Compare commits

..

7 Commits

Author SHA1 Message Date
Rekai Nyangadzayi Musuka f715585867 chore: dont allocate not-small ?Sprite array on stack
use memset like most other allocations in this emu
2022-10-23 04:46:07 -03:00
Rekai Nyangadzayi Musuka cab40efc59 chore: move FrameBuffer struct to util.zig 2022-10-23 04:46:07 -03:00
Rekai Nyangadzayi Musuka a17300a8e0 chore: move OAM, PALRAM and VRAM structs to separate files 2022-10-23 04:46:07 -03:00
Rekai Nyangadzayi Musuka 2ebe1c0b0e fix: 8-bit writes to WIN PPU registers
Advance Wars depends on these registers similar to Mario Kart's 8-bit
writes to Affine Background registers:
2022-10-23 04:46:07 -03:00
Rekai Nyangadzayi Musuka 6db70638fe chore: refactor window 2022-10-23 04:46:07 -03:00
Rekai Nyangadzayi Musuka bc5ab5810a chore: crude background window impl (no affine) 2022-10-23 04:46:07 -03:00
Rekai Nyangadzayi Musuka decf2a01c9 chore: rename function (misspelt until now somehow) 2022-10-23 04:46:07 -03:00
31 changed files with 511 additions and 1148 deletions

View File

@ -1,53 +0,0 @@
on:
push:
branches:
- main
schedule:
- cron: '0 0 * * *'
jobs:
build:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{matrix.os}}
steps:
- uses: goto-bus-stop/setup-zig@v1
with:
version: master
- name: prepare-linux
if: runner.os == 'Linux'
run: |
sudo apt-get update
sudo apt-get install libsdl2-dev
- name: prepare-windows
if: runner.os == 'Windows'
run: |
vcpkg integrate install
vcpkg install sdl2:x64-windows
git config --global core.autocrlf false
- name: prepare-macos
if: runner.os == 'macOS'
run: |
brew install sdl2
- uses: actions/checkout@v3
with:
submodules: true
- name: build
run: zig build -Drelease-safe
- name: upload
uses: actions/upload-artifact@v3
with:
name: zba-${{matrix.os}}
path: zig-out/bin
lint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with:
submodules: true
- uses: goto-bus-stop/setup-zig@v1
with:
version: master
- run: zig fmt src/**/*.zig

104
README.md
View File

@ -1,96 +1,80 @@
# ZBA (working title)
A Game Boy Advance Emulator written in Zig ⚡!
## Scope
I'm hardly the first to write a Game Boy Advance Emulator nor will I be the last. This project isn't going to compete with the GOATs like
[mGBA](https://github.com/mgba-emu) or [NanoBoyAdvance](https://github.com/nba-emu/NanoBoyAdvance). There aren't any interesting
ideas either like in [DSHBA](https://github.com/DenSinH/DSHBA).
I'm hardly the first to write a Game Boy Advance Emulator nor will I be the last. This project isn't going to compete with the GOATs like [mGBA](https://github.com/mgba-emu) or [NanoBoyAdvance](https://github.com/nba-emu/NanoBoyAdvance). There aren't any interesting ideas either like in [DSHBA](https://github.com/DenSinH/DSHBA).
This is a simple (read: incomplete) for-fun long-term project. I hope to get "mostly there", which to me means that I'm not missing any major hardware features and the set of possible improvements would be in memory timing or in UI/UX. With respect to that goal, here's what's outstanding:
### TODO
This is a simple (read: incomplete) for-fun long-term project. I hope to get "mostly there", which to me means that I'm not missing any major hardware
features and the set of possible improvements would be in memory timing or in UI/UX. With respect to that goal, here's what's outstanding:
### TODO
- [ ] Affine Sprites
- [ ] Windowing (see [this branch](https://git.musuka.dev/paoda/zba/src/branch/window))
- [ ] Audio Resampler (Having issues with SDL2's)
- [ ] Immediate Mode GUI
- [ ] Refactoring for easy-ish perf boosts
## Usage
As it currently exists, ZBA is run from the terminal. In your console of choice, type `./zba --help` to see what you can do.
I typically find myself typing `./zba -b ./bin/bios.bin ./bin/test/suite.gba` to see how badly my "cool new feature" broke everything else.
Need a BIOS? Why not try using the open-source [Cult-Of-GBA BIOS](https://github.com/Cult-of-GBA/BIOS) written by [fleroviux](https://github.com/fleroviux) and [DenSinH](https://github.com/DenSinH)?
