27 => ppu.aff_bg[0].pd = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[0].pd), byte_addr, value)),
0x28, 0x29, 0x2A, 0x2B => ppu.aff_bg[0].x = @bitCast(i32, setQuart(@bitCast(u32, ppu.aff_bg[0].x), byte_addr, value)),
0x2C, 0x2D, 0x2E, 0x2F => ppu.aff_bg[0].y = @bitCast(i32, setQuart(@bitCast(u32, ppu.aff_bg[0].y), byte_addr, value)),
// BG3 Rot/Scaling
0x30, 0x31 => ppu.aff_bg[1].pa = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[1].pa), byte_addr, value)),
0x32, 0x33 => ppu.aff_bg[1].pb = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[1].pb), byte_addr, value)),
0x34, 0x35 => ppu.aff_bg[1].pc = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[1].pc), byte_addr, value)),
0x36, 0x37 => ppu.aff_bg[1].pd = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[1].pd), byte_addr, value)),
0x38, 0x39, 0x3A, 0x3B => ppu.aff_bg[1].x = @bitCast(i32, setQuart(@bitCast(u32, ppu.aff_bg[1].x), byte_addr, value)),
0x3C, 0x3D, 0x3E, 0x3F => ppu.aff_bg[1].y = @bitCast(i32, setQuart(@bitCast(u32, ppu.aff_bg[1].y), byte_addr, value)),
// Window
0x40, 0x41 => ppu.win.h[0].raw = setHalf(u16, ppu.win.h[0].raw, byte_addr, value),
0x42, 0x43 => ppu.win.h[1].raw = setHalf(u16, ppu.win.h[1].raw, byte_addr, value),
0x44, 0x45 => ppu.win.v[0].raw = setHalf(u16, ppu.win.v[0].raw, byte_addr, value),
0x46, 0x47 => ppu.win.v[1].raw = setHalf(u16, ppu.win.v[1].raw, byte_addr, value),
0x48, 0x49 => ppu.win.in.raw = setHalf(u16, ppu.win.in.raw, byte_addr, value),
0x4A, 0x4B => ppu.win.out.raw = setHalf(u16, ppu.win.out.raw, byte_addr, value),
0x4C, 0x4D => log.debug("Wrote 0x{X:0>2} to MOSAIC", .{value}),
0x4E, 0x4F => {},
// Blending
0x50, 0x51 => ppu.bld.cnt.raw = setHalf(u16, ppu.bld.cnt.raw, byte_addr, value),
0x52, 0x53 => ppu.bld.alpha.raw = setHalf(u16, ppu.bld.alpha.raw, byte_addr, value),
0x54, 0x55 => ppu.bld.y.raw = setHalf(u16, ppu.bld.y.raw, byte_addr, value),
2022-10-29 02:43:29 +00:00
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
},
else => @compileError("PPU: Unsupported write width"),
}
}
2022-01-04 01:47:26 +00:00
pub const Ppu = struct {
2022-01-10 03:34:33 +00:00
const Self = @This();
// Registers
win: Window,
bg: [4]Background,
aff_bg: [2]AffineBackground,
dispcnt: io.DisplayControl,
dispstat: io.DisplayStatus,
vcount: io.VCount,
bld: Blend,
2022-06-19 04:18:25 +00:00
2022-01-04 01:47:26 +00:00
vram: Vram,
palette: Palette,
2022-02-13 06:29:26 +00:00
oam: Oam,
sched: *Scheduler,
2022-05-17 09:53:37 +00:00
framebuf: FrameBuffer,
2022-09-03 21:30:48 +00:00
allocator: Allocator,
2022-01-04 01:47:26 +00:00
scanline_sprites: *[128]?Sprite,
scanline: Scanline,
2022-08-29 05:32:41 +00:00
pub fn init(allocator: Allocator, sched: *Scheduler) !Self {
sched.push(.Draw, 240 * 4); // Add first PPU Event to Scheduler
2022-01-09 00:30:57 +00:00
const sprites = try allocator.create([128]?Sprite);
std.mem.set(?Sprite, sprites, null);
2022-01-10 03:34:33 +00:00
return Self{
2022-08-29 05:32:41 +00:00
.vram = try Vram.init(allocator),
.palette = try Palette.init(allocator),
.oam = try Oam.init(allocator),
.sched = sched,
.framebuf = try FrameBuffer.init(allocator, framebuf_pitch * height),
2022-09-03 21:30:48 +00:00
.allocator = allocator,
// Registers
.win = Window.init(),
.bg = [_]Background{Background.init()} ** 4,
.aff_bg = [_]AffineBackground{AffineBackground.init()} ** 2,
.bld = Blend.create(),
.dispcnt = .{ .raw = 0x0000 },
.dispstat = .{ .raw = 0x0000 },
.vcount = .{ .raw = 0x0000 },
2022-08-29 05:32:41 +00:00
.scanline = try Scanline.init(allocator),
.scanline_sprites = sprites,
2022-01-04 01:47:26 +00:00
};
}
2022-01-04 02:08:55 +00:00
2022-08-29 05:32:41 +00:00
pub fn deinit(self: *Self) void {
2022-09-03 21:30:48 +00:00
self.allocator.destroy(self.scanline_sprites);
2022-08-29 05:32:41 +00:00
self.framebuf.deinit();
self.scanline.deinit();
2022-01-04 02:08:55 +00:00
self.vram.deinit();
self.palette.deinit();
2022-03-22 14:41:17 +00:00
self.oam.deinit();
2022-08-29 05:32:41 +00:00
self.* = undefined;
2022-01-04 02:08:55 +00:00
}
pub fn setBgOffsets(self: *Self, comptime n: u2, word: u32) void {
2022-03-05 01:53:49 +00:00
self.bg[n].hofs.raw = @truncate(u16, word);
self.bg[n].vofs.raw = @truncate(u16, word >> 16);
}
pub fn setAdjCnts(self: *Self, comptime n: u2, word: u32) void {
2022-03-05 01:53:49 +00:00
self.bg[n].cnt.raw = @truncate(u16, word);
self.bg[n + 1].cnt.raw = @truncate(u16, word >> 16);
}
2022-03-10 22:48:44 +00:00
/// Search OAM for Sprites that might be rendered on this scanline
fn fetchSprites(self: *Self) void {
const y = self.vcount.scanline.read();
var i: usize = 0;
search: while (i < self.oam.buf.len) : (i += 8) {
// Attributes in OAM are 6 bytes long, with 2 bytes of padding
// Grab Attributes from OAM
const attr0 = @bitCast(Attr0, self.oam.read(u16, i));
2022-03-18 12:41:06 +00:00
// Only consider enabled Sprites
if (attr0.is_affine.read() or !attr0.disabled.read()) {
const attr1 = @bitCast(Attr1, self.oam.read(u16, i + 2));
2022-12-17 13:17:34 +00:00
const d = spriteDimensions(attr0.shape.read(), attr1.size.read());
// Account for double-size affine sprites
const sprite_height = d[1] << blk: {
if (!attr0.is_affine.read()) break :blk 0;
const aff_attr0: AffineAttr0 = .{ .raw = attr0.raw };
break :blk if (aff_attr0.double_size.read()) 1 else 0;
};
2022-03-18 12:41:06 +00:00
// When fetching sprites we only care about ones that could be rendered
// on this scanline
var y_pos: i32 = attr0.y.read();
if (y_pos >= 160) y_pos -= 256; // fleroviux's solution to negative positions
2022-03-18 12:41:06 +00:00
// Sprites are expected to be able to wraparound, we perform the same check
// for unsigned and signed values so that we handle all valid sprite positions
2022-12-27 17:51:46 +00:00
// FIXME: Wrapping for Double-Size Sprites is not properly implemented
if (y_pos <= y and y < (y_pos + sprite_height)) {
2022-03-18 12:41:06 +00:00
for (self.scanline_sprites) |*maybe_sprite| {
if (maybe_sprite.* == null) {
maybe_sprite.* = Sprite.init(attr0, attr1, @bitCast(Attr2, self.oam.read(u16, i + 4)));
2022-03-18 12:41:06 +00:00
continue :search;
}
2022-03-10 22:48:44 +00:00
}
2022-03-18 12:41:06 +00:00
log.err("Found more than 128 sprites in OAM Search", .{});
unreachable; // TODO: Is this truly unreachable?
