14 Commits

Author SHA1 Message Date
23f5d676d4 chore: reimplement alpha blending 2022-12-04 18:35:20 -04:00
4ccacb0754 chore(ppu): use @ptrCast in drawTextMode 2022-12-04 18:35:20 -04:00
e67dc9b7de chore(ppu): reimplement modes 3, 4, and 5 2022-12-04 18:35:20 -04:00
f9ca005faf style(ppu): move text mode drawing to unique fn 2022-12-04 18:35:20 -04:00
11b905dc82 fix(window): proper inRange impl for window
window wrap now works (it's pretty slow though?)
2022-12-04 18:35:20 -04:00
5d3435757c chore: improve readability of sprite drawing code a bit 2022-12-04 18:35:20 -04:00
d705137f24 style: remove unused imports 2022-12-04 18:35:20 -04:00
2c6fe879ad chore: dont allocate not-small ?Sprite array on stack
use memset like most other allocations in this emu
2022-12-04 18:35:20 -04:00
24905e8096 chore: move FrameBuffer struct to util.zig 2022-12-04 18:35:19 -04:00
cab7816ce5 chore: move OAM, PALRAM and VRAM structs to separate files 2022-12-04 18:33:28 -04:00
6b6614cfa7 fix: 8-bit writes to WIN PPU registers
Advance Wars depends on these registers similar to Mario Kart's 8-bit
writes to Affine Background registers:
2022-12-04 18:33:28 -04:00
106a3f8b4d chore: refactor window 2022-12-04 18:33:28 -04:00
918df2743e chore: crude background window impl (no affine) 2022-12-04 18:33:28 -04:00
78c5160897 chore: rename function (misspelt until now somehow) 2022-12-04 18:33:28 -04:00
13 changed files with 634 additions and 560 deletions

View File

@@ -107,7 +107,7 @@ pub fn deinit(self: *Self) void {
}
fn fillReadTable(bus: *Self, table: *[table_len]?*const anyopaque) void {
const vramMirror = @import("ppu.zig").Vram.mirror;
const vramMirror = @import("ppu/Vram.zig").mirror;
for (table) |*ptr, i| {
const addr = page_size * i;
@@ -134,7 +134,7 @@ fn fillReadTable(bus: *Self, table: *[table_len]?*const anyopaque) void {
fn fillWriteTable(comptime T: type, bus: *Self, table: *[table_len]?*const anyopaque) void {
comptime std.debug.assert(T == u32 or T == u16 or T == u8);
const vramMirror = @import("ppu.zig").Vram.mirror;
const vramMirror = @import("ppu/Vram.zig").mirror;
for (table) |*ptr, i| {
const addr = page_size * i;