Finally it's worth noting that ZBA uses a TOML config file it'll store in your OS's data directory. See `example.toml` to learn about the defaults and what exactly you can mess around with.
## Tests
## Tests
- [x] [jsmolka's GBA Test Collection](https://github.com/jsmolka/gba-tests)
- [x] `arm.gba` and `thumb.gba`
- [x] `flash64.gba`, `flash128.gba`, `none.gba`, and `sram.gba`
- [x] `hello.gba`, `shades.gba`, and `stripes.gba`
- [x] `memory.gba`
- [x] `bios.gba`
- [x] `nes.gba`
- [x] `arm.gba` and `thumb.gba`
- [x] `flash64.gba`, `flash128.gba`, `none.gba`, and `sram.gba`
- [x] `hello.gba`, `shades.gba`, and `stripes.gba`
- [x] `memory.gba`
- [x] `bios.gba`
- [x] `nes.gba`
- [ ] [DenSinH's GBA ROMs](https://github.com/DenSinH/GBARoms)
- [x] `eeprom-test` and `flash-test`
- [x] `midikey2freq`
- [ ] `swi-tests-random`
- [x] `eeprom-test` and `flash-test`
- [x] `midikey2freq`
- [ ] `swi-tests-random`
- [ ] [destoer's GBA Tests](https://github.com/destoer/gba_tests)
- [x] `cond_invalid.gba`
- [x] `dma_priority.gba`
- [x] `hello_world.gba`
- [x] `if_ack.gba`
- [ ] `line_timing.gba`
- [ ] `lyc_midline.gba`
- [ ] `window_midframe.gba`
- [x] `cond_invalid.gba`
- [x] `dma_priority.gba`
- [x] `hello_world.gba`
- [x] `if_ack.gba`
- [ ] `line_timing.gba`
- [ ] `lyc_midline.gba`
- [ ] `window_midframe.gba`
- [x] [ladystarbreeze's GBA Test Collection](https://github.com/ladystarbreeze/GBA-Test-Collection)
- [x] `retAddr.gba`
- [x] `helloWorld.gba`
- [x] `helloAudio.gba`
- [x] `retAddr.gba`
- [x] `helloWorld.gba`
- [x] `helloAudio.gba`
- [x] [`armwrestler-gba-fixed.gba`](https://github.com/destoer/armwrestler-gba-fixed)
- [x] [FuzzARM](https://github.com/DenSinH/FuzzARM)
## Resources
- [GBATEK](https://problemkaputt.de/gbatek.htm)
- [TONC](https://coranac.com/tonc/text/toc.htm)
- [ARM Architecture Reference Manual](https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/third-party/ddi0100e_arm_arm.pdf)
- [ARM7TDMI Data Sheet](https://www.dca.fee.unicamp.br/cursos/EA871/references/ARM/ARM7TDMIDataSheet.pdf)
* [GBATEK](https://problemkaputt.de/gbatek.htm)
* [TONC](https://coranac.com/tonc/text/toc.htm)
* [ARM Architecture Reference Manual](https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/third-party/ddi0100e_arm_arm.pdf)
* [ARM7TDMI Data Sheet](https://www.dca.fee.unicamp.br/cursos/EA871/references/ARM/ARM7TDMIDataSheet.pdf)
## Compiling
Most recently built on Zig [v0.10.0](https://github.com/ziglang/zig/tree/0.10.0)
Most recently built on Zig [0.10.0-dev.4474+b41b35f57](https://github.com/ziglang/zig/tree/b41b35f57)
### Dependencies
- [SDL.zig](https://github.com/MasterQ32/SDL.zig)
- [SDL2](https://www.libsdl.org/download-2.0.php)
- [zig-clap](https://github.com/Hejsil/zig-clap)
- [known-folders](https://github.com/ziglibs/known-folders)
- [zig-toml](https://github.com/aeronavery/zig-toml)
- [zig-datetime](https://github.com/frmdstryr/zig-datetime)
- [`bitfields.zig`](https://github.com/FlorenceOS/Florence/blob/aaa5a9e568/lib/util/bitfields.zig)
* [SDL.zig](https://github.com/MasterQ32/SDL.zig)
* [SDL2](https://www.libsdl.org/download-2.0.php)
* [zig-clap](https://github.com/Hejsil/zig-clap)
* [known-folders](https://github.com/ziglibs/known-folders)
* [zig-toml](https://github.com/aeronavery/zig-toml)
* [zig-datetime](https://github.com/frmdstryr/zig-datetime)
* [`bitfields.zig`](https://github.com/FlorenceOS/Florence/blob/aaa5a9e568/lib/util/bitfields.zig)
`bitfields.zig` from [FlorenceOS](https://github.com/FlorenceOS) is included under `lib/util/bitfield.zig`.
