zba/src/ppu.zig

330 lines
11 KiB
Zig
Raw Normal View History

2022-01-04 01:47:26 +00:00
const std = @import("std");
const io = @import("bus/io.zig");
2022-01-04 01:47:26 +00:00
const EventKind = @import("scheduler.zig").EventKind;
2022-01-08 00:00:42 +00:00
const Scheduler = @import("scheduler.zig").Scheduler;
2022-02-16 05:09:06 +00:00
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
2022-01-08 00:00:42 +00:00
const Allocator = std.mem.Allocator;
2022-01-12 04:46:20 +00:00
pub const width = 240;
pub const height = 160;
pub const framebuf_pitch = width * @sizeOf(u16);
2022-01-04 01:47:26 +00:00
pub const Ppu = struct {
2022-01-10 03:34:33 +00:00
const Self = @This();
// Registers
bg: [4]Background,
dispcnt: io.DisplayControl,
dispstat: io.DisplayStatus,
vcount: io.VCount,
2022-01-04 01:47:26 +00:00
vram: Vram,
palette: Palette,
2022-02-13 06:29:26 +00:00
oam: Oam,
sched: *Scheduler,
framebuf: []u8,
2022-01-09 00:30:57 +00:00
alloc: Allocator,
2022-01-04 01:47:26 +00:00
2022-01-10 03:34:33 +00:00
pub fn init(alloc: Allocator, sched: *Scheduler) !Self {
// Queue first Hblank
2022-01-10 03:34:33 +00:00
sched.push(.Draw, sched.tick + (240 * 4));
2022-01-09 00:30:57 +00:00
const framebuf = try alloc.alloc(u8, framebuf_pitch * height);
std.mem.set(u8, framebuf, 0);
2022-01-10 03:34:33 +00:00
return Self{
2022-01-04 01:47:26 +00:00
.vram = try Vram.init(alloc),
.palette = try Palette.init(alloc),
2022-02-13 06:29:26 +00:00
.oam = try Oam.init(alloc),
.sched = sched,
.framebuf = framebuf,
2022-01-09 00:30:57 +00:00
.alloc = alloc,
// Registers
.bg = [_]Background{Background.init()} ** 4,
.dispcnt = .{ .raw = 0x0000 },
.dispstat = .{ .raw = 0x0000 },
.vcount = .{ .raw = 0x0000 },
2022-01-04 01:47:26 +00:00
};
}
2022-01-04 02:08:55 +00:00
2022-01-10 03:34:33 +00:00
pub fn deinit(self: Self) void {
self.alloc.free(self.framebuf);
2022-01-04 02:08:55 +00:00
self.vram.deinit();
self.palette.deinit();
2022-01-04 02:08:55 +00:00
}
fn drawBackround(self: *Self, comptime n: u3, scanline: u32) void {
// TODO: Consider Scrolling
// The Current Scanline which will be copied into
// the Framebuffer
const start = framebuf_pitch * @as(usize, scanline);
var scanline_buf = std.mem.zeroes([framebuf_pitch]u8);
// A Tile in a charblock is a byte, while a Screen Entry is a halfword
const charblock_len: u32 = 0x4000;
const screenblock_len: u32 = 0x800;
const cbb: u2 = self.bg[n].cnt.char_base.read(); // Char Block Base
const sbb: u5 = self.bg[n].cnt.screen_base.read(); // Screen Block Base
const is_8bpp: bool = self.bg[n].cnt.colour_mode.read(); // Colour Mode
const size: u2 = self.bg[n].cnt.size.read(); // Background Size
// In 4bpp: 1 byte represents two pixels so the length is (8 x 8) / 2
// In 8bpp: 1 byte represents one pixel so the length is 8 x 8
const tile_len = if (is_8bpp) @as(u32, 0x40) else 0x20;
const tile_row_offset = if (is_8bpp) @as(u32, 0x8) else 0x4;
// 0x0600_000 is implied because we can access VRAM without the Bus
const char_base: u32 = charblock_len * @as(u32, cbb);
const screen_base: u32 = screenblock_len * @as(u32, sbb);
const y = scanline;
var x: u32 = 0;
while (x < width) : (x += 1) {
// Grab the Screen Entry from VRAM
const entry_addr = screen_base + tilemapOffset(size, x, y);
const entry = @bitCast(ScreenEntry, @as(u16, self.vram.buf[entry_addr + 1]) << 8 | @as(u16, self.vram.buf[entry_addr]));
// Calculate the Address of the Tile in the designated Charblock
// We also take this opportunity to flip tiles if necessary
const tile_id: u32 = entry.tile_id.read();
const row = if (entry.h_flip.read()) 7 - (y % 8) else y % 8; // Determine on which row in a tile we're on
