Compare commits

...

17 Commits

Author SHA1 Message Date
Rekai Nyangadzayi Musuka b2ecfd1b6b fix: account for pipeline in obscure bios behaviour 2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka fbe7d1eaa2 chore: update README.md 2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka b49543e5f1 fix: advance r15, even when the pipeline is reloaded from the scheduler
The PC would fall behind whenever an IRQ was called because the pipeline
was reloaded (+8 to PC), however that was never actually done by any code

Now, the PC is always incremented when the pipeline is reloaded
2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka 6ea433dcf1 chore: dump pipeline state on cpu panic 2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka e9e319209a fix: reimpl THUMB.5 instructions
pipeline branch now passes arm.gba and thumb.gba again

(TODO: Stop rewriting my commits away)
2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka e0a35ae273 fix: impl workaround for stage2 miscompilation 2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka 3c1db7ae66 chore: instantly refill the pipeline on flush
I believe this to be necessary in order to get hardware interrupts
working.

thumb.gba test 108 fails but I'm committing anyways (despite the
regression) because this is kind of rebase/merge hell and I have
something that at least sort of works rn
2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka d38ed7658e fix: reimpl handleInterrupt code 2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka cd003dcf7a feat: implement basic pipeline
passes arm.gba, thumb.gb and armwrestler, fails in actual games
TODO: run FuzzARM debug specific titles
2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka 06914983d9 feat: resolve off-by-{word, halfword} errors when printing debug info 2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka d8d0522b2e feat: reimplement cpu logging 2022-09-19 15:50:05 -03:00
Rekai Nyangadzayi Musuka e192c6712f chore: disable audio sync by default
forgot SDL2 AudioStream doesn't work well for my use-case
2022-09-18 09:20:01 -03:00
Rekai Nyangadzayi Musuka 3466bf6c0a chore: change default settings 2022-09-18 06:30:39 -03:00
Rekai Nyangadzayi Musuka fbe3de0eb3 chore: reimpl util.escape
should make use of stdlib when I can
2022-09-18 06:23:30 -03:00
Rekai Nyangadzayi Musuka 4af144fca2 fix: Detect FRAM ROMs 2022-09-18 06:19:05 -03:00
Rekai Nyangadzayi Musuka 9a8aaba1ab chore: improve util and Gui API 2022-09-18 05:55:15 -03:00
Rekai Nyangadzayi Musuka fa3b9c21b9 chore: move Gpio and Clock structs to separate file 2022-09-18 00:37:45 -03:00
24 changed files with 1187 additions and 884 deletions

View File

@ -2,13 +2,13 @@
An in-progress Game Boy Advance Emulator written in Zig ⚡!
## Tests
- [ ] [jsmolka's GBA Test Collection](https://github.com/jsmolka/gba-tests)
- [x] [jsmolka's GBA Test Collection](https://github.com/jsmolka/gba-tests)
- [x] `arm.gba` and `thumb.gba`
- [x] `flash64.gba`, `flash128.gba`, `none.gba`, and `sram.gba`
- [x] `hello.gba`, `shades.gba`, and `stripes.gba`
- [x] `memory.gba`
- [x] `bios.gba`
- [ ] `nes.gba`
- [x] `nes.gba`
- [ ] [DenSinH's GBA ROMs](https://github.com/DenSinH/GBARoms)
- [x] `eeprom-test` and `flash-test`
- [x] `midikey2freq`

View File

@ -1,194 +0,0 @@
const std = @import("std");
const SDL = @import("sdl2");
const Self = @This();
const Apu = @import("core/apu.zig").Apu;
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Scheduler = @import("core/scheduler.zig").Scheduler;
const FpsTracker = @import("core/util.zig").FpsTracker;
const pitch = @import("core/ppu.zig").framebuf_pitch;
const scale = @import("core/emu.zig").win_scale;
const emu = @import("core/emu.zig");
const log = std.log.scoped(.GUI);
const default_title: []const u8 = "ZBA";
window: *SDL.SDL_Window,
base_title: [12]u8,
renderer: *SDL.SDL_Renderer,
texture: *SDL.SDL_Texture,
audio: ?Audio,
pub fn init(title: [12]u8, width: i32, height: i32) Self {
const ret = SDL.SDL_Init(SDL.SDL_INIT_VIDEO | SDL.SDL_INIT_EVENTS | SDL.SDL_INIT_AUDIO | SDL.SDL_INIT_GAMECONTROLLER);
if (ret < 0) panic();
const window = SDL.SDL_CreateWindow(
default_title.ptr,
SDL.SDL_WINDOWPOS_CENTERED,
SDL.SDL_WINDOWPOS_CENTERED,
@as(c_int, width * scale),
@as(c_int, height * scale),
SDL.SDL_WINDOW_SHOWN,
) orelse panic();
const renderer = SDL.SDL_CreateRenderer(window, -1, SDL.SDL_RENDERER_ACCELERATED | SDL.SDL_RENDERER_PRESENTVSYNC) orelse panic();
const texture = SDL.SDL_CreateTexture(
renderer,
SDL.SDL_PIXELFORMAT_RGBA8888,
SDL.SDL_TEXTUREACCESS_STREAMING,
@as(c_int, width),
@as(c_int, height),
) orelse panic();
return Self{
.window = window,
.base_title = title,
.renderer = renderer,
.texture = texture,
.audio = null,
};
}
pub fn run(self: *Self, cpu: *Arm7tdmi, scheduler: *Scheduler) !void {
var quit = std.atomic.Atomic(bool).init(false);
var frame_rate = FpsTracker.init();
const thread = try std.Thread.spawn(.{}, emu.run, .{ &quit, &frame_rate, scheduler, cpu });
defer thread.join();
var title_buf: [0x100]u8 = [_]u8{0} ** 0x100;
emu_loop: while (true) {
var event: SDL.SDL_Event = undefined;
while (SDL.SDL_PollEvent(&event) != 0) {
switch (event.type) {
SDL.SDL_QUIT => break :emu_loop,
SDL.SDL_KEYDOWN => {
const io = &cpu.bus.io;
const key_code = event.key.keysym.sym;
switch (key_code) {
SDL.SDLK_UP => io.keyinput.up.unset(),
SDL.SDLK_DOWN => io.keyinput.down.unset(),
SDL.SDLK_LEFT => io.keyinput.left.unset(),
SDL.SDLK_RIGHT => io.keyinput.right.unset(),
SDL.SDLK_x => io.keyinput.a.unset(),
SDL.SDLK_z => io.keyinput.b.unset(),
SDL.SDLK_a => io.keyinput.shoulder_l.unset(),
SDL.SDLK_s => io.keyinput.shoulder_r.unset(),
SDL.SDLK_RETURN => io.keyinput.start.unset(),
SDL.SDLK_RSHIFT => io.keyinput.select.unset(),
else => {},
}
},
SDL.SDL_KEYUP => {
const io = &cpu.bus.io;
const key_code = event.key.keysym.sym;
switch (key_code) {
SDL.SDLK_UP => io.keyinput.up.set(),
SDL.SDLK_DOWN => io.keyinput.down.set(),
SDL.SDLK_LEFT => io.keyinput.left.set(),
SDL.SDLK_RIGHT => io.keyinput.right.set(),
SDL.SDLK_x => io.keyinput.a.set(),
SDL.SDLK_z => io.keyinput.b.set(),
SDL.SDLK_a => io.keyinput.shoulder_l.set(),
SDL.SDLK_s => io.keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => io.keyinput.start.set(),
SDL.SDLK_RSHIFT => io.keyinput.select.set(),
SDL.SDLK_i => log.err("Sample Count: {}", .{@intCast(u32, SDL.SDL_AudioStreamAvailable(cpu.bus.apu.stream)) / (2 * @sizeOf(u16))}),
SDL.SDLK_j => log.err("Scheduler Capacity: {} | Scheduler Event Count: {}", .{ scheduler.queue.capacity(), scheduler.queue.count() }),
SDL.SDLK_k => {
// Dump IWRAM to file
log.info("PC: 0x{X:0>8}", .{cpu.r[15]});
log.info("LR: 0x{X:0>8}", .{cpu.r[14]});
// const iwram_file = try std.fs.cwd().createFile("iwram.bin", .{});
// defer iwram_file.close();
// try iwram_file.writeAll(cpu.bus.iwram.buf);
},
else => {},
}
},
else => {},
}
}
// Emulator has an internal Double Buffer
const framebuf = cpu.bus.ppu.framebuf.get(.Renderer);
_ = SDL.SDL_UpdateTexture(self.texture, null, framebuf.ptr, pitch);
_ = SDL.SDL_RenderCopy(self.renderer, self.texture, null, null);
SDL.SDL_RenderPresent(self.renderer);
const title = std.fmt.bufPrint(&title_buf, "ZBA | {s} [Emu: {}fps] ", .{ self.base_title, frame_rate.value() }) catch unreachable;
SDL.SDL_SetWindowTitle(self.window, title.ptr);
}
quit.store(true, .SeqCst); // Terminate Emulator Thread
}
pub fn initAudio(self: *Self, apu: *Apu) void {
self.audio = Audio.init(apu);
self.audio.?.play();
}
pub fn deinit(self: *Self) void {
if (self.audio) |*aud| aud.deinit();
SDL.SDL_DestroyTexture(self.texture);
SDL.SDL_DestroyRenderer(self.renderer);
SDL.SDL_DestroyWindow(self.window);
SDL.SDL_Quit();
self.* = undefined;
}
const Audio = struct {
const This = @This();
const sample_rate = @import("core/apu.zig").host_sample_rate;
device: SDL.SDL_AudioDeviceID,
fn init(apu: *Apu) This {
var have: SDL.SDL_AudioSpec = undefined;
var want: SDL.SDL_AudioSpec = std.mem.zeroes(SDL.SDL_AudioSpec);
want.freq = sample_rate;
want.format = SDL.AUDIO_U16;
want.channels = 2;
want.samples = 0x100;
want.callback = This.callback;
want.userdata = apu;
const device = SDL.SDL_OpenAudioDevice(null, 0, &want, &have, 0);
if (device == 0) panic();
return .{
.device = device,
};
}
fn deinit(self: *This) void {
SDL.SDL_CloseAudioDevice(self.device);
self.* = undefined;
}
pub fn play(self: *This) void {
SDL.SDL_PauseAudioDevice(self.device, 0);
}
export fn callback(userdata: ?*anyopaque, stream: [*c]u8, len: c_int) void {
const apu = @ptrCast(*Apu, @alignCast(@alignOf(*Apu), userdata));
_ = SDL.SDL_AudioStreamGet(apu.stream, stream, len);
// If we don't write anything, play silence otherwise garbage will be played
// FIXME: I don't think this hack to remove DC Offset is acceptable :thinking:
// if (written == 0) std.mem.set(u8, stream[0..@intCast(usize, len)], 0x40);
}
};
fn panic() noreturn {
const str = @as(?[*:0]const u8, SDL.SDL_GetError()) orelse "unknown error";
@panic(std.mem.sliceTo(str, 0));
}