View File

@@ -15,10 +15,12 @@ const SoundFifo = std.fifo.LinearFifo(u8, .{ .Static = 0x20 });
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const intToBytes = util.intToBytes;
const RingBuffer = util.RingBuffer;
const log = std.log.scoped(.APU);
pub const host_rate = @import("../platform.zig").sample_rate;
pub const host_format = @import("../platform.zig").sample_format;
pub fn read(comptime T: type, apu: *const Apu, addr: u32) ?T {
const byte_addr = @truncate(u8, addr);
@@ -244,20 +246,17 @@ pub const Apu = struct {
sampling_cycle: u2,
sample_queue: RingBuffer(u16),
stream: *SDL.SDL_AudioStream,
sched: *Scheduler,
fs: FrameSequencer,
capacitor: f32,
is_buffer_full: bool,
pub const Tick = enum { Length, Envelope, Sweep };
pub fn init(sched: *Scheduler) Self {
const NUM_CHANNELS: usize = 2;
const allocator = std.heap.c_allocator;
const sample_buf = allocator.alloc(u16, 0x800 * NUM_CHANNELS) catch @panic("failed to allocate sample buffer");
const apu: Self = .{
.ch1 = ToneSweep.init(sched),
.ch2 = Tone.init(sched),
@@ -272,11 +271,12 @@ pub const Apu = struct {
.bias = .{ .raw = 0x0200 },
.sampling_cycle = 0b00,
.sample_queue = RingBuffer(u16).init(sample_buf),
.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, 1 << 15, host_format, 2, host_rate).?,
.sched = sched,
.capacitor = 0,
.fs = FrameSequencer.init(),
.is_buffer_full = false,
};
sched.push(.SampleAudio, apu.interval());
@@ -370,6 +370,11 @@ pub const Apu = struct {
pub fn sampleAudio(self: *Self, late: u64) void {
self.sched.push(.SampleAudio, self.interval() -| late);
// Whether the APU is busy or not is determined by the main loop in emu.zig
// This should only ever be true (because this side of the emu is single threaded)
// When audio sync is disaabled
if (self.is_buffer_full) return;
var left: i16 = 0;
var right: i16 = 0;
@@ -425,7 +430,23 @@ pub const Apu = struct {
const ext_left = (clamped_left << 5) | (clamped_left >> 6);
const ext_right = (clamped_right << 5) | (clamped_right >> 6);
self.sample_queue.push(ext_left, ext_right) catch {};
if (self.sampling_cycle != self.bias.sampling_cycle.read()) self.replaceSDLResampler();
_ = SDL.SDL_AudioStreamPut(self.stream, &[2]u16{ ext_left, ext_right }, 2 * @sizeOf(u16));
}
fn replaceSDLResampler(self: *Self) void {
@setCold(true);
const sample_rate = Self.sampleRate(self.bias.sampling_cycle.read());
log.info("Sample Rate changed from {}Hz to {}Hz", .{ Self.sampleRate(self.sampling_cycle), sample_rate });
// Sampling Cycle (Sample Rate) changed, Craete a new SDL Audio Resampler
// FIXME: Replace SDL's Audio Resampler with either a custom or more reliable one
const old_stream = self.stream;
defer SDL.SDL_FreeAudioStream(old_stream);
self.sampling_cycle = self.bias.sampling_cycle.read();
self.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, @intCast(c_int, sample_rate), host_format, 2, host_rate).?;
}
fn interval(self: *const Self) u64 {

View File

@@ -94,9 +94,10 @@ pub fn sound1CntL(self: *const Self) u8 {
pub fn setSound1CntL(self: *Self, value: u8) void {
const new = io.Sweep{ .raw = value };
if (!new.direction.read()) {
// If at least one (1) sweep calculation has been made with
// the negate bit set (since last trigger), disable the channel
if (self.sweep.direction.read() and !new.direction.read()) {
// Sweep Negate bit has been cleared
// If At least 1 Sweep Calculation has been made since
// the last trigger, the channel is immediately disabled
if (self.sweep_dev.calc_performed) self.enabled = false;
}

View File

@@ -31,6 +31,7 @@ pub fn tick(self: *Self, ch1: *ToneSweep) void {
if (self.timer == 0) {
const period = ch1.sweep.period.read();
self.timer = if (period == 0) 8 else period;
if (!self.calc_performed) self.calc_performed = true;
if (self.enabled and period != 0) {
const new_freq = self.calculate(ch1.sweep, &ch1.enabled);
@@ -51,10 +52,7 @@ pub fn calculate(self: *Self, sweep: io.Sweep, ch_enable: *bool) u12 {
const shadow_shifted = shadow >> sweep.shift.read();
const decrease = sweep.direction.read();
const freq = if (decrease) blk: {
self.calc_performed = true;
break :blk shadow - shadow_shifted;
} else shadow + shadow_shifted;
const freq = if (decrease) shadow - shadow_shifted else shadow + shadow_shifted;
if (freq > 0x7FF) ch_enable.* = false;
return freq;

View File

@@ -338,7 +338,7 @@ fn DmaController(comptime id: u2) type {
};
}
pub fn pollDmaOnBlank(bus: *Bus, comptime kind: DmaKind) void {
pub fn onBlanking(bus: *Bus, comptime kind: DmaKind) void {
comptime var i: usize = 0;
inline while (i < 4) : (i += 1) {
bus.dma[i].poll(kind);