Use `git submodule update --init` from the project root to pull the git submodules `SDL.zig`, `zig-clap`, `known-folders`, `zig-toml` and `zig-datetime`
Be sure to provide SDL2 using:
Be sure to provide SDL2 using:
* Linux: Your distro's package manager
* MacOS: ¯\\\_(ツ)_/¯
* Windows: [`vcpkg`](https://github.com/Microsoft/vcpkg) (install `sdl2:x64-windows`)
- Linux: Your distro's package manager
- MacOS: ¯\\\_(ツ)_/¯
- Windows: [`vcpkg`](https://github.com/Microsoft/vcpkg) (install `sdl2:x64-windows`)
`SDL.zig` will provide a helpful compile error if the zig compiler is unable to find SDL2.
`SDL.zig` will provide a helpful compile error if the zig compiler is unable to find SDL2.
Once you've got all the dependencies, execute `zig build -Drelease-fast`. The executable is located at `zig-out/bin/`.
Once you've got all the dependencies, execute `zig build -Drelease-fast`. The executable is located at `zig-out/bin/`.
## Controls
Key | Button
--- | ---
<kbd>X</kbd> | A

View File

@ -1,5 +1,6 @@
const std = @import("std");
const AudioDeviceId = @import("sdl2").SDL_AudioDeviceID;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Bios = @import("bus/Bios.zig");
const Ewram = @import("bus/Ewram.zig");
@ -33,11 +34,6 @@ pub const fetch_timings: [2][0x10]u8 = [_][0x10]u8{
[_]u8{ 1, 1, 6, 1, 1, 2, 2, 1, 4, 4, 4, 4, 4, 4, 8, 8 }, // 32-bit
};
// Fastmem Related
const page_size = 1 * 0x400; // 1KiB
const address_space_size = 0x1000_0000;
const table_len = address_space_size / page_size;
const Self = @This();
pak: GamePak,
@ -53,17 +49,7 @@ io: Io,
cpu: *Arm7tdmi,
sched: *Scheduler,
read_table: *const [table_len]?*const anyopaque,
write_tables: [2]*const [table_len]?*anyopaque,
allocator: Allocator,
pub fn init(self: *Self, allocator: Allocator, sched: *Scheduler, cpu: *Arm7tdmi, paths: FilePaths) !void {
const tables = try allocator.alloc(?*anyopaque, 3 * table_len); // Allocate all tables
const read_table: *[table_len]?*const anyopaque = tables[0..table_len];
const left_write: *[table_len]?*anyopaque = tables[table_len .. 2 * table_len];
const right_write: *[table_len]?*anyopaque = tables[2 * table_len .. 3 * table_len];
self.* = .{
.pak = try GamePak.init(allocator, cpu, paths.rom, paths.save),
.bios = try Bios.init(allocator, paths.bios),
@ -76,20 +62,7 @@ pub fn init(self: *Self, allocator: Allocator, sched: *Scheduler, cpu: *Arm7tdmi
.io = Io.init(),
.cpu = cpu,
.sched = sched,
.read_table = read_table,
.write_tables = .{ left_write, right_write },
.allocator = allocator,
};
// read_table, write_tables, and *Self are not restricted to the lifetime
// of this init function so we can initialize our tables here
fillReadTable(self, read_table);
// Internal Display Memory behavious unusually on 8-bit reads
// so we have two different tables depending on whether there's an 8-bit read or not
fillWriteTable(u32, self, left_write);
fillWriteTable(u8, self, right_write);
}
pub fn deinit(self: *Self) void {
@ -98,131 +71,34 @@ pub fn deinit(self: *Self) void {
self.pak.deinit();
self.bios.deinit();
self.ppu.deinit();
// This is so I can deallocate the original `allocator.alloc`. I have to re-make the type
// since I'm not keeping it around, This is very jank and bad though
// FIXME: please figure out another way
self.allocator.free(@ptrCast([*]const ?*anyopaque, self.write_tables[0][0..])[0 .. 3 * table_len]);