}
2022-03-10 22:48:44 +00:00
}
}
}
fn drawSprites(self: *Self, layer: u2) void {
// Loop over every fetched sprite
for (self.scanline_sprites) |maybe_sprite| {
if (maybe_sprite) |sprite| {
// Skip this sprite if it isn't on the current priority
if (sprite.priority() != layer) continue;
if (sprite.attr0.is_affine.read()) self.drawAffineSprite(AffineSprite.from(sprite)) else self.drawSprite(sprite);
} else break;
}
}
2022-03-10 22:48:44 +00:00
fn drawAffineSprite(self: *Self, sprite: AffineSprite) void {
const is_8bpp = sprite.is8bpp();
const tile_id: u32 = sprite.tileId();
const obj_mapping = self.dispcnt.obj_mapping.read();
const tile_row_offset: u32 = if (is_8bpp) 8 else 4;
const tile_len: u32 = if (is_8bpp) 0x40 else 0x20;
2022-12-17 13:17:34 +00:00
const double_size = sprite.attr0.double_size.read();
const char_base = 0x4000 * 4;
const y = self.vcount.scanline.read();
2022-12-17 13:17:34 +00:00
var sprite_x: i16 = sprite.x();
if (sprite_x >= 240) sprite_x -= 512;
var sprite_y: i16 = sprite.y();
if (sprite_y >= 160) sprite_y -= 256;
const base = 32 * @as(u32, sprite.matrixId());
const pa = self.oam.read(u16, base + 3 * @sizeOf(u16));
const pb = self.oam.read(u16, base + 7 * @sizeOf(u16));
const pc = self.oam.read(u16, base + 11 * @sizeOf(u16));
const pd = self.oam.read(u16, base + 15 * @sizeOf(u16));
const matrix = @bitCast([4]i16, [_]u16{ pa, pb, pc, pd });
const sprite_width = sprite.width << if (double_size) 1 else 0;
const sprite_height = sprite.height << if (double_size) 1 else 0;
const half_width = sprite_width >> 1;
const half_height = sprite_height >> 1;
var i: u9 = 0;
2022-12-17 13:17:34 +00:00
while (i < sprite_width) : (i += 1) {
// TODO: Something is wrong here
const x = @truncate(u9, @bitCast(u16, sprite_x + i));
if (x >= width) continue;
2022-12-17 13:17:34 +00:00
if (!shouldDrawSprite(self.bld.cnt, &self.scanline, x)) continue;
2022-12-17 13:17:34 +00:00
// Check to see if sprite pixel is in bounds
// TODO: Are any of the checks here redundant?
2022-12-27 17:51:46 +00:00
if (sprite_x > x and x >= (sprite_x + sprite.width)) continue;
// Sprite is within bounds and therefore should be rendered
2022-12-17 13:17:34 +00:00
const local_x = @as(i16, x) - sprite_x;
const local_y = @as(i16, y) - sprite_y;
var rot_x = ((matrix[0] *% (local_x - half_width) +% matrix[1] *% (local_y - half_width)) >> 8);
var rot_y = ((matrix[2] *% (local_x - half_width) +% matrix[3] *% (local_y - half_width)) >> 8);
rot_x +%= half_width >> if (double_size) 1 else 0;
rot_y +%= half_height >> if (double_size) 1 else 0;
// Maybe this is the necessary check?
if (rot_x >= sprite.width or rot_y >= sprite.height or rot_x < 0 or rot_y < 0) continue;
const tile_x = @bitCast(u16, rot_x);
const tile_y = @bitCast(u16, rot_y);
const col = @truncate(u3, tile_x);
2022-12-17 13:17:34 +00:00
const row = @truncate(u3, tile_y);
// TODO: Finish that 2D Sprites Test ROM
const tile_base = char_base + (tile_id * 0x20) + (row * tile_row_offset) + if (is_8bpp) col else col >> 1;
const mapping_offset = if (obj_mapping) sprite.width >> 3 else if (is_8bpp) @as(u32, 0x10) else 0x20;
const tile_offset = (tile_x >> 3) * tile_len + (tile_y >> 3) * tile_len * mapping_offset;
const tile = self.vram.buf[tile_base + tile_offset];
const pal_id: u16 = if (!is_8bpp) get4bppTilePalette(sprite.palBank(), col, tile) else tile;
2022-12-17 13:17:34 +00:00
const global_x = @truncate(u9, @bitCast(u16, local_x + sprite_x));
// Sprite Palette starts at 0x0500_0200
2022-06-23 05:31:34 +00:00
if (pal_id != 0) {
const bgr555 = self.palette.read(u16, 0x200 + pal_id * 2);
drawSpritePixel(self.bld.cnt, &self.scanline, @bitCast(Attr0, sprite.attr0), global_x, bgr555);
2022-06-23 05:31:34 +00:00
}
}
}
fn drawSprite(self: *Self, sprite: Sprite) void {
const is_8bpp = sprite.is8bpp();
const tile_id: u32 = sprite.tileId();
const obj_mapping = self.dispcnt.obj_mapping.read();
const tile_row_offset: u32 = if (is_8bpp) 8 else 4;
const tile_len: u32 = if (is_8bpp) 0x40 else 0x20;
2022-03-10 22:48:44 +00:00
const char_base = 0x4000 * 4;
const y = self.vcount.scanline.read();
2022-12-27 17:51:46 +00:00
var sprite_x: i16 = sprite.x();
if (sprite_x >= 240) sprite_x -= 512;
var sprite_y: i16 = sprite.y();
if (sprite_y >= 160) sprite_y -= 256;
var i: u9 = 0;
while (i < sprite.width) : (i += 1) {
2022-12-27 17:51:46 +00:00
// TODO: Something is Wrong Here
const x = @truncate(u9, @bitCast(u16, sprite_x + i));
if (x >= width) continue;
2022-03-10 22:48:44 +00:00
2022-12-27 17:51:46 +00:00
if (!shouldDrawSprite(self.bld.cnt, &self.scanline, x)) continue;
2022-12-27 17:51:46 +00:00
if (sprite_x > x and x >= (sprite_x + sprite.width)) continue;
// Sprite is within bounds and therefore should be rendered
2022-12-27 17:51:46 +00:00
const local_x = @as(i16, x) - sprite_x;
const local_y = @as(i16, y) - sprite_y;
// Note that we flip the tile_pos not the (tile_pos % 8) like we do for