View File

@@ -449,6 +449,8 @@ pub const BldY = extern union {
raw: u16,
};
const u8WriteKind = enum { Hi, Lo };
/// Write-only
pub const WinH = extern union {
x2: Bitfield(u16, 0, 8),
@@ -458,6 +460,8 @@ pub const WinH = extern union {
/// Write-only
pub const WinV = extern union {
const Self = @This();
y2: Bitfield(u16, 0, 8),
y1: Bitfield(u16, 8, 8),
raw: u16,
@@ -466,20 +470,20 @@ pub const WinV = extern union {
pub const WinIn = extern union {
w0_bg: Bitfield(u16, 0, 4),
w0_obj: Bit(u16, 4),
w0_colour: Bit(u16, 5),
w0_bld: Bit(u16, 5),
w1_bg: Bitfield(u16, 8, 4),
w1_obj: Bit(u16, 12),
w1_colour: Bit(u16, 13),
w1_bld: Bit(u16, 13),
raw: u16,
};
pub const WinOut = extern union {
out_bg: Bitfield(u16, 0, 4),
out_obj: Bit(u16, 4),
out_colour: Bit(u16, 5),
out_bld: Bit(u16, 5),
obj_bg: Bitfield(u16, 8, 4),
obj_obj: Bit(u16, 12),
obj_colour: Bit(u16, 13),
obj_bld: Bit(u16, 13),
raw: u16,
};

View File

@@ -5,7 +5,6 @@ const config = @import("../config.zig");
const Scheduler = @import("scheduler.zig").Scheduler;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const FpsTracker = @import("../util.zig").FpsTracker;
const RingBuffer = @import("../util.zig").RingBuffer;
const Timer = std.time.Timer;
const Atomic = std.atomic.Atomic;
@@ -59,7 +58,7 @@ fn inner(comptime kind: RunKind, audio_sync: bool, quit: *Atomic(bool), schedule
while (!quit.load(.Monotonic)) {
runFrame(scheduler, cpu);
audioSync(audio_sync, &cpu.bus.apu.sample_queue);
audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
if (kind == .UnlimitedFPS) tracker.?.tick();
}
@@ -78,7 +77,7 @@ fn inner(comptime kind: RunKind, audio_sync: bool, quit: *Atomic(bool), schedule
// the amount of time needed for audio to catch up rather than
// our expected wake-up time
audioSync(audio_sync, &cpu.bus.apu.sample_queue);
audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full);
if (!audio_sync) spinLoop(&timer, wake_time);
wake_time = new_wake_time;
@@ -105,13 +104,22 @@ pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void {
}
}
fn audioSync(audio_sync: bool, sample_queue: *RingBuffer(u16)) void {
fn audioSync(audio_sync: bool, stream: *SDL.SDL_AudioStream, is_buffer_full: *bool) void {
comptime std.debug.assert(@import("../platform.zig").sample_format == SDL.AUDIO_U16);
// const sample_size = 2 * @sizeOf(u16);
// const max_buf_size: c_int = 0x400;
const sample_size = 2 * @sizeOf(u16);
const max_buf_size: c_int = 0x400;
_ = audio_sync;
_ = sample_queue;
// Determine whether the APU is busy right at this moment
var still_full: bool = SDL.SDL_AudioStreamAvailable(stream) > sample_size * if (is_buffer_full.*) max_buf_size >> 1 else max_buf_size;
defer is_buffer_full.* = still_full; // Update APU Busy status right before exiting scope
// If Busy is false, there's no need to sync here
if (!still_full) return;
while (true) {
still_full = SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1;
if (!audio_sync or !still_full) break;
}
}
fn videoSync(timer: *Timer, wake_time: u64) u64 {

File diff suppressed because it is too large Load Diff

40
src/core/ppu/Oam.zig Normal file
View File

@@ -0,0 +1,40 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const buf_len = 0x400;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FF;
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
else => @compileError("OAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x3FF;
switch (T) {
u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
u8 => return, // 8-bit writes are explicitly ignored
else => @compileError("OAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
std.mem.set(u8, buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}

47
src/core/ppu/Palette.zig Normal file
View File

@@ -0,0 +1,47 @@
const std = @import("std");
const Allocator = std.mem.Allocator;
const buf_len = 0x400;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FF;
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
else => @compileError("PALRAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x3FF;
switch (T) {
u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
u8 => {
const align_addr = addr & ~@as(u32, 1); // Aligned to Halfword boundary
std.mem.writeIntSliceLittle(u16, self.buf[align_addr..][0..@sizeOf(u16)], @as(u16, value) * 0x101);
},
else => @compileError("PALRAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
std.mem.set(u8, buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub inline fn backdrop(self: *const Self) u16 {
return std.mem.readIntNative(u16, self.buf[0..2]);
}