View File

@ -39,12 +39,12 @@ pub fn read(self: *Self, comptime T: type, r15: u32, addr: u32) T {
}
log.debug("Rejected read since r15=0x{X:0>8}", .{r15});
return @truncate(T, self.uncheckedRead(T, self.addr_latch + 8));
return @truncate(T, self.uncheckedRead(T, self.addr_latch));
}
pub fn dbgRead(self: *const Self, comptime T: type, r15: u32, addr: u32) T {
if (r15 < Self.size) return self.uncheckedRead(T, addr);
return @truncate(T, self.uncheckedRead(T, self.addr_latch + 8));
return @truncate(T, self.uncheckedRead(T, self.addr_latch));
}
fn uncheckedRead(self: *const Self, comptime T: type, addr: u32) T {

View File

@ -1,10 +1,11 @@
const std = @import("std");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const DateTime = @import("datetime").datetime.Datetime;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Backup = @import("backup.zig").Backup;
const Gpio = @import("gpio.zig").Gpio;
const Allocator = std.mem.Allocator;
const force_rtc = @import("../emu.zig").force_rtc;
@ -239,463 +240,3 @@ test "OOB Access" {
std.debug.assert(pak.get(4) == 0x02); // 0x0002
std.debug.assert(pak.get(5) == 0x00);
}
/// GPIO Register Implementation
const Gpio = struct {
const This = @This();
data: u4,
direction: u4,
cnt: u1,
device: Device,
const Device = struct {
ptr: ?*anyopaque,
kind: Kind, // TODO: Make comptime known?
const Kind = enum { Rtc, None };
fn step(self: *Device, value: u4) u4 {
return switch (self.kind) {
.Rtc => blk: {
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?));
break :blk clock.step(Clock.Data{ .raw = value });
},
.None => value,
};
}
fn init(kind: Kind, ptr: ?*anyopaque) Device {
return .{ .kind = kind, .ptr = ptr };
}
};
const Register = enum {
Data,
Direction,
Control,
};
fn init(allocator: Allocator, cpu: *Arm7tdmi, kind: Device.Kind) !*This {
log.info("Device: {}", .{kind});
const self = try allocator.create(This);
self.* = .{
.data = 0b0000,
.direction = 0b1111, // TODO: What is GPIO DIrection set to by default?
.cnt = 0b0,
.device = switch (kind) {
.Rtc => blk: {
const clock = try allocator.create(Clock);
clock.init(cpu, self);
break :blk Device{ .kind = kind, .ptr = clock };
},
.None => Device{ .kind = kind, .ptr = null },
},
};
return self;
}
fn deinit(self: *This, allocator: Allocator) void {
switch (self.device.kind) {
.Rtc => {
allocator.destroy(@ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.device.ptr.?)));
},
.None => {},
}
self.* = undefined;
}
fn write(self: *This, comptime reg: Register, value: if (reg == .Control) u1 else u4) void {
switch (reg) {
.Data => {
const masked_value = value & self.direction;
// The value which is actually stored in the GPIO register
// might be modified by the device implementing the GPIO interface e.g. RTC reads
self.data = self.device.step(masked_value);
},
.Direction => self.direction = value,
.Control => self.cnt = value,
}
}
fn read(self: *const This, comptime reg: Register) if (reg == .Control) u1 else u4 {
if (self.cnt == 0) return 0;
return switch (reg) {
.Data => self.data & ~self.direction,
.Direction => self.direction,
.Control => self.cnt,
};
}
};
/// GBA Real Time Clock
pub const Clock = struct {
const This = @This();
writer: Writer,
reader: Reader,
state: State,
cnt: Control,
year: u8,
month: u5,
day: u6,
weekday: u3,
hour: u6,
minute: u7,
second: u7,
cpu: *Arm7tdmi,
gpio: *const Gpio,
const Register = enum {
Control,
DateTime,
Time,
};
const State = union(enum) {
Idle,
Command,
Write: Register,
Read: Register,
};
const Reader = struct {
i: u4,
count: u8,
/// Reads a bit from RTC registers. Which bit it reads is dependent on
///
/// 1. The RTC State Machine, whitch tells us which register we're accessing
/// 2. A `count`, which keeps track of which byte is currently being read
/// 3. An index, which keeps track of which bit of the byte determined by `count` is being read
fn read(self: *Reader, clock: *const Clock, register: Register) u1 {
const idx = @intCast(u3, self.i);
defer self.i += 1;
// FIXME: What do I do about the unused bits?
return switch (register) {
.Control => @truncate(u1, switch (self.count) {
0 => clock.cnt.raw >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
}),
.DateTime => @truncate(u1, switch (self.count) {
// Date
0 => clock.year >> idx,
1 => @as(u8, clock.month) >> idx,
2 => @as(u8, clock.day) >> idx,
3 => @as(u8, clock.weekday) >> idx,
// Time
4 => @as(u8, clock.hour) >> idx,
5 => @as(u8, clock.minute) >> idx,
6 => @as(u8, clock.second) >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 7 bytes)", .{ self.count, register }),
}),
.Time => @truncate(u1, switch (self.count) {
0 => @as(u8, clock.hour) >> idx,
1 => @as(u8, clock.minute) >> idx,
2 => @as(u8, clock.second) >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 3 bytes)", .{ self.count, register }),
}),
};
}
/// Is true when a Reader has read a u8's worth of bits
fn finished(self: *const Reader) bool {
return self.i >= 8;
}
/// Resets the index used to shift bits out of RTC registers
/// and `count`, which is used to keep track of which byte we're reading
/// is incremeneted
fn lap(self: *Reader) void {
self.i = 0;
self.count += 1;
}
/// Resets the state of a `Reader` in preparation for a future
/// read command
fn reset(self: *Reader) void {
self.i = 0;
self.count = 0;
}
};
const Writer = struct {
buf: u8,
i: u4,
/// The Number of bytes written since last reset
count: u8,
/// Append a bit to the internal bit buffer (aka an integer)
fn push(self: *Writer, value: u1) void {
const idx = @intCast(u3, self.i);
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
self.i += 1;
}
/// Takes the contents of the internal buffer and writes it to an RTC register
/// Where it writes to is dependent on:
///
/// 1. The RTC State Machine, whitch tells us which register we're accessing
/// 2. A `count`, which keeps track of which byte is currently being read
fn write(self: *const Writer, clock: *Clock, register: Register) void {
// FIXME: What do do about unused bits?
switch (register) {
.Control => switch (self.count) {
0 => clock.cnt.raw = (clock.cnt.raw & 0x80) | (self.buf & 0x7F), // Bit 7 read-only
else => std.debug.panic("Tried to write to byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
},
.DateTime, .Time => log.debug("RTC: Ignoring {} write", .{register}),
}
}
/// Is true when 8 bits have been shifted into the internal buffer
fn finished(self: *const Writer) bool {
return self.i >= 8;
}
/// Resets the internal buffer
/// resets the index used to shift bits into the internal buffer
/// increments `count` (which keeps track of byte offsets) by one
fn lap(self: *Writer) void {
self.buf = 0;
self.i = 0;
self.count += 1;
}
/// Resets `Writer` to a clean state in preparation for a future write command
fn reset(self: *Writer) void {
self.buf = 0;
self.i = 0;
self.count = 0;
}
};
const Data = extern union {
sck: Bit(u8, 0),
sio: Bit(u8, 1),
cs: Bit(u8, 2),
raw: u8,
};
const Control = extern union {
/// Unknown, value should be preserved though
unk: Bit(u8, 1),
/// Per-minute IRQ
/// If set, fire a Gamepak IRQ every 30s,
irq: Bit(u8, 3),
/// 12/24 Hour Bit
/// If set, 12h mode
/// If cleared, 24h mode
mode: Bit(u8, 6),
/// Read-Only, bit cleared on read
/// If is set, means that there has been a failure / time has been lost
off: Bit(u8, 7),
raw: u8,
};
fn init(ptr: *This, cpu: *Arm7tdmi, gpio: *const Gpio) void {
ptr.* = .{
.writer = .{ .buf = 0, .i = 0, .count = 0 },
.reader = .{ .i = 0, .count = 0 },
.state = .Idle,
.cnt = .{ .raw = 0 },
.year = 0x01,
.month = 0x6,
.day = 0x13,
.weekday = 0x3,
.hour = 0x23,
.minute = 0x59,
.second = 0x59,
.cpu = cpu,
.gpio = gpio, // Can't use Arm7tdmi ptr b/c not initialized yet
};
cpu.sched.push(.RealTimeClock, 1 << 24); // Every Second
}
pub fn updateTime(self: *This, late: u64) void {
self.cpu.sched.push(.RealTimeClock, (1 << 24) -| late); // Reschedule
const now = DateTime.now();
self.year = toBcd(u8, @intCast(u8, now.date.year - 2000));
self.month = toBcd(u5, now.date.month);
self.day = toBcd(u6, now.date.day);
self.weekday = toBcd(u3, (now.date.weekday() + 1) % 7); // API is Monday = 0, Sunday = 6. We want Sunday = 0, Saturday = 6
self.hour = toBcd(u6, now.time.hour);
self.minute = toBcd(u7, now.time.minute);
self.second = toBcd(u7, now.time.second);
}
fn step(self: *This, value: Data) u4 {
const cache: Data = .{ .raw = self.gpio.data };
return switch (self.state) {
.Idle => blk: {
// FIXME: Maybe check incoming value to see if SCK is also high?
if (cache.sck.read()) {
if (!cache.cs.read() and value.cs.read()) {
log.debug("RTC: Entering Command Mode", .{});
self.state = .Command;
}
}
break :blk @truncate(u4, value.raw);
},
.Command => blk: {
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
self.writer.push(@boolToInt(value.sio.read()));
if (self.writer.finished()) {
self.state = self.processCommand(self.writer.buf);
self.writer.reset();
log.debug("RTC: Switching to {}", .{self.state});
}
}
break :blk @truncate(u4, value.raw);
},
.Write => |register| blk: {
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
self.writer.push(@boolToInt(value.sio.read()));
const register_width: u32 = switch (register) {
.Control => 1,
.DateTime => 7,
.Time => 3,
};
if (self.writer.finished()) {
self.writer.write(self, register); // write inner buffer to RTC register
self.writer.lap();
if (self.writer.count == register_width) {
self.writer.reset();
self.state = .Idle;
}
}
}
break :blk @truncate(u4, value.raw);
},
.Read => |register| blk: {
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
var ret = value;
// if SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
ret.sio.write(self.reader.read(self, register) == 0b1);
const register_width: u32 = switch (register) {
.Control => 1,
.DateTime => 7,
.Time => 3,
};
if (self.reader.finished()) {
self.reader.lap();
if (self.reader.count == register_width) {
self.reader.reset();
self.state = .Idle;
}
}
}
break :blk @truncate(u4, ret.raw);
},
};
}
fn reset(self: *This) void {
// mGBA and NBA only zero the control register. We will do the same
log.debug("RTC: Reset (control register was zeroed)", .{});
self.cnt.raw = 0;
}
fn irq(self: *This) void {
// TODO: Confirm that this is the right behaviour
log.debug("RTC: Force GamePak IRQ", .{});
self.cpu.bus.io.irq.game_pak.set();
self.cpu.handleInterrupt();
}
fn processCommand(self: *This, raw_command: u8) State {
const command = blk: {
// If High Nybble is 0x6, no need to switch the endianness
if (raw_command >> 4 & 0xF == 0x6) break :blk raw_command;
// Turns out reversing the order of bits isn't trivial at all
// https://stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
var ret = raw_command;
ret = (ret & 0xF0) >> 4 | (ret & 0x0F) << 4;
ret = (ret & 0xCC) >> 2 | (ret & 0x33) << 2;
ret = (ret & 0xAA) >> 1 | (ret & 0x55) << 1;
break :blk ret;
};
log.debug("RTC: Handling Command 0x{X:0>2} [0b{b:0>8}]", .{ command, command });
const is_write = command & 1 == 0;
const rtc_register = @truncate(u3, command >> 1 & 0x7);
if (is_write) {
return switch (rtc_register) {
0 => blk: {
self.reset();
break :blk .Idle;
},
1 => .{ .Write = .Control },
2 => .{ .Write = .DateTime },
3 => .{ .Write = .Time },
6 => blk: {
self.irq();
break :blk .Idle;
},
4, 5, 7 => .Idle,
};
} else {
return switch (rtc_register) {
1 => .{ .Read = .Control },
2 => .{ .Read = .DateTime },
3 => .{ .Read = .Time },
0, 4, 5, 6, 7 => .Idle, // Do Nothing
};
}
}
};
fn toBcd(comptime T: type, value: u8) T {
var input = value;
var ret: u8 = 0;
var shift: u3 = 0;
while (input > 0) {
ret |= (input % 10) << (shift << 2);
shift += 1;
input /= 10;
}
return @truncate(T, ret);
}