// Background Tiles. By doing this we mirror the entire sprite instead of
// just a specific tile (see how sprite.width and sprite.height are involved)
2022-12-27 17:51:46 +00:00
const tile_x = @intCast(u9, local_x) ^ if (sprite.hFlip()) (sprite.width - 1) else 0;
const tile_y = @intCast(u8, local_y) ^ if (sprite.vFlip()) (sprite.height - 1) else 0;
const col = @truncate(u3, tile_x);
2022-12-27 17:51:46 +00:00
const row = @truncate(u3, tile_y);
// TODO: Finish that 2D Sprites Test ROM
const tile_base = char_base + (tile_id * 0x20) + (row * tile_row_offset) + if (is_8bpp) col else col >> 1;
const mapping_offset = if (obj_mapping) sprite.width >> 3 else if (is_8bpp) @as(u32, 0x10) else 0x20;
const tile_offset = (tile_x >> 3) * tile_len + (tile_y >> 3) * tile_len * mapping_offset;
const tile = self.vram.buf[tile_base + tile_offset];
const pal_id: u16 = if (!is_8bpp) get4bppTilePalette(sprite.palBank(), col, tile) else tile;
2022-12-27 17:51:46 +00:00
const global_x = @truncate(u9, @bitCast(u16, local_x + sprite_x));
// Sprite Palette starts at 0x0500_0200
if (pal_id != 0) {
const bgr555 = self.palette.read(u16, 0x200 + pal_id * 2);
2022-12-27 17:51:46 +00:00
drawSpritePixel(self.bld.cnt, &self.scanline, sprite.attr0, global_x, bgr555);
}
}
2022-03-10 22:48:44 +00:00
}
fn drawAffineBackground(self: *Self, comptime n: u2) void {
comptime std.debug.assert(n == 2 or n == 3); // Only BG2 and BG3 can be affine
2022-06-04 12:49:34 +00:00
const char_base = @as(u32, 0x4000) * self.bg[n].cnt.char_base.read();
const screen_base = @as(u32, 0x800) * self.bg[n].cnt.screen_base.read();
const size: u2 = self.bg[n].cnt.size.read();
const tile_width = @as(i32, 0x10) << size;
const px_width = tile_width << 3;
const px_height = px_width;
var aff_x = self.aff_bg[n - 2].x_latch.?;
var aff_y = self.aff_bg[n - 2].y_latch.?;
2022-06-04 12:49:34 +00:00
var i: u32 = 0;
while (i < width) : (i += 1) {
var ix = aff_x >> 8;
var iy = aff_y >> 8;
aff_x += self.aff_bg[n - 2].pa;
aff_y += self.aff_bg[n - 2].pc;
2022-06-04 12:49:34 +00:00
const _x = @truncate(u9, @bitCast(u32, ix));
const _y = @truncate(u8, @bitCast(u32, iy));
2022-07-19 23:43:21 +00:00
const win_bounds = self.windowBounds(_x, _y);
2022-07-19 23:43:21 +00:00
if (!shouldDrawBackground(self, n, win_bounds, i)) continue;
2022-06-04 12:49:34 +00:00
if (self.bg[n].cnt.display_overflow.read()) {
ix = if (ix > px_width) @rem(ix, px_width) else if (ix < 0) px_width + @rem(ix, px_width) else ix;
iy = if (iy > px_height) @rem(iy, px_height) else if (iy < 0) px_height + @rem(iy, px_height) else iy;
} else if (ix > px_width or iy > px_height or ix < 0 or iy < 0) continue;
const x = @bitCast(u32, ix);
const y = @bitCast(u32, iy);
2022-06-04 12:49:34 +00:00
const tile_id: u32 = self.vram.read(u8, screen_base + ((y / 8) * @bitCast(u32, tile_width) + (x / 8)));
const row = y & 7;
const col = x & 7;
const tile_addr = char_base + (tile_id * 0x40) + (row * 0x8) + col;
const pal_id: u16 = self.vram.buf[tile_addr];
2022-11-17 16:16:35 +00:00
if (pal_id != 0) self.drawBackgroundPixel(n, i, self.palette.read(u16, pal_id * 2));
2022-06-04 12:49:34 +00:00
}
// Update BGxX and BGxY
self.aff_bg[n - 2].x_latch.? += self.aff_bg[n - 2].pb; // PB is added to BGxX
self.aff_bg[n - 2].y_latch.? += self.aff_bg[n - 2].pd; // PD is added to BGxY
}
fn drawBackground(self: *Self, comptime n: u2) void {
// A Tile in a charblock is a byte, while a Screen Entry is a halfword
const char_base = 0x4000 * @as(u32, self.bg[n].cnt.char_base.read());
const screen_base = 0x800 * @as(u32, self.bg[n].cnt.screen_base.read());
const is_8bpp: bool = self.bg[n].cnt.colour_mode.read(); // Colour Mode
const size: u2 = self.bg[n].cnt.size.read(); // Background Size
// In 4bpp: 1 byte represents two pixels so the length is (8 x 8) / 2
// In 8bpp: 1 byte represents one pixel so the length is 8 x 8
const tile_len = if (is_8bpp) @as(u32, 0x40) else 0x20;
const tile_row_offset = if (is_8bpp) @as(u32, 0x8) else 0x4;
const vofs: u32 = self.bg[n].vofs.offset.read();
const hofs: u32 = self.bg[n].hofs.offset.read();
2022-02-16 07:37:25 +00:00
const y = vofs + self.vcount.scanline.read();
2022-02-16 07:37:25 +00:00
var i: u32 = 0;
while (i < width) : (i += 1) {
const x = hofs + i;
2022-07-19 23:43:21 +00:00
const win_bounds = self.windowBounds(@truncate(u9, x), @truncate(u8, y));
if (!shouldDrawBackground(self, n, win_bounds, i)) continue;
// Grab the Screen Entry from VRAM
const entry_addr = screen_base + tilemapOffset(size, x, y);
const entry = @bitCast(ScreenEntry, self.vram.read(u16, entry_addr));
// Calculate the Address of the Tile in the designated Charblock
// We also take this opportunity to flip tiles if necessary
const tile_id: u32 = entry.tile_id.read();
// Calculate row and column offsets. Understand that
// `tile_len`, `tile_row_offset` and `col` are subject to different
// values depending on whether we are in 4bpp or 8bpp mode.