60
src/core/ppu/Vram.zig Normal file
View File

@@ -0,0 +1,60 @@
const std = @import("std");
const io = @import("../bus/io.zig");
const Allocator = std.mem.Allocator;
const buf_len = 0x18000;
const Self = @This();
buf: []u8,
allocator: Allocator,
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = Self.mirror(address);
return switch (T) {
u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
else => @compileError("VRAM: Unsupported read width"),
};
}
pub fn write(self: *Self, comptime T: type, dispcnt: io.DisplayControl, address: usize, value: T) void {
const mode: u3 = dispcnt.bg_mode.read();
const idx = Self.mirror(address);
switch (T) {
u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[idx..][0..@sizeOf(T)], value),
u8 => {
// Ignore write if it falls within the boundaries of OBJ VRAM
switch (mode) {
0, 1, 2 => if (0x0001_0000 <= idx) return,
else => if (0x0001_4000 <= idx) return,
}
const align_idx = idx & ~@as(u32, 1); // Aligned to a halfword boundary
std.mem.writeIntSliceLittle(u16, self.buf[align_idx..][0..@sizeOf(u16)], @as(u16, value) * 0x101);
},
else => @compileError("VRAM: Unsupported write width"),
}
}
pub fn init(allocator: Allocator) !Self {
const buf = try allocator.alloc(u8, buf_len);
std.mem.set(u8, buf, 0);
return Self{ .buf = buf, .allocator = allocator };
}
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
pub fn mirror(address: usize) usize {
// Mirrored in steps of 128K (64K + 32K + 32K) (abcc)
const addr = address & 0x1FFFF;
// If the address is within 96K we don't do anything,
// otherwise we want to mirror the last 32K (addresses between 64K and 96K)
return if (addr < buf_len) addr else 0x10000 + (addr & 0x7FFF);
}

View File

@@ -12,7 +12,7 @@ const FpsTracker = @import("util.zig").FpsTracker;
const gba_width = @import("core/ppu.zig").width;
const gba_height = @import("core/ppu.zig").height;
pub const sample_rate = 1 << 16;
pub const sample_rate = 1 << 15;
pub const sample_format = SDL.AUDIO_U16;
const default_title = "ZBA";
@@ -216,7 +216,7 @@ pub const Gui = struct {
SDL.SDLK_RSHIFT => keyinput.select.set(),
SDL.SDLK_i => {
comptime std.debug.assert(sample_format == SDL.AUDIO_U16);
log.err("Sample Count: {}", .{cpu.bus.apu.sample_queue.len() / 2});
log.err("Sample Count: {}", .{@intCast(u32, SDL.SDL_AudioStreamAvailable(cpu.bus.apu.stream)) / (2 * @sizeOf(u16))});
},
// SDL.SDLK_j => log.err("Scheduler Capacity: {} | Scheduler Event Count: {}", .{ scheduler.queue.capacity(), scheduler.queue.count() }),
SDL.SDLK_k => {},
@@ -299,15 +299,7 @@ const Audio = struct {
const T = *Apu;
const apu = @ptrCast(T, @alignCast(@alignOf(T), userdata));
comptime std.debug.assert(sample_format == SDL.AUDIO_U16);
const sample_buf = @ptrCast([*]u16, @alignCast(@alignOf(u16), stream))[0 .. @intCast(u32, len) / @sizeOf(u16)];
var previous: u16 = 0x8000;
for (sample_buf) |*sample| {
if (apu.sample_queue.pop()) |value| previous = value;
sample.* = previous;
}
_ = SDL.SDL_AudioStreamGet(apu.stream, stream, len);
}
};