const tile_addr = char_base + (tile_len * tile_id) + (tile_row_offset * row);
// Calculate on which column in a tile we're on
// Similarly to when we calculated the row, if we're in 4bpp we want to account
// for 1 byte consisting of two pixels
const col = if (entry.v_flip.read()) 7 - (x % 8) else x % 8;
var tile = self.vram.buf[tile_addr + if (is_8bpp) col else col / 2];
// If we're in 8bpp, then the tile value is an index into the palette,
// If we're in 4bpp, we have to account for a pal bank value in the Screen entry
// and then we can index the palette
const colour = if (!is_8bpp) blk: {
tile = if (col & 1 == 1) tile >> 4 else tile & 0xF;
const pal_bank: u8 = @as(u8, entry.palette_bank.read()) << 4;
break :blk pal_bank | tile;
} else tile;
std.mem.copy(u8, scanline_buf[x * 2 ..][0..2], self.palette.buf[colour * 2 ..][0..2]);
}
std.mem.copy(u8, self.framebuf[start..][0..framebuf_pitch], &scanline_buf);
}
pub fn drawScanline(self: *Self) void {
const bg_mode = self.dispcnt.bg_mode.read();
const bg_enable = self.dispcnt.bg_enable.read();
const scanline = self.vcount.scanline.read();
switch (bg_mode) {
2022-02-13 08:04:10 +00:00
0x0 => {
var i: usize = 0;
while (i < 4) : (i += 1) {
if (i == self.bg[0].cnt.priority.read() and bg_enable & 1 == 1) self.drawBackround(0, scanline);
if (i == self.bg[1].cnt.priority.read() and bg_enable >> 1 & 1 == 1) self.drawBackround(1, scanline);
if (i == self.bg[2].cnt.priority.read() and bg_enable >> 2 & 1 == 1) self.drawBackround(2, scanline);
if (i == self.bg[3].cnt.priority.read() and bg_enable >> 3 & 1 == 1) self.drawBackround(3, scanline);
2022-02-16 05:09:06 +00:00
}
2022-02-13 08:04:10 +00:00
},
0x3 => {
const start = framebuf_pitch * @as(usize, scanline);
2022-02-13 08:39:18 +00:00
std.mem.copy(u8, self.framebuf[start..][0..framebuf_pitch], self.vram.buf[start..][0..framebuf_pitch]);
},
0x4 => {
const select = self.dispcnt.frame_select.read();
const vram_start = width * @as(usize, scanline);
const buf_start = vram_start * @sizeOf(u16);
const start = vram_start + if (select) 0xA000 else @as(usize, 0);
const end = start + width; // Each Entry is only a byte long
// Render Current Scanline
for (self.vram.buf[start..end]) |byte, i| {
const id = byte * 2;
const j = i * @sizeOf(u16);
2022-02-13 08:39:18 +00:00
std.mem.copy(u8, self.framebuf[(buf_start + j)..][0..2], self.palette.buf[id..][0..2]);
}
},
2022-02-13 08:04:10 +00:00
else => std.debug.panic("[PPU] TODO: Implement BG Mode {}", .{bg_mode}),
}
}
2022-02-16 05:09:06 +00:00
2022-02-16 06:49:36 +00:00
fn tilemapOffset(size: u2, x: u32, y: u32) u32 {
// Current Row: (y % PIXEL_COUNT) / 8
// Current COlumn: (x % PIXEL_COUNT) / 8
// Length of 1 row of Screen Entries: 0x40
// Length of 1 Screen Entry: 0x2 is the size of a screen entry
2022-02-16 05:09:06 +00:00
return switch (size) {
2022-02-16 06:49:36 +00:00
0 => (y % 256 / 8) * 0x40 + (x % 256 / 8) * 2, // 256 x 256
1 => (y % 512 / 8) * 0x40 + (x % 256 / 8) * 2, // 512 x 256
2 => (y % 256 / 8) * 0x40 + (x % 512 / 8) * 2, // 256 x 512
3 => (y % 512 / 8) * 0x40 + (x % 512 / 8) * 2, // 512 x 512
2022-02-16 05:09:06 +00:00
};
}
2022-01-04 01:47:26 +00:00
};
const Palette = struct {
2022-01-10 03:34:33 +00:00
const Self = @This();
buf: []u8,
alloc: Allocator,
2022-01-10 03:34:33 +00:00
fn init(alloc: Allocator) !Self {
const buf = try alloc.alloc(u8, 0x400);
std.mem.set(u8, buf, 0);
2022-01-10 03:34:33 +00:00
return Self{
.buf = buf,
.alloc = alloc,
};
}
2022-01-10 03:34:33 +00:00
fn deinit(self: Self) void {
self.alloc.free(self.buf);
}
2022-01-10 05:24:14 +00:00
pub fn get32(self: *const Self, idx: usize) u32 {
return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx));