const row = @truncate(u3, y) ^ if (entry.v_flip.read()) 7 else @as(u3, 0);
2022-05-25 13:10:57 +00:00
const col = @truncate(u3, x) ^ if (entry.h_flip.read()) 7 else @as(u3, 0);
const tile_addr = char_base + (tile_id * tile_len) + (row * tile_row_offset) + if (is_8bpp) col else col >> 1;
const tile = self.vram.buf[tile_addr];
// If we're in 8bpp, then the tile value is an index into the palette,
// If we're in 4bpp, we have to account for a pal bank value in the Screen entry
// and then we can index the palette
2022-05-25 13:10:57 +00:00
const pal_id: u16 = if (!is_8bpp) get4bppTilePalette(entry.pal_bank.read(), col, tile) else tile;
2022-11-17 16:16:35 +00:00
if (pal_id != 0) self.drawBackgroundPixel(n, i, self.palette.read(u16, pal_id * 2));
}
}
2022-05-25 13:10:57 +00:00
inline fn get4bppTilePalette(pal_bank: u4, col: u3, tile: u8) u8 {
const nybble_tile = tile >> ((col & 1) << 2) & 0xF;
if (nybble_tile == 0) return 0;
return (@as(u8, pal_bank) << 4) | nybble_tile;
}
pub fn drawScanline(self: *Self) void {
const bg_mode = self.dispcnt.bg_mode.read();
const bg_enable = self.dispcnt.bg_enable.read();
2022-03-10 22:48:44 +00:00
const obj_enable = self.dispcnt.obj_enable.read();
const scanline = self.vcount.scanline.read();
switch (bg_mode) {
2022-02-13 08:04:10 +00:00
0x0 => {
const framebuf_base = width * @as(usize, scanline);
if (obj_enable) self.fetchSprites();
2022-03-10 22:48:44 +00:00
var layer: usize = 0;
while (layer < 4) : (layer += 1) {
self.drawSprites(@truncate(u2, layer));
if (layer == self.bg[0].cnt.priority.read() and bg_enable & 1 == 1) self.drawBackground(0);
if (layer == self.bg[1].cnt.priority.read() and bg_enable >> 1 & 1 == 1) self.drawBackground(1);
if (layer == self.bg[2].cnt.priority.read() and bg_enable >> 2 & 1 == 1) self.drawBackground(2);
if (layer == self.bg[3].cnt.priority.read() and bg_enable >> 3 & 1 == 1) self.drawBackground(3);
}
self.drawTextMode(framebuf_base);
2022-05-01 21:53:11 +00:00
},
0x1 => {
const framebuf_base = width * @as(usize, scanline);
2022-05-01 21:53:11 +00:00
if (obj_enable) self.fetchSprites();
var layer: usize = 0;
while (layer < 4) : (layer += 1) {
self.drawSprites(@truncate(u2, layer));
if (layer == self.bg[0].cnt.priority.read() and bg_enable & 1 == 1) self.drawBackground(0);
if (layer == self.bg[1].cnt.priority.read() and bg_enable >> 1 & 1 == 1) self.drawBackground(1);
2022-06-04 12:49:34 +00:00
if (layer == self.bg[2].cnt.priority.read() and bg_enable >> 2 & 1 == 1) self.drawAffineBackground(2);
2022-05-01 21:53:11 +00:00
}
self.drawTextMode(framebuf_base);
2022-05-01 21:53:11 +00:00
},
0x2 => {
const framebuf_base = width * @as(usize, scanline);
2022-05-01 21:53:11 +00:00
if (obj_enable) self.fetchSprites();
var layer: usize = 0;
while (layer < 4) : (layer += 1) {
self.drawSprites(@truncate(u2, layer));
2022-06-04 12:49:34 +00:00
if (layer == self.bg[2].cnt.priority.read() and bg_enable >> 2 & 1 == 1) self.drawAffineBackground(2);
if (layer == self.bg[3].cnt.priority.read() and bg_enable >> 3 & 1 == 1) self.drawAffineBackground(3);
2022-05-01 21:53:11 +00:00
}
self.drawTextMode(framebuf_base);
2022-02-13 08:04:10 +00:00
},
0x3 => {
const vram_base = width * @as(usize, scanline);
const framebuf_base = width * @as(usize, scanline);
2022-03-18 09:27:37 +00:00
// FIXME: @ptrCast between slices changing the length isn't implemented yet
const vram_buf = @ptrCast([*]const u16, @alignCast(@alignOf(u16), self.vram.buf));
const framebuf = @ptrCast([*]u32, @alignCast(@alignOf(u32), self.framebuf.get(.Emulator)));
for (vram_buf[vram_base .. vram_base + width]) |bgr555, i| {
framebuf[framebuf_base + i] = rgba888(bgr555);
2022-03-18 09:27:37 +00:00
}
},
0x4 => {
const sel = self.dispcnt.frame_select.read();
const vram_base = width * @as(usize, scanline) + if (sel) 0xA000 else @as(usize, 0);
const framebuf_base = width * @as(usize, scanline);
// FIXME: @ptrCast between slices changing the length isn't implemented yet
const pal_buf = @ptrCast([*]const u16, @alignCast(@alignOf(u16), self.palette.buf));
const framebuf = @ptrCast([*]u32, @alignCast(@alignOf(u32), self.framebuf.get(.Emulator)));
for (self.vram.buf[vram_base .. vram_base + width]) |pal_id, i| {
framebuf[framebuf_base + i] = rgba888(pal_buf[pal_id]);
}
},
0x5 => {
const m5_width = 160;
const m5_height = 128;
const sel = self.dispcnt.frame_select.read();
const vram_base = m5_width * @as(usize, scanline) + if (sel) 0xA000 else @as(usize, 0);
const framebuf_base = width * @as(usize, scanline);
// FIXME: @ptrCast between slices changing the length isn't implemented yet
const vram_buf = @ptrCast([*]const u16, @alignCast(@alignOf(u16), self.vram.buf));
const framebuf = @ptrCast([*]u32, @alignCast(@alignOf(u32), self.framebuf.get(.Emulator)));
var i: usize = 0;
while (i < width) : (i += 1) {
const bgr555 = if (scanline < m5_height and i < m5_width) vram_buf[vram_base + i] else self.palette.backdrop();
framebuf[framebuf_base + i] = rgba888(bgr555);
}
},
2022-02-13 08:04:10 +00:00
else => std.debug.panic("[PPU] TODO: Implement BG Mode {}", .{bg_mode}),
}
}
2022-02-16 05:09:06 +00:00
fn drawTextMode(self: *Self, framebuf_base: usize) void {
// Copy Drawn Scanline to Frame Buffer
// If there are any nulls present in self.scanline.top() it means that no background drew a pixel there, so draw backdrop
// FIXME: @ptrCast between slices changing the length isn't implemented yet
const framebuf = @ptrCast([*]u32, @alignCast(@alignOf(u32), self.framebuf.get(.Emulator)));
2022-11-17 16:16:35 +00:00
for (self.scanline.top()) |maybe_top, i| {
const maybe_btm = self.scanline.btm()[i];
const bgr555 = self.getBgr555(maybe_top, maybe_btm);
framebuf[framebuf_base + i] = rgba888(bgr555);
}
// Reset Current Scanline Pixel Buffer and list of fetched sprites
// in prep for next scanline
self.scanline.reset();
std.mem.set(?Sprite, self.scanline_sprites, null);
}
2022-11-17 16:16:35 +00:00
fn getBgr555(self: *Self, maybe_top: Scanline.Pixel, maybe_btm: Scanline.Pixel) u16 {
return switch (self.bld.cnt.mode.read()) {
0b00 => switch (maybe_top) {
.set, .obj_set => |top| top,
2022-11-17 16:16:35 +00:00
else => self.palette.backdrop(),
},
0b01 => switch (maybe_top) {
.set, .obj_set => |top| switch (maybe_btm) {
.set, .obj_set => |btm| alphaBlend(top, btm, self.bld.alpha), // ALPHA_BLEND
2022-11-17 16:16:35 +00:00
else => top,