View File

@@ -5,6 +5,8 @@ const config = @import("config.zig");
const Log2Int = std.math.Log2Int;
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Allocator = std.mem.Allocator;
// Sign-Extend value of type `T` to type `U`
pub fn sext(comptime T: type, comptime U: type, value: T) T {
// U must have less bits than T
@@ -123,6 +125,7 @@ pub const io = struct {
pub const Logger = struct {
const Self = @This();
const FmtArgTuple = std.meta.Tuple(&.{ u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32 });
buf: std.io.BufferedWriter(4096 << 2, std.fs.File.Writer),
@@ -181,8 +184,6 @@ pub const Logger = struct {
}
};
const FmtArgTuple = struct { u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32 };
pub const audio = struct {
const _io = @import("core/bus/io.zig");
@@ -276,109 +277,43 @@ fn HalfInt(comptime T: type) type {
return std.meta.Int(type_info.Int.signedness, type_info.Int.bits >> 1);
}
const Mutex = std.Thread.Mutex;
/// Double Buffering Implementation
pub const FrameBuffer = struct {
const Self = @This();
pub fn RingBuffer(comptime T: type) type {
return struct {
const Self = @This();
const Index = usize;
const max_capacity = (@as(Index, 1) << @typeInfo(Index).Int.bits - 1) - 1; // half the range of index type
layers: [2][]u8,
buf: []u8,
current: u1,
const log = std.log.scoped(.RingBuffer);
allocator: Allocator,
read: Index,
write: Index,
// TODO: Rename
const Device = enum { Emulator, Renderer };
buf: []T,
pub fn init(allocator: Allocator, comptime len: comptime_int) !Self {
const buf = try allocator.alloc(u8, len * 2);
std.mem.set(u8, buf, 0);
mutex: Mutex,
return .{
// Front and Back Framebuffers
.layers = [_][]u8{ buf[0..][0..len], buf[len..][0..len] },
.buf = buf,
.current = 0,
const Error = error{buffer_full};
.allocator = allocator,
};
}
pub fn init(buf: []T) Self {
std.mem.set(T, buf, 0);
pub fn deinit(self: *Self) void {
self.allocator.free(self.buf);
self.* = undefined;
}
std.debug.assert(std.math.isPowerOfTwo(buf.len)); // capacity must be a power of two
std.debug.assert(buf.len <= max_capacity);
pub fn swap(self: *Self) void {
self.current = ~self.current;
}
return .{ .read = 0, .write = 0, .buf = buf, .mutex = .{} };
}
pub fn push(self: *Self, left: T, right: T) Error!void {
self.mutex.lock();
defer self.mutex.unlock();
try self._push(left);
self._push(right) catch |e| {
self.write -= 1; // undo the previous write;
return e;
};
}
pub fn pop(self: *Self) ?T {
self.mutex.lock();
defer self.mutex.unlock();
return self._pop();
}
pub fn len(self: *Self) Index {
self.mutex.lock();
defer self.mutex.unlock();
return self._len();
}
fn _push(self: *Self, value: T) Error!void {
if (self.isFull()) return error.buffer_full;
defer self.write += 1;
self.buf[self.mask(self.write)] = value;
}
fn _pop(self: *Self) ?T {
if (self.isEmpty()) return null;
defer self.read += 1;
return self.buf[self.mask(self.read)];
}
fn _len(self: *const Self) Index {
return self.write - self.read;
}
fn isFull(self: *const Self) bool {
return self._len() == self.buf.len;
}
fn isEmpty(self: *const Self) bool {
return self.read == self.write;
}
fn mask(self: *const Self, idx: Index) Index {
return idx & (self.buf.len - 1);
}
};
}
test "RingBuffer" {
const Queue = RingBuffer(u8);
var buf: [4]u8 = undefined;
var queue = Queue.init(&buf);
try queue.push(1, 2);
try std.testing.expectEqual(@as(?u8, 1), queue.pop());
try queue.push(3, 4);
try std.testing.expectError(Queue.Error.buffer_full, queue.push(5, 6));
try std.testing.expectEqual(@as(?u8, 2), queue.pop());
try queue.push(7, 8);
try std.testing.expectEqual(@as(?u8, 3), queue.pop());
try std.testing.expectEqual(@as(?u8, 4), queue.pop());
try std.testing.expectEqual(@as(?u8, 7), queue.pop());
try std.testing.expectEqual(@as(?u8, 8), queue.pop());
try std.testing.expectEqual(@as(?u8, null), queue.pop());
}
pub fn get(self: *Self, comptime dev: Device) []u8 {
return self.layers[if (dev == .Emulator) self.current else ~self.current];
}
};