self.* = undefined;
}
fn fillReadTable(bus: *Self, table: *[table_len]?*const anyopaque) void {
const vramMirror = @import("ppu/Vram.zig").mirror;
for (table) |*ptr, i| {
const addr = page_size * i;
ptr.* = switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => null, // BIOS has it's own checks
0x0200_0000...0x02FF_FFFF => &bus.ewram.buf[addr & 0x3FFFF],
0x0300_0000...0x03FF_FFFF => &bus.iwram.buf[addr & 0x7FFF],
0x0400_0000...0x0400_03FF => null, // I/O
// Internal Display Memory
0x0500_0000...0x05FF_FFFF => &bus.ppu.palette.buf[addr & 0x3FF],
0x0600_0000...0x06FF_FFFF => &bus.ppu.vram.buf[vramMirror(addr)],
0x0700_0000...0x07FF_FFFF => &bus.ppu.oam.buf[addr & 0x3FF],
// External Memory (Game Pak)
0x0800_0000...0x0DFF_FFFF => fillTableExternalMemory(bus, addr),
0x0E00_0000...0x0FFF_FFFF => null, // SRAM
else => null,
};
}
}
fn fillWriteTable(comptime T: type, bus: *Self, table: *[table_len]?*const anyopaque) void {
comptime std.debug.assert(T == u32 or T == u16 or T == u8);
const vramMirror = @import("ppu/Vram.zig").mirror;
for (table) |*ptr, i| {
const addr = page_size * i;
ptr.* = switch (addr) {
// General Internal Memory
0x0000_0000...0x0000_3FFF => null, // BIOS has it's own checks
0x0200_0000...0x02FF_FFFF => &bus.ewram.buf[addr & 0x3FFFF],
0x0300_0000...0x03FF_FFFF => &bus.iwram.buf[addr & 0x7FFF],
0x0400_0000...0x0400_03FF => null, // I/O
// Internal Display Memory
0x0500_0000...0x05FF_FFFF => if (T != u8) &bus.ppu.palette.buf[addr & 0x3FF] else null,
0x0600_0000...0x06FF_FFFF => if (T != u8) &bus.ppu.vram.buf[vramMirror(addr)] else null,
0x0700_0000...0x07FF_FFFF => if (T != u8) &bus.ppu.oam.buf[addr & 0x3FF] else null,
// External Memory (Game Pak)
0x0800_0000...0x0DFF_FFFF => null, // ROM
0x0E00_0000...0x0FFF_FFFF => null, // SRAM
else => null,
};
}
}
fn fillTableExternalMemory(bus: *Self, addr: usize) ?*anyopaque {
// see `GamePak.zig` for more information about what conditions need to be true
// so that a simple pointer dereference isn't possible
const start_addr = addr;
const end_addr = addr + page_size;
const gpio_data = start_addr <= 0x0800_00C4 and 0x0800_00C4 < end_addr;
const gpio_direction = start_addr <= 0x0800_00C6 and 0x0800_00C6 < end_addr;
const gpio_control = start_addr <= 0x0800_00C8 and 0x0800_00C8 < end_addr;
if (bus.pak.gpio.device.kind != .None and (gpio_data or gpio_direction or gpio_control)) {
// We found a GPIO device, and this page a GPIO register. We want to handle this in slowmem
return null;
}
if (bus.pak.backup.kind == .Eeprom) {
if (bus.pak.buf.len > 0x100_000) {
// We are using a "large" EEPROM which means that if the below check is true
// this page has an address that's reserved for the EEPROM and therefore must
// be handled in slowmem
if (addr & 0x1FF_FFFF > 0x1FF_FEFF) return null;
} else {
// We are using a "small" EEPROM which means that if the below check is true
// (that is, we're in the 0xD address page) then we must handle at least one
// address in this page in slowmem
if (@truncate(u4, addr >> 24) == 0xD) return null;
}
}
// Finally, the GamePak has some unique behaviour for reads past the end of the ROM,
// so those will be handled by slowmem as well
const masked_addr = addr & 0x1FF_FFFF;
if (masked_addr >= bus.pak.buf.len) return null;
return &bus.pak.buf[masked_addr];
}
// TODO: Take advantage of fastmem here too?