},
else => switch (maybe_btm) {
.set, .obj_set => |btm| btm,
2022-11-17 16:16:35 +00:00
else => self.palette.backdrop(),
},
},
0b10 => switch (maybe_btm) {
.set, .obj_set => |btm| blk: {
// If there's a top pixel + this btm pixel came from a sprite
// don't display top pixel + don't blend btm pixel
if (maybe_btm == .obj_set and maybe_top.isSet()) break :blk btm;
2022-11-17 16:16:35 +00:00
// BLD_WHITE
const evy: u16 = self.bld.y.evy.read();
const r = btm & 0x1F;
const g = (btm >> 5) & 0x1F;
const b = (btm >> 10) & 0x1F;
const bld_r = r + (((31 - r) * evy) >> 4);
const bld_g = g + (((31 - g) * evy) >> 4);
const bld_b = b + (((31 - b) * evy) >> 4);
break :blk (bld_b << 10) | (bld_g << 5) | bld_r;
},
2022-11-17 16:16:35 +00:00
else => switch (maybe_top) {
.set, .obj_set => |top| top,
2022-11-17 16:16:35 +00:00
else => self.palette.backdrop(),
},
},
0b11 => switch (maybe_btm) {
.set, .obj_set => |btm| blk: {
// If there's a top pixel + this btm pixel came from a sprite
// don't display top pixel + don't blend btm pixel
if (maybe_btm == .obj_set and maybe_top.isSet()) break :blk btm;
2022-11-17 16:16:35 +00:00
// BLD_BLACK
const evy: u16 = self.bld.y.evy.read();
2022-11-17 16:16:35 +00:00
const r = btm & 0x1F;
const g = (btm >> 5) & 0x1F;
const b = (btm >> 10) & 0x1F;
2022-11-17 16:16:35 +00:00
const bld_r = r - ((r * evy) >> 4);
const bld_g = g - ((g * evy) >> 4);
const bld_b = b - ((b * evy) >> 4);
break :blk (bld_b << 10) | (bld_g << 5) | bld_r;
},
2022-11-17 16:16:35 +00:00
else => switch (maybe_top) {
.set, .obj_set => |top| top,
2022-11-17 16:16:35 +00:00
else => self.palette.backdrop(),
},
},
};
}
2022-11-17 16:16:35 +00:00
fn drawBackgroundPixel(self: *Self, comptime layer: u2, i: usize, bgr555: u16) void {
// When writing to the scanline buffer, we want to be aware of a top and bottom layer. Some preconditions were
// already determined by shouldDrawBackground, so we should be aware of what we can assume to be true or false
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
switch (self.bld.cnt.mode.read()) {
0b00 => {}, // pass through
0b01 => {
// We are to alpha blend here so we should pay attention to which layer ths pixel should be written to
// FIXME: We redo work here that we've already figured out. Is this worth refactorning?
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
// If the current layer is makred as Layer A, write to top buffer
const top_layer = self.bld.cnt.layer_a.read();
const is_top_layer = (top_layer >> layer) & 1 == 1;
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
if (is_top_layer) {
self.scanline.top()[i] = Scanline.Pixel.from(.Background, bgr555);
2022-11-17 16:16:35 +00:00
return;
}
// If the current layer is marked as Layer B, we want to continue if there's an available space on that buffer
const btm_layer = self.bld.cnt.layer_b.read();
const is_btm_layer = (btm_layer >> layer) & 1 == 1;
if (is_btm_layer) {
self.scanline.btm()[i] = Scanline.Pixel.from(.Background, bgr555);
2022-11-17 16:16:35 +00:00
return;
}
// The code we're about to fall-through to assumes that alpha blending takes place. In order to withold all invariants
// we need to discard anything that might be in the bottom buffer.
self.scanline.btm()[i] = .hidden;
},
0b10, 0b11 => {
// BLD_WHITE, BLD_BLACK
// Weare to blend with White or black here. By convention we store regular ol' pixels in the top layer, which means that if we want to
// treat some pixels (in this case the ones relegated to blending) we need to keep them separate as we can't apply the blending to the top layer.
// While in these modes, (and since this is a scanline renderer), the bottom layer will be completely unused. While it's a bit unintuitive, since we'll
// be moving layer A pixels there, we will repurpose the bottom layer as the "to blend", layer
// If the current layer is makred as Layer A, write to top buffer
const top_layer = self.bld.cnt.layer_a.read();
const is_top_layer = (top_layer >> layer) & 1 == 1;
if (is_top_layer) {
self.scanline.btm()[i] = Scanline.Pixel.from(.Background, bgr555); // this is intentional
2022-11-17 16:16:35 +00:00
return;
}
},
2022-07-19 23:43:21 +00:00
}
2022-11-17 16:16:35 +00:00
// If we aren't blending here at all, just add the pixel to the top layer
self.scanline.top()[i] = Scanline.Pixel.from(.Background, bgr555);
2022-07-19 23:43:21 +00:00
}
const WindowBounds = enum { win0, win1, out };
fn windowBounds(self: *Self, x: u9, y: u8) ?WindowBounds {
_ = y;
_ = x;
_ = self;
// FIXME: Remove to enable PPU Window Emulation
return null;
2022-07-19 23:43:21 +00:00
// const win0 = self.dispcnt.win_enable.read() & 1 == 1;
// const win1 = (self.dispcnt.win_enable.read() >> 1) & 1 == 1;
// const winObj = self.dispcnt.obj_win_enable.read();
2022-07-19 23:43:21 +00:00
// if (!(win0 or win1 or winObj)) return null;
2022-07-19 23:43:21 +00:00
// if (win0 and self.win.inRange(0, x, y)) return .win0;
// if (win1 and self.win.inRange(1, x, y)) return .win1;
// return .out;
2022-07-19 23:43:21 +00:00
}
2022-11-17 16:16:35 +00:00
fn shouldDrawBackground(self: *Self, comptime layer: u2, bounds: ?WindowBounds, i: usize) bool {
switch (self.bld.cnt.mode.read()) {
0b00 => if (self.scanline.top()[i].isSet()) return false, // pass through
2022-11-17 16:16:35 +00:00
0b01 => blk: {
// BLD_ALPHA
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
// If the current layer is marked as Layer B, we want to continue if there's an available space on that buffer
const btm_layer = self.bld.cnt.layer_b.read();
const is_btm_layer = (btm_layer >> layer) & 1 == 1;
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
if (is_btm_layer) {
if (self.scanline.btm()[i].isSet()) return false;
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
// In some previous iteration we have determined that an opaque pixel was drawn at this position
// therefore there's no reason to draw anything here
if (self.scanline.btm()[i] == .hidden) return false;
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
// We have a pixel and we know it to be a part of hte bottom layer.
// when getBgr555 sees that thre's a pixel in the top and bottom layer it chooses to blend the two
// Meaning that if we want to prevent Alpha Blending from happening (like for example if a window is preventing it)
// we need to make that happen now.
