zba/src/emu.zig

159 lines
5.0 KiB
Zig
Raw Normal View History

2022-10-21 08:12:03 +00:00
const std = @import("std");
2022-10-21 08:11:50 +00:00
const Bus = @import("Bus.zig");
2021-12-29 21:09:00 +00:00
const Scheduler = @import("scheduler.zig").Scheduler;
2022-10-21 08:11:44 +00:00
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const FpsAverage = @import("util.zig").FpsAverage;
2021-12-29 21:09:00 +00:00
2022-10-21 08:12:26 +00:00
const Timer = std.time.Timer;
const Thread = std.Thread;
2022-10-21 08:12:03 +00:00
const Atomic = std.atomic.Atomic;
2022-10-21 08:12:26 +00:00
// 228 Lines which consist of 308 dots (which are 4 cycles long)
const cycles_per_frame: u64 = 228 * (308 * 4); //280896
const clock_rate: u64 = 1 << 24; // 16.78MHz
// TODO: Don't truncate this, be more accurate w/ timing
// 59.6046447754ns (truncated to just 59ns)
2022-10-21 08:12:26 +00:00
const clock_period: u64 = std.time.ns_per_s / clock_rate;
const frame_period = (clock_period * cycles_per_frame);
// 59.7275005696Hz
pub const frame_rate = @intToFloat(f64, std.time.ns_per_s) /
((@intToFloat(f64, std.time.ns_per_s) / @intToFloat(f64, clock_rate)) * @intToFloat(f64, cycles_per_frame));
2022-10-21 08:12:26 +00:00
const log = std.log.scoped(.Emulation);
2021-12-29 21:09:00 +00:00
const RunKind = enum {
Unlimited,
UnlimitedFPS,
Limited,
LimitedFPS,
LimitedBusy,
};
pub fn run(kind: RunKind, quit: *Atomic(bool), fps: *FpsAverage, sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void {
switch (kind) {
.Unlimited => runUnsync(quit, sched, cpu, bus),
.Limited => runSync(quit, sched, cpu, bus),
.UnlimitedFPS => runUnsyncFps(quit, fps, sched, cpu, bus),
.LimitedFPS => runSyncFps(quit, fps, sched, cpu, bus),
.LimitedBusy => runBusyLoop(quit, sched, cpu, bus),
}
}
pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void {
var cycles: u64 = 0;
while (cycles < cycles_per_frame) : (cycles += 1) {
sched.tick += 1;
_ = cpu.step();
2021-12-29 21:09:00 +00:00
while (sched.tick >= sched.nextTimestamp()) {
sched.handleEvent(cpu, bus);
2021-12-29 21:09:00 +00:00
}
}
}
2022-10-21 08:12:03 +00:00
pub fn runUnsync(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void {
log.info("Unsynchronized EmuThread has begun", .{});
while (!quit.load(.Unordered)) runFrame(sched, cpu, bus);
}
pub fn runSync(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void {
log.info("Synchronized EmuThread has begun", .{});
2022-10-21 08:12:26 +00:00
var timer = Timer.start() catch unreachable;
var wake_time: u64 = frame_period;
while (!quit.load(.Unordered)) {
runFrame(sched, cpu, bus);
// Put the Thread to Sleep + Backup Spin Loop
// This saves on resource usage when frame limiting
sleep(&timer, &wake_time);
// Update to the new wake time
wake_time += frame_period;
}
}
pub fn runUnsyncFps(quit: *Atomic(bool), fps: *FpsAverage, sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void {
log.info("Unsynchronized EmuThread with FPS Tracking has begun", .{});
var fps_timer = Timer.start() catch unreachable;
while (!quit.load(.Unordered)) {
runFrame(sched, cpu, bus);
fps.add(fps_timer.lap());
}
}
2022-10-21 08:12:26 +00:00
pub fn runSyncFps(quit: *Atomic(bool), fps: *FpsAverage, sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void {
log.info("Synchronized EmuThread has begun", .{});
var timer = Timer.start() catch unreachable;
var fps_timer = Timer.start() catch unreachable;
var wake_time: u64 = frame_period;
2022-10-21 08:12:26 +00:00
while (!quit.load(.Unordered)) {
runFrame(sched, cpu, bus);
2022-10-21 08:12:26 +00:00
// Put the Thread to Sleep + Backup Spin Loop
// This saves on resource usage when frame limiting
sleep(&timer, &wake_time);
// Determine FPS
fps.add(fps_timer.lap());
// Update to the new wake time
wake_time += frame_period;
}
}
2022-10-21 08:12:26 +00:00
pub fn runBusyLoop(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void {
log.info("Run EmuThread with spin-loop sync", .{});
var timer = Timer.start() catch unreachable;
var wake_time: u64 = frame_period;
while (!quit.load(.Unordered)) {
runFrame(sched, cpu, bus);
spinLoop(&timer, wake_time);
// Update to the new wake time
wake_time += frame_period;
}
}
fn sleep(timer: *Timer, wake_time: *u64) void {
// const step = std.time.ns_per_ms * 10; // 10ms
const timestamp = timer.read();
// ns_late is non zero if we are late.
const ns_late = timestamp -| wake_time.*;
// If we're more than a frame late, skip the rest of this loop
// Recalculate what our new wake time should be so that we can
// get "back on track"
if (ns_late > frame_period) {
wake_time.* = timestamp + frame_period;
return;
}
const sleep_for = frame_period - ns_late;
// // Employ several sleep calls in periods of 10ms
// // By doing this the behaviour should average out to be
// // more consistent
// const loop_count = sleep_for / step; // How many groups of 10ms
// var i: usize = 0;
// while (i < loop_count) : (i += 1) std.time.sleep(step);
std.time.sleep(sleep_for);
// Spin to make up the difference if there is a need
// Make sure that we're using the old wake time and not the onne we recalculated
spinLoop(timer, wake_time.*);
}
2022-10-21 08:12:26 +00:00
fn spinLoop(timer: *Timer, wake_time: u64) void {
while (true) if (timer.read() > wake_time) break;
2022-10-21 08:12:03 +00:00
}