}
2022-01-10 05:24:14 +00:00
pub fn set32(self: *Self, idx: usize, word: u32) void {
self.set16(idx + 2, @truncate(u16, word >> 16));
self.set16(idx, @truncate(u16, word));
}
2022-01-10 05:24:14 +00:00
pub fn get16(self: *const Self, idx: usize) u16 {
return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]);
}
2022-01-10 05:24:14 +00:00
pub fn set16(self: *Self, idx: usize, halfword: u16) void {
self.buf[idx + 1] = @truncate(u8, halfword >> 8);
self.buf[idx] = @truncate(u8, halfword);
}
2022-01-10 05:24:14 +00:00
pub fn get8(self: *const Self, idx: usize) u8 {
return self.buf[idx];
}
};
2022-01-04 01:47:26 +00:00
const Vram = struct {
2022-01-10 03:34:33 +00:00
const Self = @This();
2022-01-04 01:47:26 +00:00
buf: []u8,
2022-01-04 02:08:55 +00:00
alloc: Allocator,
2022-01-04 01:47:26 +00:00
2022-01-10 03:34:33 +00:00
fn init(alloc: Allocator) !Self {
2022-01-30 06:39:16 +00:00
const buf = try alloc.alloc(u8, 0x18000);
std.mem.set(u8, buf, 0);
2022-01-30 06:39:16 +00:00
2022-01-10 03:34:33 +00:00
return Self{
2022-01-30 06:39:16 +00:00
.buf = buf,
2022-01-04 02:08:55 +00:00
.alloc = alloc,
2022-01-04 01:47:26 +00:00
};
}
2022-01-10 03:34:33 +00:00
fn deinit(self: Self) void {
2022-01-04 02:08:55 +00:00
self.alloc.free(self.buf);
}
2022-01-10 05:24:14 +00:00
pub fn get32(self: *const Self, idx: usize) u32 {
return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx));
2022-01-04 01:47:26 +00:00
}
2022-01-10 05:24:14 +00:00
pub fn set32(self: *Self, idx: usize, word: u32) void {
self.set16(idx + 2, @truncate(u16, word >> 16));
self.set16(idx, @truncate(u16, word));
2022-01-04 01:47:26 +00:00
}
2022-01-10 05:24:14 +00:00
pub fn get16(self: *const Self, idx: usize) u16 {
2022-01-04 01:47:26 +00:00
return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]);
}
2022-01-10 05:24:14 +00:00
pub fn set16(self: *Self, idx: usize, halfword: u16) void {
2022-01-04 01:47:26 +00:00
self.buf[idx + 1] = @truncate(u8, halfword >> 8);
self.buf[idx] = @truncate(u8, halfword);
}
2022-01-10 05:24:14 +00:00
pub fn get8(self: *const Self, idx: usize) u8 {
2022-01-04 01:47:26 +00:00
return self.buf[idx];
}
};
2022-02-13 06:29:26 +00:00
const Oam = struct {
const Self = @This();
buf: []u8,
alloc: Allocator,
fn init(alloc: Allocator) !Self {
const buf = try alloc.alloc(u8, 0x400);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.alloc = alloc,
};
}
pub fn get32(self: *const Self, idx: usize) u32 {
return (@as(u32, self.buf[idx + 3]) << 24) | (@as(u32, self.buf[idx + 2]) << 16) | (@as(u32, self.buf[idx + 1]) << 8) | (@as(u32, self.buf[idx]));
}
pub fn set32(self: *Self, idx: usize, word: u32) void {
self.buf[idx + 3] = @truncate(u8, word >> 24);
self.buf[idx + 2] = @truncate(u8, word >> 16);
self.buf[idx + 1] = @truncate(u8, word >> 8);
self.buf[idx] = @truncate(u8, word);
}
pub fn get16(self: *const Self, idx: usize) u16 {
return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]);
}
pub fn set16(self: *Self, idx: usize, halfword: u16) void {
self.buf[idx + 1] = @truncate(u8, halfword >> 8);
self.buf[idx] = @truncate(u8, halfword);
}
pub fn get8(self: *const Self, idx: usize) u8 {
return self.buf[idx];
}
};
const Background = struct {
const Self = @This();
/// Read / Write
cnt: io.BackgroundControl,
/// Write Only
hofs: io.BackgroundOffset,
/// Write Only
vofs: io.BackgroundOffset,
fn init() Self {
return .{
.cnt = .{ .raw = 0x0000 },
.hofs = .{ .raw = 0x0000 },
.vofs = .{ .raw = 0x0000 },
};
}
};
2022-02-16 05:09:06 +00:00
const ScreenEntry = extern union {
tile_id: Bitfield(u16, 0, 10),
h_flip: Bit(u16, 10),
v_flip: Bit(u16, 11),
palette_bank: Bitfield(u16, 12, 4),
raw: u16,
};