pub fn dbgRead(self: *const Self, comptime T: type, unaligned_address: u32) T {
const page = @truncate(u8, unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
const page = @truncate(u8, address >> 24);
const aligned_addr = forceAlign(T, address);
return switch (page) {
// General Internal Memory
0x00 => blk: {
if (address < Bios.size)
break :blk self.bios.dbgRead(T, self.cpu.r[15], address);
break :blk self.bios.dbgRead(T, self.cpu.r[15], aligned_addr);
break :blk self.openBus(T, address);
},
0x02 => self.ewram.read(T, address),
0x03 => self.iwram.read(T, address),
0x02 => self.ewram.read(T, aligned_addr),
0x03 => self.iwram.read(T, aligned_addr),
0x04 => self.readIo(T, address),
// Internal Display Memory
0x05 => self.ppu.palette.read(T, address),
0x06 => self.ppu.vram.read(T, address),
0x07 => self.ppu.oam.read(T, address),
0x05 => self.ppu.palette.read(T, aligned_addr),
0x06 => self.ppu.vram.read(T, aligned_addr),
0x07 => self.ppu.oam.read(T, aligned_addr),
// External Memory (Game Pak)
0x08...0x0D => self.pak.dbgRead(T, address),
0x08...0x0D => self.pak.dbgRead(T, aligned_addr),
0x0E...0x0F => blk: {
const value = self.pak.backup.read(unaligned_address);
const value = self.pak.backup.read(address);
const multiplier = switch (T) {
u32 => 0x01010101,
@ -237,22 +113,16 @@ pub fn dbgRead(self: *const Self, comptime T: type, unaligned_address: u32) T {
};
}
fn readIo(self: *const Self, comptime T: type, address: u32) T {
return io.read(self, T, address) orelse self.openBus(T, address);
fn readIo(self: *const Self, comptime T: type, unaligned_address: u32) T {
const maybe_value = io.read(self, T, forceAlign(T, unaligned_address));
return if (maybe_value) |value| value else self.openBus(T, unaligned_address);
}
fn openBus(self: *const Self, comptime T: type, address: u32) T {
@setCold(true);
const r15 = self.cpu.r[15];
const word = blk: {
// If Arm, get the most recently fetched instruction (PC + 8)
//
// FIXME: This is most likely a faulty assumption.
// I think what *actually* happens is that the Bus has a latch for the most
// recently fetched piece of data, which is then returned during Open Bus (also DMA open bus?)
// I can "get away" with this because it's very statistically likely that the most recently latched value is
// the most recently fetched instruction by the pipeline
if (!self.cpu.cpsr.t.read()) break :blk self.cpu.pipe.stage[1].?;
const page = @truncate(u8, r15 >> 24);
@ -302,58 +172,33 @@ fn openBus(self: *const Self, comptime T: type, address: u32) T {
return @truncate(T, word);
}
pub fn read(self: *Self, comptime T: type, unaligned_address: u32) T {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).Int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
pub fn read(self: *Self, comptime T: type, address: u32) T {
const page = @truncate(u8, address >> 24);
const aligned_addr = forceAlign(T, address);
// whether or not we do this in slowmem or fastmem, we should advance the scheduler
self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, unaligned_address >> 24)];
// We're doing some serious out-of-bounds open-bus reads
if (page > table_len) return self.openBus(T, unaligned_address);
if (self.read_table[page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const Ptr = [*]const T;
const alignment = @alignOf(std.meta.Child(Ptr));
const ptr = @ptrCast(Ptr, @alignCast(alignment, some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
return ptr[forceAlign(T, offset) / @sizeOf(T)];
}
return self.slowRead(T, unaligned_address);
}
fn slowRead(self: *Self, comptime T: type, unaligned_address: u32) T {
@setCold(true);
const page = @truncate(u8, unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, page)];