View File

@ -3,11 +3,12 @@ const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Backup);
const escape = @import("../util.zig").escape;
const asStringSlice = @import("../util.zig").asStringSlice;
const span = @import("../util.zig").span;
const backup_kinds = [5]Needle{
const backup_kinds = [6]Needle{
.{ .str = "EEPROM_V", .kind = .Eeprom },
.{ .str = "SRAM_V", .kind = .Sram },
.{ .str = "SRAM_F_V", .kind = .Sram },
.{ .str = "FLASH_V", .kind = .Flash },
.{ .str = "FLASH512_V", .kind = .Flash },
.{ .str = "FLASH1M_V", .kind = .Flash1M },
@ -128,7 +129,7 @@ pub const Backup = struct {
}
fn getSaveFilename(self: *const Self, allocator: Allocator) ![]const u8 {
const title_str = asStringSlice(&escape(self.title));
const title_str = span(&escape(self.title));
const name = if (title_str.len != 0) title_str else "untitled";
return try std.mem.concat(allocator, u8, &[_][]const u8{ name, ".sav" });

463
src/core/bus/gpio.zig Normal file
View File

@ -0,0 +1,463 @@
const std = @import("std");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const DateTime = @import("datetime").datetime.Datetime;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Allocator = std.mem.Allocator;
/// GPIO Register Implementation
pub const Gpio = struct {
const Self = @This();
const log = std.log.scoped(.Gpio);
data: u4,
direction: u4,
cnt: u1,
device: Device,
const Register = enum { Data, Direction, Control };
pub const Device = struct {
ptr: ?*anyopaque,
kind: Kind, // TODO: Make comptime known?
pub const Kind = enum { Rtc, None };
fn step(self: *Device, value: u4) u4 {
return switch (self.kind) {
.Rtc => blk: {
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?));
break :blk clock.step(Clock.Data{ .raw = value });
},
.None => value,
};
}
fn init(kind: Kind, ptr: ?*anyopaque) Device {
return .{ .kind = kind, .ptr = ptr };
}
};
pub fn write(self: *Self, comptime reg: Register, value: if (reg == .Control) u1 else u4) void {
switch (reg) {
.Data => {
const masked_value = value & self.direction;
// The value which is actually stored in the GPIO register
// might be modified by the device implementing the GPIO interface e.g. RTC reads
self.data = self.device.step(masked_value);
},
.Direction => self.direction = value,
.Control => self.cnt = value,
}
}
pub fn read(self: *const Self, comptime reg: Register) if (reg == .Control) u1 else u4 {
if (self.cnt == 0) return 0;
return switch (reg) {
.Data => self.data & ~self.direction,
.Direction => self.direction,
.Control => self.cnt,
};
}
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, kind: Device.Kind) !*Self {
log.info("Device: {}", .{kind});
const self = try allocator.create(Self);
self.* = .{
.data = 0b0000,
.direction = 0b1111, // TODO: What is GPIO DIrection set to by default?
.cnt = 0b0,
.device = switch (kind) {
.Rtc => blk: {
const clock = try allocator.create(Clock);
clock.init(cpu, self);
break :blk Device{ .kind = kind, .ptr = clock };
},
.None => Device{ .kind = kind, .ptr = null },
},
};
return self;
}
pub fn deinit(self: *Self, allocator: Allocator) void {
switch (self.device.kind) {
.Rtc => allocator.destroy(@ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.device.ptr.?))),
.None => {},
}
self.* = undefined;
}
};
/// GBA Real Time Clock
pub const Clock = struct {
const Self = @This();
const log = std.log.scoped(.Rtc);
writer: Writer,
reader: Reader,
state: State,
cnt: Control,
year: u8,
month: u5,
day: u6,
weekday: u3,
hour: u6,
minute: u7,
second: u7,
cpu: *Arm7tdmi,
gpio: *const Gpio,
const Register = enum {
Control,
DateTime,
Time,
};
const State = union(enum) {
Idle,
Command,
Write: Register,
Read: Register,
};
const Reader = struct {
i: u4,
count: u8,
/// Reads a bit from RTC registers. Which bit it reads is dependent on
///
/// 1. The RTC State Machine, whitch tells us which register we're accessing
/// 2. A `count`, which keeps track of which byte is currently being read
/// 3. An index, which keeps track of which bit of the byte determined by `count` is being read
fn read(self: *Reader, clock: *const Clock, register: Register) u1 {
const idx = @intCast(u3, self.i);
defer self.i += 1;
// FIXME: What do I do about the unused bits?
return switch (register) {
.Control => @truncate(u1, switch (self.count) {
0 => clock.cnt.raw >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
}),
.DateTime => @truncate(u1, switch (self.count) {
// Date
0 => clock.year >> idx,
1 => @as(u8, clock.month) >> idx,
2 => @as(u8, clock.day) >> idx,
3 => @as(u8, clock.weekday) >> idx,
// Time
4 => @as(u8, clock.hour) >> idx,
5 => @as(u8, clock.minute) >> idx,
6 => @as(u8, clock.second) >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 7 bytes)", .{ self.count, register }),
}),
.Time => @truncate(u1, switch (self.count) {
0 => @as(u8, clock.hour) >> idx,
1 => @as(u8, clock.minute) >> idx,
2 => @as(u8, clock.second) >> idx,
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 3 bytes)", .{ self.count, register }),
}),
};
}
/// Is true when a Reader has read a u8's worth of bits
fn finished(self: *const Reader) bool {
return self.i >= 8;
}
/// Resets the index used to shift bits out of RTC registers
/// and `count`, which is used to keep track of which byte we're reading
/// is incremeneted
fn lap(self: *Reader) void {
self.i = 0;
self.count += 1;
}
/// Resets the state of a `Reader` in preparation for a future
/// read command
fn reset(self: *Reader) void {
self.i = 0;
self.count = 0;
}
};
const Writer = struct {
buf: u8,
i: u4,
/// The Number of bytes written since last reset
count: u8,
/// Append a bit to the internal bit buffer (aka an integer)
fn push(self: *Writer, value: u1) void {
const idx = @intCast(u3, self.i);
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
self.i += 1;
}
/// Takes the contents of the internal buffer and writes it to an RTC register
/// Where it writes to is dependent on:
///
/// 1. The RTC State Machine, whitch tells us which register we're accessing
/// 2. A `count`, which keeps track of which byte is currently being read
fn write(self: *const Writer, clock: *Clock, register: Register) void {
// FIXME: What do do about unused bits?
switch (register) {
.Control => switch (self.count) {
0 => clock.cnt.raw = (clock.cnt.raw & 0x80) | (self.buf & 0x7F), // Bit 7 read-only
else => std.debug.panic("Tried to write to byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
},
.DateTime, .Time => log.debug("Ignoring {} write", .{register}),
}
}
/// Is true when 8 bits have been shifted into the internal buffer
fn finished(self: *const Writer) bool {
return self.i >= 8;
}
/// Resets the internal buffer
/// resets the index used to shift bits into the internal buffer
/// increments `count` (which keeps track of byte offsets) by one
fn lap(self: *Writer) void {
self.buf = 0;
self.i = 0;
self.count += 1;
}
/// Resets `Writer` to a clean state in preparation for a future write command
fn reset(self: *Writer) void {
self.buf = 0;
self.i = 0;
self.count = 0;
}
};
const Data = extern union {
sck: Bit(u8, 0),
sio: Bit(u8, 1),
cs: Bit(u8, 2),
raw: u8,
};
const Control = extern union {
/// Unknown, value should be preserved though
unk: Bit(u8, 1),
/// Per-minute IRQ
/// If set, fire a Gamepak IRQ every 30s,
irq: Bit(u8, 3),
/// 12/24 Hour Bit
/// If set, 12h mode
/// If cleared, 24h mode
mode: Bit(u8, 6),
/// Read-Only, bit cleared on read
/// If is set, means that there has been a failure / time has been lost
off: Bit(u8, 7),
raw: u8,
};
fn init(ptr: *Self, cpu: *Arm7tdmi, gpio: *const Gpio) void {
ptr.* = .{
.writer = .{ .buf = 0, .i = 0, .count = 0 },
.reader = .{ .i = 0, .count = 0 },
.state = .Idle,
.cnt = .{ .raw = 0 },
.year = 0x01,
.month = 0x6,
.day = 0x13,
.weekday = 0x3,
.hour = 0x23,
.minute = 0x59,
.second = 0x59,
.cpu = cpu,
.gpio = gpio, // Can't use Arm7tdmi ptr b/c not initialized yet
};
cpu.sched.push(.RealTimeClock, 1 << 24); // Every Second
}
pub fn updateTime(self: *Self, late: u64) void {
self.cpu.sched.push(.RealTimeClock, (1 << 24) -| late); // Reschedule
const now = DateTime.now();
self.year = bcd(u8, @intCast(u8, now.date.year - 2000));
self.month = bcd(u5, now.date.month);
self.day = bcd(u6, now.date.day);
self.weekday = bcd(u3, (now.date.weekday() + 1) % 7); // API is Monday = 0, Sunday = 6. We want Sunday = 0, Saturday = 6
self.hour = bcd(u6, now.time.hour);
self.minute = bcd(u7, now.time.minute);
self.second = bcd(u7, now.time.second);
}
fn step(self: *Self, value: Data) u4 {
const cache: Data = .{ .raw = self.gpio.data };
return switch (self.state) {
.Idle => blk: {
// FIXME: Maybe check incoming value to see if SCK is also high?
if (cache.sck.read()) {
if (!cache.cs.read() and value.cs.read()) {
log.debug("Entering Command Mode", .{});
self.state = .Command;
}
}
break :blk @truncate(u4, value.raw);
},
.Command => blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
self.writer.push(@boolToInt(value.sio.read()));
if (self.writer.finished()) {
self.state = self.processCommand(self.writer.buf);
self.writer.reset();
log.debug("Switching to {}", .{self.state});
}
}
break :blk @truncate(u4, value.raw);
},
.Write => |register| blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
self.writer.push(@boolToInt(value.sio.read()));
const register_width: u32 = switch (register) {
.Control => 1,
.DateTime => 7,
.Time => 3,
};
if (self.writer.finished()) {
self.writer.write(self, register); // write inner buffer to RTC register
self.writer.lap();
if (self.writer.count == register_width) {
self.writer.reset();
self.state = .Idle;
}
}
}
break :blk @truncate(u4, value.raw);
},
.Read => |register| blk: {
if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
var ret = value;
// if SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
ret.sio.write(self.reader.read(self, register) == 0b1);
const register_width: u32 = switch (register) {
.Control => 1,
.DateTime => 7,
.Time => 3,
};
if (self.reader.finished()) {
self.reader.lap();
if (self.reader.count == register_width) {
self.reader.reset();
self.state = .Idle;
}
}
}
break :blk @truncate(u4, ret.raw);
},
};
}
fn reset(self: *Self) void {
// mGBA and NBA only zero the control register. We will do the same
log.debug("Reset (control register was zeroed)", .{});
self.cnt.raw = 0;
}
fn irq(self: *Self) void {
// TODO: Confirm that this is the right behaviour
log.debug("Force GamePak IRQ", .{});
self.cpu.bus.io.irq.game_pak.set();
self.cpu.handleInterrupt();
}
fn processCommand(self: *Self, raw_command: u8) State {
const command = blk: {
// If High Nybble is 0x6, no need to switch the endianness
if (raw_command >> 4 & 0xF == 0x6) break :blk raw_command;
// Turns out reversing the order of bits isn't trivial at all
// https://stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
var ret = raw_command;
ret = (ret & 0xF0) >> 4 | (ret & 0x0F) << 4;
ret = (ret & 0xCC) >> 2 | (ret & 0x33) << 2;
ret = (ret & 0xAA) >> 1 | (ret & 0x55) << 1;
break :blk ret;
};
log.debug("Handling Command 0x{X:0>2} [0b{b:0>8}]", .{ command, command });
const is_write = command & 1 == 0;
const rtc_register = @truncate(u3, command >> 1 & 0x7);
if (is_write) {
return switch (rtc_register) {
0 => blk: {
self.reset();
break :blk .Idle;
},
1 => .{ .Write = .Control },
2 => .{ .Write = .DateTime },
3 => .{ .Write = .Time },
6 => blk: {
self.irq();
break :blk .Idle;
},
4, 5, 7 => .Idle,
};
} else {
return switch (rtc_register) {
1 => .{ .Read = .Control },
2 => .{ .Read = .DateTime },
3 => .{ .Read = .Time },
0, 4, 5, 6, 7 => .Idle, // Do Nothing
};
}
}
};
fn bcd(comptime T: type, value: u8) T {
var input = value;
var ret: u8 = 0;
var shift: u3 = 0;
while (input > 0) {
ret |= (input % 10) << (shift << 2);
shift += 1;
input /= 10;
}
return @truncate(T, ret);
}