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
// We can do this by not drawing the bottom pixel, since with alpha blending disabled it wouldn't be visible anyways
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
// if (bounds) |win| {
// switch (win) {
// .win0 => if (!self.win.in.w0_bld.read()) return false,
// .win1 => if (!self.win.in.w1_bld.read()) return false,
// .out => if (!self.win.out.out_bld.read()) return false,
// }
// }
2022-07-19 23:43:21 +00:00
2022-11-17 16:16:35 +00:00
break :blk;
}
if (self.scanline.top()[i].isSet()) return false;
2022-11-17 16:16:35 +00:00
},
0b10, 0b11 => {
// BLD_WHITE and BLD_BLACK
// we want to treat the bottom layer the same as the top (despite it being repurposed)
// so we should apply the same logic to the bottom layer
if (self.scanline.top()[i].isSet()) return false;
// If the bottom pixel comes rom a sprite, draw the pixel anyways
2022-11-17 16:16:35 +00:00
if (self.scanline.btm()[i] == .set) return false;
},
2022-07-19 23:43:21 +00:00
}
2022-11-17 16:16:35 +00:00
// At this point we will have exited early if we determined that we'd be overwriting a pixel
// with a higher priority. We can now move own to determining whether the pixel is visible or not
// The first thing that may or may not affect visibility is windowing. We should check to see if ths pixel is in bounds
// of of the background Window if it is enabled
// TODO: Do Window Bounds checking here instead of outside this function?
if (bounds) |window| {
// If this parameter is non-null, we know that:
// 1. Win0, Win1 or WinObj are enabled
// 2. This specific pixel exists within the range of a window
// Here, we check to see if the Window for this background is enabled. If not, we won't render the pixel
// FIXME: We perform needless computations on Window Bounds by checking for enable here after we've already computed this information
switch (window) {
.win0 => if ((self.win.in.w0_bg.read() >> layer) & 1 == 0) return false,
.win1 => if ((self.win.in.w1_bg.read() >> layer) & 1 == 0) return false,
.out => if ((self.win.out.out_bg.read() >> layer) & 1 == 0) return false,
}
}
// Otherwise, return true
2022-07-19 23:43:21 +00:00
return true;
}
// TODO: Comment this + get a better understanding
2022-02-16 06:49:36 +00:00
fn tilemapOffset(size: u2, x: u32, y: u32) u32 {
// Current Row: (y % PIXEL_COUNT) / 8
// Current COlumn: (x % PIXEL_COUNT) / 8
// Length of 1 row of Screen Entries: 0x40
// Length of 1 Screen Entry: 0x2 is the size of a screen entry
@setRuntimeSafety(false);
2022-02-16 05:09:06 +00:00
return switch (size) {
0 => (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40, // 256 x 256
1 => blk: {
// 512 x 256
const offset: u32 = if (x & 0x1FF > 0xFF) 0x800 else 0;
break :blk offset + (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40;
},
2 => blk: {
// 256 x 512
const offset: u32 = if (y & 0x1FF > 0xFF) 0x800 else 0;
break :blk offset + (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40;
},
3 => blk: {
// 512 x 512
const offset: u32 = if (x & 0x1FF > 0xFF) 0x800 else 0;
const offset_2: u32 = if (y & 0x1FF > 0xFF) 0x800 else 0;
break :blk offset + offset_2 + (x % 256 / 8) * 2 + (y % 512 / 8) * 0x40;
},
2022-02-16 05:09:06 +00:00
};
}
2022-03-15 07:34:13 +00:00
pub fn onHdrawEnd(self: *Self, cpu: *Arm7tdmi, late: u64) void {
2022-03-15 07:34:13 +00:00
// Transitioning to a Hblank
if (self.dispstat.hblank_irq.read()) {
cpu.bus.io.irq.hblank.set();
cpu.handleInterrupt();
}
// See if HBlank DMA is present and not enabled
2022-06-23 08:45:52 +00:00
if (!self.dispstat.vblank.read())
dma.onBlanking(cpu.bus, .HBlank);
2022-03-15 07:34:13 +00:00
self.dispstat.hblank.set();
self.sched.push(.HBlank, 68 * 4 -| late);
2022-03-15 07:34:13 +00:00
}
pub fn onHblankEnd(self: *Self, cpu: *Arm7tdmi, late: u64) void {
2022-03-15 07:34:13 +00:00
// The End of a Hblank (During Draw or Vblank)
const old_scanline = self.vcount.scanline.read();
const scanline = (old_scanline + 1) % 228;
self.vcount.scanline.write(scanline);
self.dispstat.hblank.unset();
// Perform Vc == VcT check
const coincidence = scanline == self.dispstat.vcount_trigger.read();
self.dispstat.coincidence.write(coincidence);
if (coincidence and self.dispstat.vcount_irq.read()) {
cpu.bus.io.irq.coincidence.set();
cpu.handleInterrupt();
}
if (scanline < 160) {
// Transitioning to another Draw
self.sched.push(.Draw, 240 * 4 -| late);
2022-03-15 07:34:13 +00:00
} else {
// Transitioning to a Vblank
if (scanline == 160) {
2022-05-17 09:53:37 +00:00
self.framebuf.swap(); // Swap FrameBuffers
2022-03-15 07:34:13 +00:00
self.dispstat.vblank.set();
if (self.dispstat.vblank_irq.read()) {
cpu.bus.io.irq.vblank.set();
cpu.handleInterrupt();
}
self.aff_bg[0].latchRefPoints();
self.aff_bg[1].latchRefPoints();
2022-03-15 07:34:13 +00:00
// See if Vblank DMA is present and not enabled
dma.onBlanking(cpu.bus, .VBlank);
2022-03-15 07:34:13 +00:00
}
if (scanline == 227) self.dispstat.vblank.unset();
self.sched.push(.VBlank, 240 * 4 -| late);
2022-03-15 07:34:13 +00:00
}
}
2022-01-04 01:47:26 +00:00
};
const Blend = struct {
const Self = @This();
cnt: io.BldCnt,
alpha: io.BldAlpha,
y: io.BldY,
pub fn create() Self {
return .{
.cnt = .{ .raw = 0x000 },
.alpha = .{ .raw = 0x000 },
.y = .{ .raw = 0x000 },
};
}
pub fn getCnt(self: *const Self) u16 {
return self.cnt.raw & 0x3FFF;
}
pub fn getAlpha(self: *const Self) u16 {
return self.alpha.raw & 0x1F1F;
}
};
const Window = struct {
const Self = @This();
h: [2]io.WinH,
v: [2]io.WinV,
out: io.WinOut,
in: io.WinIn,
fn init() Self {
return .{
.h = [_]io.WinH{.{ .raw = 0 }} ** 2,
.v = [_]io.WinV{.{ .raw = 0 }} ** 2,
.out = .{ .raw = 0 },
.in = .{ .raw = 0 },
};
}
pub fn getIn(self: *const Self) u16 {
return self.in.raw & 0x3F3F;
}