return switch (page) {
// General Internal Memory
0x00 => blk: {
if (address < Bios.size)
break :blk self.bios.read(T, self.cpu.r[15], address);
break :blk self.bios.read(T, self.cpu.r[15], aligned_addr);
break :blk self.openBus(T, address);
},
0x02 => unreachable, // completely handled by fastmeme
0x03 => unreachable, // completely handled by fastmeme
0x02 => self.ewram.read(T, aligned_addr),
0x03 => self.iwram.read(T, aligned_addr),
0x04 => self.readIo(T, address),
// Internal Display Memory
0x05 => unreachable, // completely handled by fastmeme
0x06 => unreachable, // completely handled by fastmeme
0x07 => unreachable, // completely handled by fastmeme
0x05 => self.ppu.palette.read(T, aligned_addr),
0x06 => self.ppu.vram.read(T, aligned_addr),
0x07 => self.ppu.oam.read(T, aligned_addr),
// External Memory (Game Pak)
0x08...0x0D => self.pak.read(T, address),
0x08...0x0D => self.pak.read(T, aligned_addr),
0x0E...0x0F => blk: {
const value = self.pak.backup.read(unaligned_address);
const value = self.pak.backup.read(address);
const multiplier = switch (T) {
u32 => 0x01010101,
@ -368,71 +213,44 @@ fn slowRead(self: *Self, comptime T: type, unaligned_address: u32) T {
};
}
pub fn write(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
const bits = @typeInfo(std.math.IntFittingRange(0, page_size - 1)).Int.bits;
const page = unaligned_address >> bits;
const offset = unaligned_address & (page_size - 1);
pub fn write(self: *Self, comptime T: type, address: u32, value: T) void {
const page = @truncate(u8, address >> 24);
const aligned_addr = forceAlign(T, address);
// whether or not we do this in slowmem or fastmem, we should advance the scheduler
self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, unaligned_address >> 24)];
// We're doing some serious out-of-bounds open-bus writes, they do nothing though
if (page > table_len) return;
if (self.write_tables[@boolToInt(T == u8)][page]) |some_ptr| {
// We have a pointer to a page, cast the pointer to it's underlying type
const Ptr = [*]T;
const alignment = @alignOf(std.meta.Child(Ptr));
const ptr = @ptrCast(Ptr, @alignCast(alignment, some_ptr));
// Note: We don't check array length, since we force align the
// lower bits of the address as the GBA would
ptr[forceAlign(T, offset) / @sizeOf(T)] = value;
} else {
// we can return early if this is an 8-bit OAM write
if (T == u8 and @truncate(u8, unaligned_address >> 24) == 0x07) return;
self.slowWrite(T, unaligned_address, value);
}
}
pub fn slowWrite(self: *Self, comptime T: type, unaligned_address: u32, value: T) void {
// @setCold(true);
const page = @truncate(u8, unaligned_address >> 24);
const address = forceAlign(T, unaligned_address);
self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, page)];
switch (page) {
// General Internal Memory
0x00 => self.bios.write(T, address, value),
0x02 => unreachable, // completely handled by fastmem
0x03 => unreachable, // completely handled by fastmem
0x04 => io.write(self, T, address, value),
0x00 => self.bios.write(T, aligned_addr, value),
0x02 => self.ewram.write(T, aligned_addr, value),
0x03 => self.iwram.write(T, aligned_addr, value),
0x04 => io.write(self, T, aligned_addr, value),
// Internal Display Memory
0x05 => self.ppu.palette.write(T, address, value),
0x06 => self.ppu.vram.write(T, self.ppu.dispcnt, address, value),
0x07 => unreachable, // completely handled by fastmem
0x05 => self.ppu.palette.write(T, aligned_addr, value),
0x06 => self.ppu.vram.write(T, self.ppu.dispcnt, aligned_addr, value),
0x07 => self.ppu.oam.write(T, aligned_addr, value),
// External Memory (Game Pak)