View File

@ -243,6 +243,7 @@ pub const Arm7tdmi = struct {
const Self = @This();
r: [16]u32,
pipe: Pipline,
sched: *Scheduler,
bus: *Bus,
cpsr: PSR,
@ -263,6 +264,7 @@ pub const Arm7tdmi = struct {
pub fn init(sched: *Scheduler, bus: *Bus, log_file: ?std.fs.File) Self {
return Self{
.r = [_]u32{0x00} ** 16,
.pipe = Pipline.init(),
.sched = sched,
.bus = bus,
.cpsr = .{ .raw = 0x0000_001F },
@ -322,8 +324,21 @@ pub const Arm7tdmi = struct {
return self.bus.io.haltcnt == .Halt;
}
pub fn setCpsrNoFlush(self: *Self, value: u32) void {
if (value & 0x1F != self.cpsr.raw & 0x1F) self.changeModeFromIdx(@truncate(u5, value & 0x1F));
self.cpsr.raw = value;
}
pub fn setCpsr(self: *Self, value: u32) void {
if (value & 0x1F != self.cpsr.raw & 0x1F) self.changeModeFromIdx(@truncate(u5, value & 0x1F));
const new: PSR = .{ .raw = value };
if (self.cpsr.t.read() != new.t.read()) {
// If THUMB to ARM or ARM to THUMB, flush pipeline
self.r[15] &= if (new.t.read()) ~@as(u32, 1) else ~@as(u32, 3);
if (new.t.read()) self.pipe.reload(u16, self) else self.pipe.reload(u32, self);
}
self.cpsr.raw = value;
}
@ -414,31 +429,35 @@ pub const Arm7tdmi = struct {
pub fn fastBoot(self: *Self) void {
self.r = std.mem.zeroes([16]u32);
self.r[0] = 0x08000000;
self.r[1] = 0x000000EA;
// self.r[0] = 0x08000000;
// self.r[1] = 0x000000EA;
self.r[13] = 0x0300_7F00;
self.r[15] = 0x0800_0000;
self.banked_r[bankedIdx(.Irq, .R13)] = 0x0300_7FA0;
self.banked_r[bankedIdx(.Supervisor, .R13)] = 0x0300_7FE0;
self.cpsr.raw = 0x6000001F;
// self.cpsr.raw = 0x6000001F;
self.cpsr.raw = 0x0000_001F;
}
pub fn step(self: *Self) void {
if (self.cpsr.t.read()) {
const opcode = self.fetch(u16);
if (self.cpsr.t.read()) blk: {
const opcode = @truncate(u16, self.pipe.step(self, u16) orelse break :blk);
if (cpu_logging) self.logger.?.mgbaLog(self, opcode);
thumb.lut[thumb.idx(opcode)](self, self.bus, opcode);
} else {
const opcode = self.fetch(u32);
} else blk: {
const opcode = self.pipe.step(self, u32) orelse break :blk;
if (cpu_logging) self.logger.?.mgbaLog(self, opcode);
if (checkCond(self.cpsr, @truncate(u4, opcode >> 28))) {
arm.lut[arm.idx(opcode)](self, self.bus, opcode);
}
}
if (!self.pipe.flushed) self.r[15] += if (self.cpsr.t.read()) 2 else @as(u32, 4);
self.pipe.flushed = false;
}
pub fn stepDmaTransfer(self: *Self) bool {
@ -473,27 +492,26 @@ pub const Arm7tdmi = struct {
pub fn handleInterrupt(self: *Self) void {
const should_handle = self.bus.io.ie.raw & self.bus.io.irq.raw;
if (should_handle != 0) {
// Return if IME is disabled, CPSR I is set or there is nothing to handle
if (!self.bus.io.ime or self.cpsr.i.read() or should_handle == 0) return;
// If pipeline isn't full, return but reschedule the handling of the event
if (!self.pipe.isFull()) return;
// log.debug("Handling Interrupt!", .{});
self.bus.io.haltcnt = .Execute;
// log.debug("An Interrupt was Fired!", .{});
// Either IME is not true or I in CPSR is true
// Don't handle interrupts
if (!self.bus.io.ime or self.cpsr.i.read()) return;
// log.debug("An interrupt was Handled!", .{});
// retAddr.gba says r15 on it's own is off by -04h in both ARM and THUMB mode
const r15 = self.r[15] + 4;
const cpsr = self.cpsr.raw;
const ret_addr = self.r[15] - if (self.cpsr.t.read()) 2 else @as(u32, 4);
const new_spsr = self.cpsr.raw;
self.changeMode(.Irq);
self.cpsr.t.write(false);
self.cpsr.i.write(true);
self.r[14] = r15;
self.spsr.raw = cpsr;
self.r[15] = 0x000_0018;
}
self.r[14] = ret_addr;
self.spsr.raw = new_spsr;
self.r[15] = 0x0000_0018;
self.pipe.reload(u32, self);
}
inline fn fetch(self: *Self, comptime T: type) T {
@ -507,8 +525,12 @@ pub const Arm7tdmi = struct {
return self.bus.read(T, self.r[15]);
}
pub fn fakePC(self: *const Self) u32 {
return self.r[15] + 4;
fn debug_log(self: *const Self, file: *const File, opcode: u32) void {
if (self.binary_log) {
self.skyLog(file) catch unreachable;
} else {
self.mgbaLog(file, opcode) catch unreachable;
}
}
pub fn panic(self: *const Self, comptime format: []const u8, args: anytype) noreturn {
@ -525,6 +547,8 @@ pub const Arm7tdmi = struct {
std.debug.print("spsr: 0x{X:0>8} ", .{self.spsr.raw});
prettyPrintPsr(&self.spsr);
std.debug.print("pipeline: {??X:0>8}\n", .{self.pipe.stage});
if (self.cpsr.t.read()) {
const opcode = self.bus.dbgRead(u16, self.r[15] - 4);
const id = thumb.idx(opcode);
@ -588,7 +612,7 @@ pub const Arm7tdmi = struct {
const r12 = self.r[12];
const r13 = self.r[13];
const r14 = self.r[14];
const r15 = self.r[15];
const r15 = self.r[15] -| if (self.cpsr.t.read()) 2 else @as(u32, 4);
const c_psr = self.cpsr.raw;
@ -596,7 +620,7 @@ pub const Arm7tdmi = struct {
if (self.cpsr.t.read()) {
if (opcode >> 11 == 0x1E) {
// Instruction 1 of a BL Opcode, print in ARM mode
const other_half = self.bus.dbgRead(u16, self.r[15]);
const other_half = self.bus.debugRead(u16, self.r[15] - 2);
const bl_opcode = @as(u32, opcode) << 16 | other_half;
log_str = try std.fmt.bufPrint(&buf, arm_fmt, .{ r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, c_psr, bl_opcode });
@ -632,6 +656,59 @@ pub fn checkCond(cpsr: PSR, cond: u4) bool {
};
}
const Pipline = struct {
const Self = @This();
stage: [2]?u32,
flushed: bool,
fn init() Self {
return .{
.stage = [_]?u32{null} ** 2,
.flushed = false,
};
}
pub fn flush(self: *Self) void {
for (self.stage) |*opcode| opcode.* = null;
self.flushed = true;
// Note: If using this, add
// if (!self.pipe.flushed) self.r[15] += if (self.cpsr.t.read()) 2 else @as(u32, 4);
// to the end of Arm7tdmi.step
}
pub fn isFull(self: *const Self) bool {
return self.stage[0] != null and self.stage[1] != null;
}
pub fn step(self: *Self, cpu: *Arm7tdmi, comptime T: type) ?u32 {
comptime std.debug.assert(T == u32 or T == u16);
// FIXME: https://github.com/ziglang/zig/issues/12642
const opcode = self.stage[0..1][0];
self.stage[0] = self.stage[1];
self.stage[1] = cpu.bus.read(T, cpu.r[15]);
return opcode;
}
pub fn reload(self: *Self, comptime T: type, cpu: *Arm7tdmi) void {
comptime std.debug.assert(T == u32 or T == u16);
// Sometimes, the pipeline can be reloaded twice in the same instruction
// This can happen if:
// 1. R15 is written to
// 2. The CPSR is written to (and T changes), so R15 is written to again
self.stage[0] = cpu.bus.read(T, cpu.r[15]);
self.stage[1] = cpu.bus.read(T, cpu.r[15] + if (T == u32) 4 else @as(u32, 2));
cpu.r[15] += if (T == u32) 8 else @as(u32, 4);
self.flushed = true;
}
};
pub const PSR = extern union {
mode: Bitfield(u32, 0, 5),
t: Bit(u32, 5),

