zba/src/cpu.zig

162 lines
5.0 KiB
Zig
Raw Normal View History

2021-12-29 21:09:00 +00:00
const std = @import("std");
const util = @import("util.zig");
const bitfield = @import("bitfield");
2022-01-02 19:01:11 +00:00
2021-12-29 21:09:00 +00:00
const Bus = @import("bus.zig").Bus;
const Scheduler = @import("scheduler.zig").Scheduler;
2022-01-02 19:01:11 +00:00
const Bitfield = bitfield.Bitfield;
const Bit = bitfield.Bit;
2021-12-29 21:09:00 +00:00
const comptimeDataProcessing = @import("cpu/data_processing.zig").comptimeDataProcessing;
const comptimeSingleDataTransfer = @import("cpu/single_data_transfer.zig").comptimeSingleDataTransfer;
const comptimeHalfSignedDataTransfer = @import("cpu/half_signed_data_transfer.zig").comptimeHalfSignedDataTransfer;
2022-01-02 03:08:36 +00:00
pub const InstrFn = fn (*Arm7tdmi, *Bus, u32) void;
const arm_lut: [0x1000]InstrFn = populate();
2021-12-29 21:09:00 +00:00
2022-01-02 03:08:36 +00:00
pub const Arm7tdmi = struct {
2021-12-29 21:09:00 +00:00
r: [16]u32,
sch: *Scheduler,
bus: *Bus,
cpsr: CPSR,
pub fn init(scheduler: *Scheduler, bus: *Bus) @This() {
2021-12-29 21:09:00 +00:00
return .{
.r = [_]u32{0x00} ** 16,
.sch = scheduler,
.bus = bus,
2022-01-02 19:01:11 +00:00
.cpsr = .{ .val = 0x0000_00DF },
2021-12-29 21:09:00 +00:00
};
}
pub inline fn step(self: *@This()) u64 {
std.debug.print("PC: 0x{X:} ", .{self.r[15]});
2021-12-29 21:09:00 +00:00
const opcode = self.fetch();
2022-01-02 03:08:36 +00:00
std.debug.print("opcode: 0x{X:}\n", .{opcode}); // Debug
2021-12-29 23:16:32 +00:00
if (checkCond(&self.cpsr, opcode)) arm_lut[armIdx(opcode)](self, self.bus, opcode);
2021-12-29 21:09:00 +00:00
return 1;
}
fn fetch(self: *@This()) u32 {
const word = self.bus.read32(self.r[15]);
2021-12-29 21:09:00 +00:00
self.r[15] += 4;
return word;
}
fn fakePC(self: *const @This()) u32 {
return self.r[15] + 4;
}
};
fn armIdx(opcode: u32) u12 {
return @truncate(u12, opcode >> 20 & 0xFF) << 4 | @truncate(u12, opcode >> 4 & 0xF);
2021-12-29 21:09:00 +00:00
}
fn checkCond(cpsr: *const CPSR, opcode: u32) bool {
// TODO: Should I implement an enum?
return switch (@truncate(u4, opcode >> 28)) {
2022-01-02 19:01:11 +00:00
0x0 => cpsr.z.read(), // EQ - Equal
0x1 => !cpsr.z.read(), // NEQ - Not equal
0x2 => cpsr.c.read(), // CS - Unsigned higher or same
0x3 => !cpsr.c.read(), // CC - Unsigned lower
0x4 => cpsr.n.read(), // MI - Negative
0x5 => !cpsr.n.read(), // PL - Positive or zero
0x6 => cpsr.v.read(), // VS - Overflow
0x7 => !cpsr.v.read(), // VC - No overflow
0x8 => cpsr.c.read() and !cpsr.z.read(), // HI - unsigned higher
0x9 => !cpsr.c.read() and cpsr.z.read(), // LS - unsigned lower or same
0xA => cpsr.n.read() == cpsr.v.read(), // GE - Greater or equal
0xB => cpsr.n.read() != cpsr.v.read(), // LT - Less than
0xC => !cpsr.z.read() and (cpsr.n.read() == cpsr.z.read()), // GT - Greater than
0xD => cpsr.z.read() or (cpsr.n.read() != cpsr.v.read()), // LE - Less than or equal
0xE => true, // AL - Always
0xF => std.debug.panic("0xF is a reserved condition field", .{}),
};
}
2021-12-29 21:09:00 +00:00
fn populate() [0x1000]InstrFn {
return comptime {
2022-01-02 03:08:36 +00:00
@setEvalBranchQuota(0x5000); // TODO: Figure out exact size
var lut = [_]InstrFn{undefinedInstruction} ** 0x1000;
2021-12-29 21:09:00 +00:00
var i: usize = 0;
while (i < lut.len) : (i += 1) {
if (i >> 10 & 0x3 == 0b00) {
2022-01-02 03:08:36 +00:00
const I = i >> 9 & 1 == 1;
const S = i >> 4 & 1 == 1;
const instrKind = i >> 5 & 0xF;
2021-12-29 21:09:00 +00:00
lut[i] = comptimeDataProcessing(I, S, instrKind);
2021-12-29 21:13:50 +00:00
}
2022-01-02 03:08:36 +00:00
if (i >> 9 & 0x7 == 0b000 and i >> 3 & 1 == 1 and i & 1 == 1) {
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const I = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
2021-12-29 21:09:00 +00:00
lut[i] = comptimeHalfSignedDataTransfer(P, U, I, W, L);
}
if (i >> 10 & 0x3 == 0b01) {
2022-01-02 03:08:36 +00:00
const I = i >> 9 & 1 == 1;
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const B = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
2021-12-29 21:09:00 +00:00
lut[i] = comptimeSingleDataTransfer(I, P, U, B, W, L);
}
2021-12-29 21:13:50 +00:00
2021-12-29 21:09:00 +00:00
if (i >> 9 & 0x7 == 0b101) {
2022-01-02 03:08:36 +00:00
const L = i >> 8 & 1 == 1;
2021-12-29 21:09:00 +00:00
lut[i] = comptimeBranch(L);
2021-12-29 21:13:50 +00:00
}
2021-12-29 21:09:00 +00:00
}
return lut;
};
}
2022-01-02 19:01:11 +00:00
const CPSR = extern union {
mode: Bitfield(u32, 0, 5),
t: Bit(u32, 5),
f: Bit(u32, 6),
i: Bit(u32, 7),
v: Bit(u32, 28),
c: Bit(u32, 29),
z: Bit(u32, 30),
n: Bit(u32, 31),
val: u32,
2021-12-29 21:09:00 +00:00
};
const Mode = enum(u5) {
User = 0b10000,
FIQ = 0b10001,
IRQ = 0b10010,
2021-12-29 21:09:00 +00:00
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
};
2022-01-02 03:08:36 +00:00
fn undefinedInstruction(_: *Arm7tdmi, _: *Bus, opcode: u32) void {
2021-12-29 21:09:00 +00:00
const id = armIdx(opcode);
std.debug.panic("[0x{X:}] 0x{X:} is an illegal opcode", .{ id, opcode });
}
fn comptimeBranch(comptime L: bool) InstrFn {
return struct {
2022-01-02 03:08:36 +00:00
fn branch(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
2021-12-29 21:09:00 +00:00
if (L) {
cpu.r[14] = cpu.r[15] - 4;
}
cpu.r[15] = cpu.fakePC() +% util.u32SignExtend(24, opcode << 2);
2021-12-29 21:09:00 +00:00
}
}.branch;
}