0x08...0x0D => self.pak.write(T, self.dma[3].word_count, address, value),
0x0E...0x0F => self.pak.backup.write(unaligned_address, @truncate(u8, rotr(T, value, 8 * rotateBy(T, unaligned_address)))),
0x08...0x0D => self.pak.write(T, self.dma[3].word_count, aligned_addr, value),
0x0E...0x0F => {
const rotate_by = switch (T) {
u32 => address & 3,
u16 => address & 1,
u8 => 0,
else => @compileError("Backup: Unsupported write width"),
};
self.pak.backup.write(address, @truncate(u8, rotr(T, value, 8 * rotate_by)));
},
else => {},
}
}
inline fn rotateBy(comptime T: type, address: u32) u32 {
fn forceAlign(comptime T: type, address: u32) u32 {
return switch (T) {
u32 => address & 3,
u16 => address & 1,
u8 => 0,
else => @compileError("Backup: Unsupported write width"),
};
}
inline fn forceAlign(comptime T: type, address: u32) u32 {
return switch (T) {
u32 => address & ~@as(u32, 3),
u16 => address & ~@as(u32, 1),
u32 => address & 0xFFFF_FFFC,
u16 => address & 0xFFFF_FFFE,
u8 => address,
else => @compileError("Bus: Invalid read/write type"),
};

View File

@ -3,6 +3,8 @@ const SDL = @import("sdl2");
const io = @import("bus/io.zig");
const util = @import("../util.zig");
const AudioDeviceId = SDL.SDL_AudioDeviceID;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Scheduler = @import("scheduler.zig").Scheduler;
const ToneSweep = @import("apu/ToneSweep.zig");
@ -12,201 +14,132 @@ const Noise = @import("apu/Noise.zig");
const SoundFifo = std.fifo.LinearFifo(u8, .{ .Static = 0x20 });
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const intToBytes = util.intToBytes;
const intToBytes = @import("../util.zig").intToBytes;
const setHi = @import("../util.zig").setHi;
const setLo = @import("../util.zig").setLo;
const log = std.log.scoped(.APU);
pub const host_rate = @import("../platform.zig").sample_rate;
pub const host_format = @import("../platform.zig").sample_format;
pub const host_sample_rate = 1 << 15;
pub fn read(comptime T: type, apu: *const Apu, addr: u32) ?T {
const byte_addr = @truncate(u8, addr);
const byte = @truncate(u8, addr);
return switch (T) {
u32 => switch (byte_addr) {
0x60 => @as(T, apu.ch1.sound1CntH()) << 16 | apu.ch1.sound1CntL(),
0x64 => apu.ch1.sound1CntX(),
0x68 => apu.ch2.sound2CntL(),
0x6C => apu.ch2.sound2CntH(),
0x70 => @as(T, apu.ch3.sound3CntH()) << 16 | apu.ch3.sound3CntL(),
0x74 => apu.ch3.sound3CntX(),
0x78 => apu.ch4.sound4CntL(),
0x7C => apu.ch4.sound4CntH(),
0x80 => @as(T, apu.dma_cnt.raw) << 16 | apu.psg_cnt.raw, // SOUNDCNT_H, SOUNDCNT_L
0x84 => apu.soundCntX(),
0x88 => apu.bias.raw, // SOUNDBIAS, high is unused
0x8C => null,
0x90, 0x94, 0x98, 0x9C => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
0xA0 => null, // FIFO_A
0xA4 => null, // FIFO_B
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte_addr) {
u16 => switch (byte) {
0x60 => apu.ch1.sound1CntL(),
0x62 => apu.ch1.sound1CntH(),
0x64 => apu.ch1.sound1CntX(),
0x66 => 0x0000, // suite.gba expects 0x0000, not 0xDEAD
0x68 => apu.ch2.sound2CntL(),
0x6A => 0x0000,
0x6C => apu.ch2.sound2CntH(),
0x6E => 0x0000,
0x70 => apu.ch3.sound3CntL(),
0x70 => apu.ch3.select.raw & 0xE0, // SOUND3CNT_L
0x72 => apu.ch3.sound3CntH(),
0x74 => apu.ch3.sound3CntX(),
0x76 => 0x0000,
0x74 => apu.ch3.freq.raw & 0x4000, // SOUND3CNT_X
0x78 => apu.ch4.sound4CntL(),
0x7A => 0x0000,
0x7C => apu.ch4.sound4CntH(),
0x7E => 0x0000,
0x80 => apu.soundCntL(),
0x82 => apu.soundCntH(),
0x80 => apu.psg_cnt.raw & 0xFF77, // SOUNDCNT_L
0x82 => apu.dma_cnt.raw & 0x770F, // SOUNDCNT_H
0x84 => apu.soundCntX(),
0x86 => 0x0000,
0x88 => apu.bias.raw, // SOUNDBIAS
0x8A => 0x0000,
0x8C, 0x8E => null,
0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
0xA0, 0xA2 => null, // FIFO_A