View File

@ -55,8 +55,10 @@ pub fn blockDataTransfer(comptime P: bool, comptime U: bool, comptime S: bool, c
if (L) {
cpu.r[15] = bus.read(u32, und_addr);
cpu.pipe.reload(u32, cpu);
} else {
bus.write(u32, und_addr, cpu.r[15] + 8);
// FIXME: Should r15 on write be +12 ahead?
bus.write(u32, und_addr, cpu.r[15] + 4);
}
cpu.r[rn] = if (U) cpu.r[rn] + 0x40 else cpu.r[rn] - 0x40;
@ -86,17 +88,23 @@ pub fn blockDataTransfer(comptime P: bool, comptime U: bool, comptime S: bool, c
cpu.setUserModeRegister(i, bus.read(u32, address));
} else {
const value = bus.read(u32, address);
cpu.r[i] = if (i == 0xF) value & 0xFFFF_FFFC else value;
if (S and i == 0xF) cpu.setCpsr(cpu.spsr.raw);
cpu.r[i] = value;
if (i == 0xF) {
cpu.r[i] &= ~@as(u32, 3); // Align r15
cpu.pipe.reload(u32, cpu);
if (S) cpu.setCpsr(cpu.spsr.raw);
}
}
} else {
if (S) {
// Always Transfer User mode Registers
// This happens regardless if r15 is in the list
const value = cpu.getUserModeRegister(i);
bus.write(u32, address, value + if (i == 0xF) 8 else @as(u32, 0)); // PC is already 4 ahead to make 12
bus.write(u32, address, value + if (i == 0xF) 4 else @as(u32, 0)); // PC is already 8 ahead to make 12
} else {
bus.write(u32, address, cpu.r[i] + if (i == 0xF) 8 else @as(u32, 0));
bus.write(u32, address, cpu.r[i] + if (i == 0xF) 4 else @as(u32, 0));
}
}
}

View File

@ -9,14 +9,20 @@ const sext = @import("../../util.zig").sext;
pub fn branch(comptime L: bool) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
if (L) cpu.r[14] = cpu.r[15];
cpu.r[15] = cpu.fakePC() +% (sext(u32, u24, opcode) << 2);
if (L) cpu.r[14] = cpu.r[15] - 4;
cpu.r[15] +%= sext(u32, u24, opcode) << 2;
cpu.pipe.reload(u32, cpu);
}
}.inner;
}
pub fn branchAndExchange(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rn = opcode & 0xF;
cpu.cpsr.t.write(cpu.r[rn] & 1 == 1);
cpu.r[15] = cpu.r[rn] & 0xFFFF_FFFE;
const thumb = cpu.r[rn] & 1 == 1;
cpu.r[15] = cpu.r[rn] & if (thumb) ~@as(u32, 1) else ~@as(u32, 3);
cpu.cpsr.t.write(thumb);
if (thumb) cpu.pipe.reload(u16, cpu) else cpu.pipe.reload(u32, cpu);
}