pub fn getOut(self: *const Self) u16 {
return self.out.raw & 0x3F3F;
}
2022-07-19 23:43:21 +00:00
fn inRange(self: *const Self, comptime id: u1, x: u9, y: u8) bool {
const winh = self.h[id];
const winv = self.v[id];
2022-07-19 23:43:21 +00:00
if (isYInRange(winv, y)) {
const x1 = winh.x1.read();
const x2 = winh.x2.read();
2022-07-19 23:43:21 +00:00
// Within X Bounds
return if (x1 < x2) blk: {
break :blk x >= x1 and x < x2;
} else blk: {
break :blk x >= x1 or x < x2;
};
2022-07-19 23:43:21 +00:00
}
return false;
}
inline fn isYInRange(winv: io.WinV, y: u9) bool {
const y1 = winv.y1.read();
const y2 = winv.y2.read();
if (y1 < y2) {
return y >= y1 and y < y2;
} else {
return y >= y1 or y < y2;
}
}
pub fn setH(self: *Self, value: u32) void {
self.h[0].raw = @truncate(u16, value);
self.h[1].raw = @truncate(u16, value >> 16);
}
pub fn setV(self: *Self, value: u32) void {
self.v[0].raw = @truncate(u16, value);
self.v[1].raw = @truncate(u16, value >> 16);
}
pub fn setIo(self: *Self, value: u32) void {
self.in.raw = @truncate(u16, value);
self.out.raw = @truncate(u16, value >> 16);
}
};
const Background = struct {
const Self = @This();
/// Read / Write
cnt: io.BackgroundControl,
/// Write Only
hofs: io.BackgroundOffset,
/// Write Only
vofs: io.BackgroundOffset,
fn init() Self {
return .{
.cnt = .{ .raw = 0x0000 },
.hofs = .{ .raw = 0x0000 },
.vofs = .{ .raw = 0x0000 },
};
}
/// For whatever reason, some higher bits of BG0CNT
/// are masked out
pub inline fn bg0Cnt(self: *const Self) u16 {
return self.cnt.raw & 0xDFFF;
}
/// BG1CNT inherits the same mask as BG0CNTs
pub inline fn bg1Cnt(self: *const Self) u16 {
return self.bg0Cnt();
}
};
2022-02-16 05:09:06 +00:00
2022-05-18 18:50:40 +00:00
const AffineBackground = struct {
const Self = @This();
x: i32,
y: i32,
2022-05-18 18:50:40 +00:00
pa: i16,
pb: i16,
pc: i16,
pd: i16,
x_latch: ?i32,
y_latch: ?i32,
2022-05-18 18:50:40 +00:00
fn init() Self {
return .{
.x = 0,
.y = 0,
.pa = 0,
.pb = 0,
.pc = 0,
.pd = 0,
.x_latch = null,
.y_latch = null,
2022-05-18 18:50:40 +00:00
};
}
pub fn setX(self: *Self, is_vblank: bool, value: u32) void {
self.x = @bitCast(i32, value);
if (!is_vblank) self.x_latch = @bitCast(i32, value);
}
pub fn setY(self: *Self, is_vblank: bool, value: u32) void {
self.y = @bitCast(i32, value);
if (!is_vblank) self.y_latch = @bitCast(i32, value);
}
2022-05-18 18:50:40 +00:00
pub fn writePaPb(self: *Self, value: u32) void {
self.pa = @bitCast(i16, @truncate(u16, value));
self.pb = @bitCast(i16, @truncate(u16, value >> 16));
2022-05-18 18:50:40 +00:00
}
pub fn writePcPd(self: *Self, value: u32) void {
self.pc = @bitCast(i16, @truncate(u16, value));
self.pd = @bitCast(i16, @truncate(u16, value >> 16));
}
// Every Vblank BG?X/Y registers are latched
fn latchRefPoints(self: *Self) void {
self.x_latch = self.x;
self.y_latch = self.y;
2022-05-18 18:50:40 +00:00
}
};
2022-02-16 05:09:06 +00:00
const ScreenEntry = extern union {
tile_id: Bitfield(u16, 0, 10),
h_flip: Bit(u16, 10),
v_flip: Bit(u16, 11),
pal_bank: Bitfield(u16, 12, 4),
2022-02-16 05:09:06 +00:00
raw: u16,
};
2022-03-10 22:48:44 +00:00
const Sprite = struct {
const Self = @This();
attr0: Attr0,
attr1: Attr1,
attr2: Attr2,
width: u8,
height: u8,
2022-03-10 22:48:44 +00:00
fn init(attr0: Attr0, attr1: Attr1, attr2: Attr2) Self {
const d = spriteDimensions(attr0.shape.read(), attr1.size.read());
return .{
.attr0 = attr0,
.attr1 = attr1,
.attr2 = attr2,
.width = d[0],
.height = d[1],
};
}
2022-04-21 13:15:52 +00:00
fn x(self: *const Self) u9 {
2022-03-10 22:48:44 +00:00
return self.attr1.x.read();
}
2022-04-21 13:15:52 +00:00
fn y(self: *const Self) u8 {
2022-03-10 22:48:44 +00:00
return self.attr0.y.read();
}
fn is8bpp(self: *const Self) bool {
2022-03-10 22:48:44 +00:00
return self.attr0.is_8bpp.read();
}
fn tileId(self: *const Self) u10 {
2022-03-10 22:48:44 +00:00
return self.attr2.tile_id.read();
}
fn palBank(self: *const Self) u4 {
2022-03-10 22:48:44 +00:00
return self.attr2.pal_bank.read();
}
fn hFlip(self: *const Self) bool {
2022-03-10 22:48:44 +00:00
return self.attr1.h_flip.read();
}
fn vFlip(self: *const Self) bool {
2022-03-10 22:48:44 +00:00
return self.attr1.v_flip.read();
}
2022-04-21 13:15:52 +00:00
fn priority(self: *const Self) u2 {
2022-03-10 22:48:44 +00:00
return self.attr2.rel_prio.read();
}
};
2022-05-01 22:15:56 +00:00
const AffineSprite = struct {
const Self = @This();
attr0: AffineAttr0,
attr1: AffineAttr1,
attr2: Attr2,
width: u8,
height: u8,
fn from(sprite: Sprite) AffineSprite {
2022-05-01 22:15:56 +00:00
return .{
.attr0 = .{ .raw = sprite.attr0.raw },
.attr1 = .{ .raw = sprite.attr1.raw },
.attr2 = sprite.attr2,
.width = sprite.width,
.height = sprite.height,
2022-05-01 22:15:56 +00:00
};
}
fn x(self: *const Self) u9 {
return self.attr1.x.read();
}
fn y(self: *const Self) u8 {
return self.attr0.y.read();
}
fn is8bpp(self: *const Self) bool {
return self.attr0.is_8bpp.read();
}
fn tileId(self: *const Self) u10 {
return self.attr2.tile_id.read();
}
fn palBank(self: *const Self) u4 {
return self.attr2.pal_bank.read();
}
fn matrixId(self: *const Self) u5 {
return self.attr1.aff_sel.read();
}
2022-05-01 22:15:56 +00:00
};
const Attr0 = extern union {
y: Bitfield(u16, 0, 8),
2022-05-01 22:15:56 +00:00
is_affine: Bit(u16, 8), // This SBZ
disabled: Bit(u16, 9),
mode: Bitfield(u16, 10, 2),
mosaic: Bit(u16, 12),
is_8bpp: Bit(u16, 13),
2022-03-10 22:48:44 +00:00
shape: Bitfield(u16, 14, 2),
raw: u16,
};
2022-05-01 22:15:56 +00:00
const AffineAttr0 = extern union {
y: Bitfield(u16, 0, 8),
rot_scaling: Bit(u16, 8), // This SB1
double_size: Bit(u16, 9),
mode: Bitfield(u16, 10, 2),
mosaic: Bit(u16, 12),
is_8bpp: Bit(u16, 13),
shape: Bitfield(u16, 14, 2),
raw: u16,
};
const Attr1 = extern union {
x: Bitfield(u16, 0, 9),
h_flip: Bit(u16, 12),