View File

@ -5,7 +5,7 @@ const InstrFn = @import("../../cpu.zig").arm.InstrFn;
const rotateRight = @import("../barrel_shifter.zig").rotateRight;
const execute = @import("../barrel_shifter.zig").execute;
pub fn dataProcessing(comptime I: bool, comptime S: bool, comptime instrKind: u4) InstrFn {
pub fn dataProcessing(comptime I: bool, comptime S: bool, comptime kind: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd = @truncate(u4, opcode >> 12 & 0xF);
@ -13,124 +13,276 @@ pub fn dataProcessing(comptime I: bool, comptime S: bool, comptime instrKind: u4
const old_carry = @boolToInt(cpu.cpsr.c.read());
// If certain conditions are met, PC is 12 ahead instead of 8
// TODO: Why these conditions?
if (!I and opcode >> 4 & 1 == 1) cpu.r[15] += 4;
const op1 = cpu.r[rn];
const op1 = if (rn == 0xF) cpu.fakePC() else cpu.r[rn];
var op2: u32 = undefined;
if (I) {
const amount = @truncate(u8, (opcode >> 8 & 0xF) << 1);
op2 = rotateRight(S, &cpu.cpsr, opcode & 0xFF, amount);
} else {
op2 = execute(S, cpu, opcode);
}
const op2 = if (I) rotateRight(S, &cpu.cpsr, opcode & 0xFF, amount) else execute(S, cpu, opcode);
// Undo special condition from above
if (!I and opcode >> 4 & 1 == 1) cpu.r[15] -= 4;
switch (instrKind) {
0x0 => {
// AND
const result = op1 & op2;
cpu.r[rd] = result;
setArmLogicOpFlags(S, cpu, rd, result);
},
0x1 => {
// EOR
const result = op1 ^ op2;
cpu.r[rd] = result;
setArmLogicOpFlags(S, cpu, rd, result);
},
0x2 => {
// SUB
cpu.r[rd] = armSub(S, cpu, rd, op1, op2);
},
0x3 => {
// RSB
cpu.r[rd] = armSub(S, cpu, rd, op2, op1);
},
0x4 => {
// ADD
cpu.r[rd] = armAdd(S, cpu, rd, op1, op2);
},
0x5 => {
// ADC
cpu.r[rd] = armAdc(S, cpu, rd, op1, op2, old_carry);
},
0x6 => {
// SBC
cpu.r[rd] = armSbc(S, cpu, rd, op1, op2, old_carry);
},
0x7 => {
// RSC
cpu.r[rd] = armSbc(S, cpu, rd, op2, op1, old_carry);
},
var result: u32 = undefined;
var didOverflow: bool = undefined;
// Perform Data Processing Logic
switch (kind) {
0x0 => result = op1 & op2, // AND
0x1 => result = op1 ^ op2, // EOR
0x2 => result = op1 -% op2, // SUB
0x3 => result = op2 -% op1, // RSB
0x4 => result = newAdd(&didOverflow, op1, op2), // ADD
0x5 => result = newAdc(&didOverflow, op1, op2, old_carry), // ADC
0x6 => result = newSbc(op1, op2, old_carry), // SBC
0x7 => result = newSbc(op2, op1, old_carry), // RSC
0x8 => {
// TST
if (rd == 0xF) {
undefinedTestBehaviour(cpu);
return;
}
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
const result = op1 & op2;
setTestOpFlags(S, cpu, opcode, result);
result = op1 & op2;
},
0x9 => {
// TEQ
if (rd == 0xF) {
undefinedTestBehaviour(cpu);
return;
}
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
const result = op1 ^ op2;
setTestOpFlags(S, cpu, opcode, result);
result = op1 ^ op2;
},
0xA => {
// CMP
if (rd == 0xF) {
undefinedTestBehaviour(cpu);
return;
}
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
cmp(cpu, op1, op2);
result = op1 -% op2;
},
0xB => {
// CMN
if (rd == 0xF) {
undefinedTestBehaviour(cpu);
return;
if (rd == 0xF)
return undefinedTestBehaviour(cpu);
didOverflow = @addWithOverflow(u32, op1, op2, &result);
},
0xC => result = op1 | op2, // ORR
0xD => result = op2, // MOV
0xE => result = op1 & ~op2, // BIC
0xF => result = ~op2, // MVN
}
cmn(cpu, op1, op2);
},
0xC => {
// ORR
const result = op1 | op2;
// Write to Destination Register
switch (kind) {
0x8, 0x9, 0xA, 0xB => {}, // Test Operations
else => {
cpu.r[rd] = result;
setArmLogicOpFlags(S, cpu, rd, result);
if (rd == 0xF) cpu.pipe.reload(u32, cpu);
},
0xD => {
// MOV
cpu.r[rd] = op2;
setArmLogicOpFlags(S, cpu, rd, op2);
}
// Write Flags
switch (kind) {
0x0, 0x1, 0xC, 0xD, 0xE, 0xF => {
// Logic Operation Flags
if (S) {
if (rd == 0xF) {
cpu.setCpsr(cpu.spsr.raw);
} else {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// C set by Barrel Shifter, V is unaffected
}
}
},
0xE => {
// BIC
const result = op1 & ~op2;
cpu.r[rd] = result;
setArmLogicOpFlags(S, cpu, rd, result);
0x2, 0x3 => {
// SUB, RSB Flags
if (S) {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0x2) {
// SUB specific
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else {
// RSB Specific
cpu.cpsr.c.write(op1 <= op2);
cpu.cpsr.v.write(((op2 ^ result) & (~op1 ^ result)) >> 31 & 1 == 1);
}
if (rd == 0xF) cpu.setCpsr(cpu.spsr.raw);
}
},
0xF => {
// MVN
const result = ~op2;
cpu.r[rd] = result;
setArmLogicOpFlags(S, cpu, rd, result);
0x4, 0x5 => {
// ADD, ADC Flags
if (S) {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(didOverflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
if (rd == 0xF) cpu.setCpsr(cpu.spsr.raw);
}
},
0x6, 0x7 => {
// SBC, RSC Flags
if (S) {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0x6) {
// SBC specific
const subtrahend = @as(u64, op2) -% old_carry +% 1;
cpu.cpsr.c.write(subtrahend <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else {
// RSC Specific
const subtrahend = @as(u64, op1) -% old_carry +% 1;
cpu.cpsr.c.write(subtrahend <= op2);
cpu.cpsr.v.write(((op2 ^ result) & (~op1 ^ result)) >> 31 & 1 == 1);
}
if (rd == 0xF) cpu.setCpsr(cpu.spsr.raw);
}
},
0x8, 0x9, 0xA, 0xB => {
// Test Operation Flags
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
if (kind == 0xA) {
// CMP specific
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
} else if (kind == 0xB) {
// CMN specific
cpu.cpsr.c.write(didOverflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
} else {
// TEST, TEQ specific
// Barrel Shifter should always calc CPSR C in TST
if (!S) _ = execute(true, cpu, opcode);
}
},
}
}
}.inner;
}
// pub fn dataProcessing(comptime I: bool, comptime S: bool, comptime instrKind: u4) InstrFn {
// return struct {
// fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
// const rd = @truncate(u4, opcode >> 12 & 0xF);
// const rn = opcode >> 16 & 0xF;
// const old_carry = @boolToInt(cpu.cpsr.c.read());
// // If certain conditions are met, PC is 12 ahead instead of 8
// // TODO: What are these conditions? I can't remember
// if (!I and opcode >> 4 & 1 == 1) cpu.r[15] += 4;
// const op1 = cpu.r[rn];
// const amount = @truncate(u8, (opcode >> 8 & 0xF) << 1);
// const op2 = if (I) rotateRight(S, &cpu.cpsr, opcode & 0xFF, amount) else execute(S, cpu, opcode);
// // Undo special condition from above
// if (!I and opcode >> 4 & 1 == 1) cpu.r[15] -= 4;
// switch (instrKind) {
// 0x0 => {
// // AND
// const result = op1 & op2;
// cpu.r[rd] = result;
// setArmLogicOpFlags(S, cpu, rd, result);
// },
// 0x1 => {
// // EOR
// const result = op1 ^ op2;
// cpu.r[rd] = result;
// setArmLogicOpFlags(S, cpu, rd, result);
// },
// 0x2 => {
// // SUB
// cpu.r[rd] = armSub(S, cpu, rd, op1, op2);
// },
// 0x3 => {
// // RSB
// cpu.r[rd] = armSub(S, cpu, rd, op2, op1);
// },
// 0x4 => {
// // ADD
// cpu.r[rd] = armAdd(S, cpu, rd, op1, op2);
// },
// 0x5 => {
// // ADC
// cpu.r[rd] = armAdc(S, cpu, rd, op1, op2, old_carry);
// },
// 0x6 => {
// // SBC
// cpu.r[rd] = armSbc(S, cpu, rd, op1, op2, old_carry);
// },
// 0x7 => {
// // RSC
// cpu.r[rd] = armSbc(S, cpu, rd, op2, op1, old_carry);
// },
// 0x8 => {
// // TST
// if (rd == 0xF)
// return undefinedTestBehaviour(cpu);
// const result = op1 & op2;
// setTestOpFlags(S, cpu, opcode, result);
// },
// 0x9 => {
// // TEQ
// if (rd == 0xF)
// return undefinedTestBehaviour(cpu);
// const result = op1 ^ op2;
// setTestOpFlags(S, cpu, opcode, result);
// },
// 0xA => {
// // CMP
// if (rd == 0xF)
// return undefinedTestBehaviour(cpu);
// cmp(cpu, op1, op2);
// },
// 0xB => {
// // CMN
// if (rd == 0xF)
// return undefinedTestBehaviour(cpu);
// cmn(cpu, op1, op2);
// },
// 0xC => {
// // ORR
// const result = op1 | op2;
// cpu.r[rd] = result;
// setArmLogicOpFlags(S, cpu, rd, result);
// },
// 0xD => {
// // MOV
// cpu.r[rd] = op2;
// setArmLogicOpFlags(S, cpu, rd, op2);
// },
// 0xE => {
// // BIC
// const result = op1 & ~op2;
// cpu.r[rd] = result;
// setArmLogicOpFlags(S, cpu, rd, result);
// },
// 0xF => {
// // MVN
// const result = ~op2;
// cpu.r[rd] = result;
// setArmLogicOpFlags(S, cpu, rd, result);
// },
// }
// if (rd == 0xF) cpu.pipe.reload(u32, cpu);
// }
// }.inner;
// }
fn armSbc(comptime S: bool, cpu: *Arm7tdmi, rd: u4, left: u32, right: u32, old_carry: u1) u32 {
var result: u32 = undefined;
if (S and rd == 0xF) {
@ -143,6 +295,14 @@ fn armSbc(comptime S: bool, cpu: *Arm7tdmi, rd: u4, left: u32, right: u32, old_c
return result;
}
fn newSbc(left: u32, right: u32, old_carry: u1) u32 {
// TODO: Make your own version (thanks peach.bot)
const subtrahend = @as(u64, right) -% old_carry +% 1;
const ret = @truncate(u32, left -% subtrahend);
return ret;
}
pub fn sbc(comptime S: bool, cpu: *Arm7tdmi, left: u32, right: u32, old_carry: u1) u32 {
// TODO: Make your own version (thanks peach.bot)
const subtrahend = @as(u64, right) -% old_carry +% 1;
@ -195,6 +355,12 @@ fn armAdd(comptime S: bool, cpu: *Arm7tdmi, rd: u4, left: u32, right: u32) u32 {
return result;
}
fn newAdd(didOverflow: *bool, left: u32, right: u32) u32 {
var ret: u32 = undefined;
didOverflow.* = @addWithOverflow(u32, left, right, &ret);
return ret;
}
pub fn add(comptime S: bool, cpu: *Arm7tdmi, left: u32, right: u32) u32 {
var result: u32 = undefined;
const didOverflow = @addWithOverflow(u32, left, right, &result);
@ -221,6 +387,15 @@ fn armAdc(comptime S: bool, cpu: *Arm7tdmi, rd: u4, left: u32, right: u32, old_c
return result;
}
fn newAdc(didOverflow: *bool, left: u32, right: u32, old_carry: u1) u32 {
var ret: u32 = undefined;
const did = @addWithOverflow(u32, left, right, &ret);
const overflow = @addWithOverflow(u32, ret, old_carry, &ret);
didOverflow.* = did or overflow;
return ret;
}
pub fn adc(comptime S: bool, cpu: *Arm7tdmi, left: u32, right: u32, old_carry: u1) u32 {
var result: u32 = undefined;
const did = @addWithOverflow(u32, left, right, &result);
@ -280,5 +455,5 @@ fn setTestOpFlags(comptime S: bool, cpu: *Arm7tdmi, opcode: u32, result: u32) vo
fn undefinedTestBehaviour(cpu: *Arm7tdmi) void {
@setCold(true);
cpu.setCpsr(cpu.spsr.raw);
cpu.setCpsrNoFlush(cpu.spsr.raw);
}

View File

@ -15,20 +15,8 @@ pub fn halfAndSignedDataTransfer(comptime P: bool, comptime U: bool, comptime I:
const rm = opcode & 0xF;
const imm_offset_high = opcode >> 8 & 0xF;
var base: u32 = undefined;
if (rn == 0xF) {
base = cpu.fakePC();
if (!L) base += 4;
} else {
base = cpu.r[rn];
}
var offset: u32 = undefined;
if (I) {
offset = imm_offset_high << 4 | rm;
} else {
offset = cpu.r[rm];
}
const base = cpu.r[rn] + if (!L and rn == 0xF) 4 else @as(u32, 0);
const offset = if (I) imm_offset_high << 4 | rm else cpu.r[rm];
const modified_base = if (U) base +% offset else base -% offset;
var address = if (P) modified_base else base;

View File

@ -14,13 +14,8 @@ pub fn singleDataTransfer(comptime I: bool, comptime P: bool, comptime U: bool,
const rn = opcode >> 16 & 0xF;
const rd = opcode >> 12 & 0xF;
var base: u32 = undefined;
if (rn == 0xF) {
base = cpu.fakePC();
if (!L) base += 4; // Offset of 12
} else {
base = cpu.r[rn];
}
// rn is r15 and L is not set, the PC is 12 ahead
const base = cpu.r[rn] + if (!L and rn == 0xF) 4 else @as(u32, 0);
const offset = if (I) shifter.immShift(false, cpu, opcode) else opcode & 0xFFF;
@ -40,18 +35,26 @@ pub fn singleDataTransfer(comptime I: bool, comptime P: bool, comptime U: bool,
} else {
if (B) {
// STRB
const value = if (rd == 0xF) cpu.r[rd] + 8 else cpu.r[rd];
const value = cpu.r[rd] + if (rd == 0xF) 4 else @as(u32, 0); // PC is 12 ahead
bus.write(u8, address, @truncate(u8, value));
} else {
// STR
const value = if (rd == 0xF) cpu.r[rd] + 8 else cpu.r[rd];
const value = cpu.r[rd] + if (rd == 0xF) 4 else @as(u32, 0);
bus.write(u32, address, value);
}
}
address = modified_base;
if (W and P or !P) cpu.r[rn] = address;
if (L) cpu.r[rd] = result; // This emulates the LDR rd == rn behaviour
if (W and P or !P) {
cpu.r[rn] = address;
if (rn == 0xF) cpu.pipe.reload(u32, cpu);
}
if (L) {
// This emulates the LDR rd == rn behaviour
cpu.r[rd] = result;
if (rd == 0xF) cpu.pipe.reload(u32, cpu);
}
}
}.inner;
}

View File

@ -6,7 +6,7 @@ pub fn armSoftwareInterrupt() InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, _: u32) void {
// Copy Values from Current Mode
const r15 = cpu.r[15];
const ret_addr = cpu.r[15] - 4;
const cpsr = cpu.cpsr.raw;
// Switch Mode
@ -14,9 +14,10 @@ pub fn armSoftwareInterrupt() InstrFn {
cpu.cpsr.t.write(false); // Force ARM Mode
cpu.cpsr.i.write(true); // Disable normal interrupts
cpu.r[14] = r15; // Resume Execution
cpu.r[14] = ret_addr; // Resume Execution
cpu.spsr.raw = cpsr; // Previous mode CPSR
cpu.r[15] = 0x0000_0008;
cpu.pipe.reload(u32, cpu);
}
}.inner;
}