v_flip: Bit(u16, 13),
size: Bitfield(u16, 14, 2),
raw: u16,
};
2022-05-01 22:15:56 +00:00
const AffineAttr1 = extern union {
x: Bitfield(u16, 0, 9),
aff_sel: Bitfield(u16, 9, 5),
size: Bitfield(u16, 14, 2),
raw: u16,
};
const Attr2 = extern union {
tile_id: Bitfield(u16, 0, 10),
rel_prio: Bitfield(u16, 10, 2),
2022-03-10 22:48:44 +00:00
pal_bank: Bitfield(u16, 12, 4),
raw: u16,
};
2022-03-10 22:48:44 +00:00
fn spriteDimensions(shape: u2, size: u2) [2]u8 {
2022-03-10 22:48:44 +00:00
@setRuntimeSafety(false);
return switch (shape) {
0b00 => switch (size) {
// Square
0b00 => [_]u8{ 8, 8 },
0b01 => [_]u8{ 16, 16 },
0b10 => [_]u8{ 32, 32 },
0b11 => [_]u8{ 64, 64 },
2022-03-10 22:48:44 +00:00
},
0b01 => switch (size) {
0b00 => [_]u8{ 16, 8 },
0b01 => [_]u8{ 32, 8 },
0b10 => [_]u8{ 32, 16 },
0b11 => [_]u8{ 64, 32 },
2022-03-10 22:48:44 +00:00
},
0b10 => switch (size) {
0b00 => [_]u8{ 8, 16 },
0b01 => [_]u8{ 8, 32 },
0b10 => [_]u8{ 16, 32 },
0b11 => [_]u8{ 32, 64 },
2022-03-10 22:48:44 +00:00
},
else => std.debug.panic("{} is an invalid sprite shape", .{shape}),
};
}
2022-03-18 09:27:37 +00:00
inline fn rgba888(bgr555: u16) u32 {
2022-03-18 09:27:37 +00:00
const b = @as(u32, bgr555 >> 10 & 0x1F);
const g = @as(u32, bgr555 >> 5 & 0x1F);
const r = @as(u32, bgr555 & 0x1F);
return (r << 3 | r >> 2) << 24 | (g << 3 | g >> 2) << 16 | (b << 3 | b >> 2) << 8 | 0xFF;
}
fn alphaBlend(top: u16, btm: u16, bldalpha: io.BldAlpha) u16 {
const eva: u16 = bldalpha.eva.read();
const evb: u16 = bldalpha.evb.read();
const top_r = top & 0x1F;
const top_g = (top >> 5) & 0x1F;
const top_b = (top >> 10) & 0x1F;
const btm_r = btm & 0x1F;
const btm_g = (btm >> 5) & 0x1F;
const btm_b = (btm >> 10) & 0x1F;
const bld_r = std.math.min(31, (top_r * eva + btm_r * evb) >> 4);
const bld_g = std.math.min(31, (top_g * eva + btm_g * evb) >> 4);
const bld_b = std.math.min(31, (top_b * eva + btm_b * evb) >> 4);
return (bld_b << 10) | (bld_g << 5) | bld_r;
}
2022-06-23 05:31:34 +00:00
fn shouldDrawSprite(bldcnt: io.BldCnt, scanline: *Scanline, x: u9) bool {
2022-11-17 16:16:35 +00:00
switch (bldcnt.mode.read()) {
0b00 => if (scanline.top()[x].isSet()) return false,
2022-11-17 16:16:35 +00:00
0b01 => {
// BLD_ALPHA
// We want to check if we're concerned aout the bottom layer first
2022-11-17 16:16:35 +00:00
// because if so, the top layer already having a pixel is OK
const btm_layers = bldcnt.layer_b.read();
const is_btm_layer = (btm_layers >> 4) & 1 == 1;
2022-06-23 05:31:34 +00:00
if (is_btm_layer and scanline.btm()[x].isSet()) return false;
2022-06-23 05:31:34 +00:00
if (scanline.top()[x].isSet()) return false;
2022-11-17 16:16:35 +00:00
},
0b10, 0b11 => {
if (scanline.top()[x].isSet()) return false;
if (scanline.btm()[x].isSet()) return false;
2022-11-17 16:16:35 +00:00
},
2022-06-23 05:31:34 +00:00
}
return true;
}
fn drawSpritePixel(bldcnt: io.BldCnt, scanline: *Scanline, attr0: Attr0, x: u9, bgr555: u16) void {
if (attr0.mode.read() == 1) {
// TODO: Force Alpha Blend in all moes?
scanline.top()[x] = Scanline.Pixel.from(.Sprite, bgr555);
return;
}
2022-11-17 16:16:35 +00:00
switch (bldcnt.mode.read()) {
0b00 => {}, // pass through
0b01 => {
// BLD_ALPHA
const top_layers = bldcnt.layer_a.read();
const is_top_layer = (top_layers >> 4) & 1 == 1;
2022-06-23 05:31:34 +00:00
2022-11-17 16:16:35 +00:00
if (is_top_layer) {
scanline.top()[x] = Scanline.Pixel.from(.Sprite, bgr555);
2022-11-17 16:16:35 +00:00
return;
}
const btm_layers = bldcnt.layer_b.read();
const is_btm_layer = (btm_layers >> 4) & 1 == 1;
if (is_btm_layer) {
scanline.btm()[x] = Scanline.Pixel.from(.Sprite, bgr555);
2022-11-17 16:16:35 +00:00
return;
}
// We're rendering a normal pixel that isn't alpha blended
// we can mark the pixel on the bottom layer as hidden
scanline.btm()[x] = .hidden;
},
0b10, 0b11 => {
// This is explained in drawBackgroundPixel, we're reusing the bottom layer to draw layer A pixels we will want to
// later blend with WHITE or BLACK
const top_layers = bldcnt.layer_a.read();
const is_top_layer = (top_layers >> 4) & 1 == 1;
if (is_top_layer) {
scanline.btm()[x] = Scanline.Pixel.from(.Sprite, bgr555); // This is intentional
2022-11-17 16:16:35 +00:00
return;
}
},
2022-06-23 05:31:34 +00:00
}
scanline.top()[x] = Scanline.Pixel.from(.Sprite, bgr555);
2022-06-23 05:31:34 +00:00
}
const Scanline = struct {
const Self = @This();
2022-11-17 16:16:35 +00:00
const Pixel = union(enum) {
// TODO: Rename
const Layer = enum { Background, Sprite };
2022-11-17 16:16:35 +00:00
set: u16,
obj_set: u16,
2022-11-17 16:16:35 +00:00
unset: void,
hidden: void,
fn from(comptime layer: Layer, bgr555: u16) Pixel {
return switch (layer) {
.Background => .{ .set = bgr555 },
.Sprite => .{ .obj_set = bgr555 },
};
}
pub fn isSet(self: @This()) bool {
return switch (self) {
.set, .obj_set => true,
.unset, .hidden => false,
};
2022-11-17 16:16:35 +00:00
}
};
layers: [2][]Pixel,
buf: []Pixel,
2022-08-29 05:32:41 +00:00
allocator: Allocator,
2022-08-29 05:32:41 +00:00
fn init(allocator: Allocator) !Self {
2022-11-17 16:16:35 +00:00
const buf = try allocator.alloc(Pixel, width * 2); // Top & Bottom Scanline
std.mem.set(Pixel, buf, .unset);
return .{
2022-08-29 05:32:41 +00:00
// Top & Bototm Layers
2022-11-17 16:16:35 +00:00
.layers = [_][]Pixel{ buf[0..][0..width], buf[width..][0..width] },
2022-08-29 05:32:41 +00:00
.buf = buf,
.allocator = allocator,
};
}
fn reset(self: *Self) void {
2022-11-17 16:16:35 +00:00
std.mem.set(Pixel, self.buf, .unset);
}
2022-08-29 05:32:41 +00:00
fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
2022-11-17 16:16:35 +00:00
fn top(self: *Self) []Pixel {
2022-08-29 05:32:41 +00:00
return self.layers[0];
}
2022-11-17 16:16:35 +00:00
fn btm(self: *Self) []Pixel {
2022-08-29 05:32:41 +00:00
return self.layers[1];
}
};