View File

@ -18,11 +18,9 @@ pub fn execute(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
fn registerShift(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
const rs_idx = opcode >> 8 & 0xF;
const rm = cpu.r[opcode & 0xF];
const rs = @truncate(u8, cpu.r[rs_idx]);
const rm_idx = opcode & 0xF;
const rm = if (rm_idx == 0xF) cpu.fakePC() else cpu.r[rm_idx];
return switch (@truncate(u2, opcode >> 5)) {
0b00 => logicalLeft(S, &cpu.cpsr, rm, rs),
0b01 => logicalRight(S, &cpu.cpsr, rm, rs),
@ -33,9 +31,7 @@ fn registerShift(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
pub fn immShift(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 {
const amount = @truncate(u8, opcode >> 7 & 0x1F);
const rm_idx = opcode & 0xF;
const rm = if (rm_idx == 0xF) cpu.fakePC() else cpu.r[rm_idx];
const rm = cpu.r[opcode & 0xF];
var result: u32 = undefined;
if (amount == 0) {

View File

@ -33,7 +33,8 @@ pub fn fmt14(comptime L: bool, comptime R: bool) InstrFn {
if (R) {
if (L) {
const value = bus.read(u32, address);
cpu.r[15] = value & 0xFFFF_FFFE;
cpu.r[15] = value & ~@as(u32, 1);
cpu.pipe.reload(u16, cpu);
} else {
bus.write(u32, address, cpu.r[14]);
}
@ -52,7 +53,13 @@ pub fn fmt15(comptime L: bool, comptime rb: u3) InstrFn {
const end_address = cpu.r[rb] + 4 * countRlist(opcode);
if (opcode & 0xFF == 0) {
if (L) cpu.r[15] = bus.read(u32, address) else bus.write(u32, address, cpu.r[15] + 4);
if (L) {
cpu.r[15] = bus.read(u32, address);
cpu.pipe.reload(u16, cpu);
} else {
bus.write(u32, address, cpu.r[15] + 2);
}
cpu.r[rb] += 0x40;
return;
}

View File

@ -9,16 +9,13 @@ pub fn fmt16(comptime cond: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// B
const offset = sext(u32, u8, opcode & 0xFF) << 1;
if (cond == 0xE or cond == 0xF)
cpu.panic("[CPU/THUMB.16] Undefined conditional branch with condition {}", .{cond});
const should_execute = switch (cond) {
0xE, 0xF => cpu.panic("[CPU/THUMB.16] Undefined conditional branch with condition {}", .{cond}),
else => checkCond(cpu.cpsr, cond),
};
if (!checkCond(cpu.cpsr, cond)) return;
if (should_execute) {
cpu.r[15] = (cpu.r[15] + 2) +% offset;
}
cpu.r[15] +%= sext(u32, u8, opcode & 0xFF) << 1;
cpu.pipe.reload(u16, cpu);
}
}.inner;
}
@ -27,8 +24,8 @@ pub fn fmt18() InstrFn {
return struct {
// B but conditional
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const offset = sext(u32, u11, opcode & 0x7FF) << 1;
cpu.r[15] = (cpu.r[15] + 2) +% offset;
cpu.r[15] +%= sext(u32, u11, opcode & 0x7FF) << 1;
cpu.pipe.reload(u16, cpu);
}
}.inner;
}
@ -41,13 +38,16 @@ pub fn fmt19(comptime is_low: bool) InstrFn {
if (is_low) {
// Instruction 2
const old_pc = cpu.r[15];
const next_opcode = cpu.r[15] - 2;
cpu.r[15] = cpu.r[14] +% (offset << 1);
cpu.r[14] = old_pc | 1;
cpu.r[14] = next_opcode | 1;
cpu.pipe.reload(u16, cpu);
} else {
// Instruction 1
cpu.r[14] = (cpu.r[15] + 2) +% (sext(u32, u11, offset) << 12);
const lr_offset = sext(u32, u11, offset) << 12;
cpu.r[14] = (cpu.r[15] +% lr_offset) & ~@as(u32, 1);
}
}
}.inner;

View File

@ -10,8 +10,6 @@ const sub = @import("../arm/data_processing.zig").sub;
const cmp = @import("../arm/data_processing.zig").cmp;
const setLogicOpFlags = @import("../arm/data_processing.zig").setLogicOpFlags;
const log = std.log.scoped(.Thumb1);
pub fn fmt1(comptime op: u2, comptime offset: u5) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
@ -58,29 +56,38 @@ pub fn fmt1(comptime op: u2, comptime offset: u5) InstrFn {
pub fn fmt5(comptime op: u2, comptime h1: u1, comptime h2: u1) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
const src_idx = @as(u4, h2) << 3 | (opcode >> 3 & 0x7);
const dst_idx = @as(u4, h1) << 3 | (opcode & 0x7);
const rs = @as(u4, h2) << 3 | (opcode >> 3 & 0x7);
const rd = @as(u4, h1) << 3 | (opcode & 0x7);
const src = if (src_idx == 0xF) (cpu.r[src_idx] + 2) & 0xFFFF_FFFE else cpu.r[src_idx];
const dst = if (dst_idx == 0xF) (cpu.r[dst_idx] + 2) & 0xFFFF_FFFE else cpu.r[dst_idx];
const rs_value = if (rs == 0xF) cpu.r[rs] & ~@as(u32, 1) else cpu.r[rs];
const rd_value = if (rd == 0xF) cpu.r[rd] & ~@as(u32, 1) else cpu.r[rd];
switch (op) {
0b00 => {
// ADD
const sum = add(false, cpu, dst, src);
cpu.r[dst_idx] = if (dst_idx == 0xF) sum & 0xFFFF_FFFE else sum;
const sum = add(false, cpu, rd_value, rs_value);
cpu.r[rd] = if (rd == 0xF) sum & ~@as(u32, 1) else sum;
},
0b01 => cmp(cpu, dst, src), // CMP
0b01 => cmp(cpu, rd_value, rs_value), // CMP
0b10 => {
// MOV
cpu.r[dst_idx] = if (dst_idx == 0xF) src & 0xFFFF_FFFE else src;
cpu.r[rd] = if (rd == 0xF) rs_value & ~@as(u32, 1) else rs_value;
},
0b11 => {
// BX
cpu.cpsr.t.write(src & 1 == 1);
cpu.r[15] = src & 0xFFFF_FFFE;
const thumb = rs_value & 1 == 1;
cpu.r[15] = rs_value & ~@as(u32, 1);
cpu.cpsr.t.write(thumb);
if (thumb) cpu.pipe.reload(u16, cpu) else cpu.pipe.reload(u32, cpu);
// TODO: We shouldn't need to worry about the if statement
// below, because in BX, rd SBZ (and H1 is guaranteed to be 0)
return;
},
}
if (rd == 0xF) cpu.pipe.reload(u16, cpu);
}
}.inner;
}
@ -133,10 +140,9 @@ pub fn fmt12(comptime isSP: bool, comptime rd: u3) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u16) void {
// ADD
const left = if (isSP) cpu.r[13] else (cpu.r[15] + 2) & 0xFFFF_FFFD;
const left = if (isSP) cpu.r[13] else cpu.r[15] & ~@as(u32, 2);
const right = (opcode & 0xFF) << 2;
const result = left + right;
cpu.r[rd] = result;
cpu.r[rd] = left + right;
}
}.inner;
}

View File

@ -11,7 +11,9 @@ pub fn fmt6(comptime rd: u3) InstrFn {
fn inner(cpu: *Arm7tdmi, bus: *Bus, opcode: u16) void {
// LDR
const offset = (opcode & 0xFF) << 2;
cpu.r[rd] = bus.read(u32, (cpu.r[15] + 2 & 0xFFFF_FFFD) + offset);
// Bit 1 of the PC intentionally ignored
cpu.r[rd] = bus.read(u32, (cpu.r[15] & ~@as(u32, 2)) + offset);
}
}.inner;
}

View File

@ -6,7 +6,7 @@ pub fn fmt17() InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, _: u16) void {
// Copy Values from Current Mode
const r15 = cpu.r[15];
const ret_addr = cpu.r[15] - 2;
const cpsr = cpu.cpsr.raw;
// Switch Mode
@ -14,9 +14,10 @@ pub fn fmt17() InstrFn {
cpu.cpsr.t.write(false); // Force ARM Mode
cpu.cpsr.i.write(true); // Disable normal interrupts
cpu.r[14] = r15; // Resume Execution
cpu.r[14] = ret_addr; // Resume Execution
cpu.spsr.raw = cpsr; // Previous mode CPSR
cpu.r[15] = 0x0000_0008;
cpu.pipe.reload(u32, cpu);
}
}.inner;
}

View File

@ -15,7 +15,7 @@ const Allocator = std.mem.Allocator;
// TODO: Move these to a TOML File
const sync_audio = false; // Enable Audio Sync
const sync_video: RunKind = .LimitedFPS; // Configure Video Sync
pub const win_scale = 3; // 1x, 2x, 3x, etc. Window Scaling
pub const win_scale = 4; // 1x, 2x, 3x, etc. Window Scaling
pub const cpu_logging = false; // Enable detailed CPU logging
pub const allow_unhandled_io = true; // Only relevant in Debug Builds
pub const force_rtc = false;

View File

@ -2,7 +2,7 @@ const std = @import("std");
const Bus = @import("Bus.zig");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Clock = @import("bus/GamePak.zig").Clock;
const Clock = @import("bus/gpio.zig").Clock;
const Order = std.math.Order;
const PriorityQueue = std.PriorityQueue;

View File

@ -66,36 +66,68 @@ pub fn intToBytes(comptime T: type, value: anytype) [@sizeOf(T)]u8 {
return result;
}
/// The Title from the GBA Cartridge may be null padded to a maximum
/// length of 12 bytes.
/// The Title from the GBA Cartridge is an Uppercase ASCII string which is
/// null-padded to 12 bytes
///
/// This function returns a slice of everything just before the first
/// `\0`
pub fn asStringSlice(title: *const [12]u8) []const u8 {
var len = title.len;
for (title) |char, i| {
if (char == 0) {
len = i;
break;
}
}
return title[0..len];
/// This function returns a slice of the ASCII string without the null terminator(s)
/// (essentially, a proper Zig/Rust/Any modern language String)
pub fn span(title: *const [12]u8) []const u8 {
const end = std.mem.indexOfScalar(u8, title, '\x00');
return title[0 .. end orelse title.len];
}
/// Copies a Title and returns either an identical or similar
/// array consisting of ASCII that won't make any file system angry
test "span" {
var example: *const [12]u8 = "POKEMON_EMER";
try std.testing.expectEqualSlices(u8, "POKEMON_EMER", span(example));
example = "POKEMON_EME\x00";
try std.testing.expectEqualSlices(u8, "POKEMON_EME", span(example));
example = "POKEMON_EM\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMON_EM", span(example));
example = "POKEMON_E\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMON_E", span(example));
example = "POKEMON_\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMON_", span(example));
example = "POKEMON\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMON", span(example));
example = "POKEMO\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEMO", span(example));
example = "POKEM\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKEM", span(example));
example = "POKE\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POKE", span(example));
example = "POK\x00\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "POK", span(example));
example = "PO\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "PO", span(example));
example = "P\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "P", span(example));
example = "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00";
try std.testing.expectEqualSlices(u8, "", span(example));
}
/// Creates a copy of a title with all Filesystem-invalid characters replaced
///
/// e.g. POKEPIN R/S to POKEPIN R_S
pub fn escape(title: [12]u8) [12]u8 {
var result: [12]u8 = title;
var ret: [12]u8 = title;
for (result) |*char| {
if (char.* == '/' or char.* == '\\') char.* = '_';
if (char.* == 0) break;
}
//TODO: Add more replacements
std.mem.replaceScalar(u8, &ret, '/', '_');
std.mem.replaceScalar(u8, &ret, '\\', '_');
return result;
return ret;
}
pub const FilePaths = struct {
@ -151,6 +183,7 @@ pub const Logger = struct {
pub fn print(self: *Self, comptime format: []const u8, args: anytype) !void {
try self.buf.writer().print(format, args);
try self.buf.flush(); // FIXME: On panics, whatever is in the buffer isn't written to file
}
pub fn mgbaLog(self: *Self, cpu: *const Arm7tdmi, opcode: u32) void {
@ -190,7 +223,7 @@ pub const Logger = struct {
cpu.r[12],
cpu.r[13],
cpu.r[14],
cpu.r[15],
cpu.r[15] - if (cpu.cpsr.t.read()) 2 else @as(u32, 4),
cpu.cpsr.raw,
opcode,
};

View File

@ -4,14 +4,14 @@ const builtin = @import("builtin");
const known_folders = @import("known_folders");
const clap = @import("clap");
const Gui = @import("Gui.zig");
const Gui = @import("platform.zig").Gui;
const Bus = @import("core/Bus.zig");
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Scheduler = @import("core/scheduler.zig").Scheduler;
const FilePaths = @import("core/util.zig").FilePaths;
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.CLI);
const log = std.log.scoped(.Cli);
const width = @import("core/ppu.zig").width;
const height = @import("core/ppu.zig").height;
const cpu_logging = @import("core/emu.zig").cpu_logging;
@ -54,8 +54,7 @@ pub fn main() anyerror!void {
try bus.init(allocator, &scheduler, &cpu, paths);
defer bus.deinit();
var gui = Gui.init(bus.pak.title, width, height);
gui.initAudio(&bus.apu);
var gui = Gui.init(&bus.pak.title, &bus.apu, width, height);
defer gui.deinit();
try gui.run(&cpu, &scheduler);

190
src/platform.zig Normal file
View File

@ -0,0 +1,190 @@
const std = @import("std");
const SDL = @import("sdl2");
const emu = @import("core/emu.zig");
const Apu = @import("core/apu.zig").Apu;
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
const Scheduler = @import("core/scheduler.zig").Scheduler;
const FpsTracker = @import("core/util.zig").FpsTracker;
const span = @import("core/util.zig").span;
const pitch = @import("core/ppu.zig").framebuf_pitch;
const scale = @import("core/emu.zig").win_scale;
const default_title: []const u8 = "ZBA";
pub const Gui = struct {
const Self = @This();
const log = std.log.scoped(.Gui);
window: *SDL.SDL_Window,
title: []const u8,
renderer: *SDL.SDL_Renderer,
texture: *SDL.SDL_Texture,
audio: Audio,
pub fn init(title: *const [12]u8, apu: *Apu, width: i32, height: i32) Self {
const ret = SDL.SDL_Init(SDL.SDL_INIT_VIDEO | SDL.SDL_INIT_EVENTS | SDL.SDL_INIT_AUDIO | SDL.SDL_INIT_GAMECONTROLLER);
if (ret < 0) panic();
const window = SDL.SDL_CreateWindow(
default_title.ptr,
SDL.SDL_WINDOWPOS_CENTERED,
SDL.SDL_WINDOWPOS_CENTERED,
@as(c_int, width * scale),
@as(c_int, height * scale),
SDL.SDL_WINDOW_SHOWN,
) orelse panic();
const renderer = SDL.SDL_CreateRenderer(window, -1, SDL.SDL_RENDERER_ACCELERATED | SDL.SDL_RENDERER_PRESENTVSYNC) orelse panic();
const texture = SDL.SDL_CreateTexture(
renderer,
SDL.SDL_PIXELFORMAT_RGBA8888,
SDL.SDL_TEXTUREACCESS_STREAMING,
@as(c_int, width),
@as(c_int, height),
) orelse panic();
return Self{
.window = window,
.title = span(title),
.renderer = renderer,
.texture = texture,
.audio = Audio.init(apu),
};
}
pub fn run(self: *Self, cpu: *Arm7tdmi, scheduler: *Scheduler) !void {
var quit = std.atomic.Atomic(bool).init(false);
var frame_rate = FpsTracker.init();
const thread = try std.Thread.spawn(.{}, emu.run, .{ &quit, &frame_rate, scheduler, cpu });
defer thread.join();
var title_buf: [0x100]u8 = [_]u8{0} ** 0x100;
emu_loop: while (true) {
var event: SDL.SDL_Event = undefined;
while (SDL.SDL_PollEvent(&event) != 0) {
switch (event.type) {
SDL.SDL_QUIT => break :emu_loop,
SDL.SDL_KEYDOWN => {
const io = &cpu.bus.io;
const key_code = event.key.keysym.sym;
switch (key_code) {
SDL.SDLK_UP => io.keyinput.up.unset(),
SDL.SDLK_DOWN => io.keyinput.down.unset(),
SDL.SDLK_LEFT => io.keyinput.left.unset(),
SDL.SDLK_RIGHT => io.keyinput.right.unset(),
SDL.SDLK_x => io.keyinput.a.unset(),
SDL.SDLK_z => io.keyinput.b.unset(),
SDL.SDLK_a => io.keyinput.shoulder_l.unset(),
SDL.SDLK_s => io.keyinput.shoulder_r.unset(),
SDL.SDLK_RETURN => io.keyinput.start.unset(),
SDL.SDLK_RSHIFT => io.keyinput.select.unset(),
else => {},
}
},
SDL.SDL_KEYUP => {
const io = &cpu.bus.io;
const key_code = event.key.keysym.sym;
switch (key_code) {
SDL.SDLK_UP => io.keyinput.up.set(),
SDL.SDLK_DOWN => io.keyinput.down.set(),
SDL.SDLK_LEFT => io.keyinput.left.set(),
SDL.SDLK_RIGHT => io.keyinput.right.set(),
SDL.SDLK_x => io.keyinput.a.set(),
SDL.SDLK_z => io.keyinput.b.set(),
SDL.SDLK_a => io.keyinput.shoulder_l.set(),
SDL.SDLK_s => io.keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => io.keyinput.start.set(),
SDL.SDLK_RSHIFT => io.keyinput.select.set(),
SDL.SDLK_i => log.err("Sample Count: {}", .{@intCast(u32, SDL.SDL_AudioStreamAvailable(cpu.bus.apu.stream)) / (2 * @sizeOf(u16))}),
SDL.SDLK_j => log.err("Scheduler Capacity: {} | Scheduler Event Count: {}", .{ scheduler.queue.capacity(), scheduler.queue.count() }),
SDL.SDLK_k => {
// Dump IWRAM to file
log.info("PC: 0x{X:0>8}", .{cpu.r[15]});
log.info("LR: 0x{X:0>8}", .{cpu.r[14]});
// const iwram_file = try std.fs.cwd().createFile("iwram.bin", .{});
// defer iwram_file.close();
// try iwram_file.writeAll(cpu.bus.iwram.buf);
},
else => {},
}
},
else => {},
}
}
// Emulator has an internal Double Buffer
const framebuf = cpu.bus.ppu.framebuf.get(.Renderer);
_ = SDL.SDL_UpdateTexture(self.texture, null, framebuf.ptr, pitch);
_ = SDL.SDL_RenderCopy(self.renderer, self.texture, null, null);
SDL.SDL_RenderPresent(self.renderer);
const dyn_title = std.fmt.bufPrint(&title_buf, "ZBA | {s} [Emu: {}fps] ", .{ self.title, frame_rate.value() }) catch unreachable;
SDL.SDL_SetWindowTitle(self.window, dyn_title.ptr);
}
quit.store(true, .SeqCst); // Terminate Emulator Thread
}
pub fn deinit(self: *Self) void {
self.audio.deinit();
SDL.SDL_DestroyTexture(self.texture);
SDL.SDL_DestroyRenderer(self.renderer);
SDL.SDL_DestroyWindow(self.window);
SDL.SDL_Quit();
self.* = undefined;
}
};
const Audio = struct {
const Self = @This();
const log = std.log.scoped(.PlatformAudio);
const sample_rate = @import("core/apu.zig").host_sample_rate;
device: SDL.SDL_AudioDeviceID,
fn init(apu: *Apu) Self {
var have: SDL.SDL_AudioSpec = undefined;
var want: SDL.SDL_AudioSpec = std.mem.zeroes(SDL.SDL_AudioSpec);
want.freq = sample_rate;
want.format = SDL.AUDIO_U16;
want.channels = 2;
want.samples = 0x100;
want.callback = Self.callback;
want.userdata = apu;
const device = SDL.SDL_OpenAudioDevice(null, 0, &want, &have, 0);
if (device == 0) panic();
SDL.SDL_PauseAudioDevice(device, 0); // Unpause Audio
return .{ .device = device };
}
fn deinit(self: *Self) void {
SDL.SDL_CloseAudioDevice(self.device);
self.* = undefined;
}
export fn callback(userdata: ?*anyopaque, stream: [*c]u8, len: c_int) void {
const apu = @ptrCast(*Apu, @alignCast(@alignOf(*Apu), userdata));
_ = SDL.SDL_AudioStreamGet(apu.stream, stream, len);
// If we don't write anything, play silence otherwise garbage will be played
// FIXME: I don't think this hack to remove DC Offset is acceptable :thinking:
// if (written == 0) std.mem.set(u8, stream[0..@intCast(usize, len)], 0x40);
}
};
fn panic() noreturn {
const str = @as(?[*:0]const u8, SDL.SDL_GetError()) orelse "unknown error";
@panic(std.mem.sliceTo(str, 0));
}