0xA4, 0xA6 => null, // FIFO_B
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0x60, 0x61 => @truncate(T, @as(u16, apu.ch1.sound1CntL()) >> getHalf(byte_addr)),
0x62, 0x63 => @truncate(T, apu.ch1.sound1CntH() >> getHalf(byte_addr)),
0x64, 0x65 => @truncate(T, apu.ch1.sound1CntX() >> getHalf(byte_addr)),
0x66, 0x67 => 0x00, // assuming behaviour is identical to that of 16-bit reads
0x68, 0x69 => @truncate(T, apu.ch2.sound2CntL() >> getHalf(byte_addr)),
0x6A, 0x6B => 0x00,
0x6C, 0x6D => @truncate(T, apu.ch2.sound2CntH() >> getHalf(byte_addr)),
0x6E, 0x6F => 0x00,
0x70, 0x71 => @truncate(T, @as(u16, apu.ch3.sound3CntL()) >> getHalf(byte_addr)), // SOUND3CNT_L
0x72, 0x73 => @truncate(T, apu.ch3.sound3CntH() >> getHalf(byte_addr)),
0x74, 0x75 => @truncate(T, apu.ch3.sound3CntX() >> getHalf(byte_addr)), // SOUND3CNT_L
0x76, 0x77 => 0x00,
0x78, 0x79 => @truncate(T, apu.ch4.sound4CntL() >> getHalf(byte_addr)),
0x7A, 0x7B => 0x00,
0x7C, 0x7D => @truncate(T, apu.ch4.sound4CntH() >> getHalf(byte_addr)),
0x7E, 0x7F => 0x00,
0x80, 0x81 => @truncate(T, apu.soundCntL() >> getHalf(byte_addr)), // SOUNDCNT_L
0x82, 0x83 => @truncate(T, apu.soundCntH() >> getHalf(byte_addr)), // SOUNDCNT_H
0x84, 0x85 => @truncate(T, @as(u16, apu.soundCntX()) >> getHalf(byte_addr)),
0x86, 0x87 => 0x00,
0x88, 0x89 => @truncate(T, apu.bias.raw >> getHalf(byte_addr)), // SOUNDBIAS
0x8A, 0x8B => 0x00,
0x8C...0x8F => null,
0x90...0x9F => apu.ch3.wave_dev.read(T, apu.ch3.select, addr),
0xA0, 0xA1, 0xA2, 0xA3 => null, // FIFO_A
0xA4, 0xA5, 0xA6, 0xA7 => null, // FIFO_B
else => util.io.read.err(T, log, "unexpected {} read from 0x{X:0>8}", .{ T, addr }),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte) {
0x60 => apu.ch1.sound1CntL(), // NR10
0x62 => apu.ch1.duty.raw, // NR11
0x63 => apu.ch1.envelope.raw, // NR12
0x68 => apu.ch2.duty.raw, // NR21
0x69 => apu.ch2.envelope.raw, // NR22
0x73 => apu.ch3.vol.raw, // NR32
0x79 => apu.ch4.envelope.raw, // NR42
0x7C => apu.ch4.poly.raw, // NR43
0x81 => @truncate(u8, apu.psg_cnt.raw >> 8), // NR51
0x84 => apu.soundCntX(),
0x89 => @truncate(u8, apu.bias.raw >> 8), // SOUNDBIAS_H
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
u32 => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
else => @compileError("APU: Unsupported read width"),
};
}
pub fn write(comptime T: type, apu: *Apu, addr: u32, value: T) void {
const byte_addr = @truncate(u8, addr);
const byte = @truncate(u8, addr);
switch (T) {
u32 => switch (byte_addr) {
u32 => switch (byte) {
0x60 => apu.ch1.setSound1Cnt(value),
0x64 => apu.ch1.setSound1CntX(&apu.fs, @truncate(u16, value)),
0x68 => apu.ch2.setSound2CntL(@truncate(u16, value)),
0x6C => apu.ch2.setSound2CntH(&apu.fs, @truncate(u16, value)),
0x70 => apu.ch3.setSound3Cnt(value),
0x74 => apu.ch3.setSound3CntX(&apu.fs, @truncate(u16, value)),
0x78 => apu.ch4.setSound4CntL(@truncate(u16, value)),
0x7C => apu.ch4.setSound4CntH(&apu.fs, @truncate(u16, value)),
0x80 => apu.setSoundCnt(value),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x88 => apu.bias.raw = @truncate(u16, value),
0x8C => {},
0x90, 0x94, 0x98, 0x9C => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
// WAVE_RAM
0x90...0x9F => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0 => apu.chA.push(value), // FIFO_A
0xA4 => apu.chB.push(value), // FIFO_B
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (byte_addr) {
u16 => switch (byte) {
0x60 => apu.ch1.setSound1CntL(@truncate(u8, value)), // SOUND1CNT_L
0x62 => apu.ch1.setSound1CntH(value),
0x64 => apu.ch1.setSound1CntX(&apu.fs, value),
0x66 => {},
0x68 => apu.ch2.setSound2CntL(value),
0x6A => {},
0x6C => apu.ch2.setSound2CntH(&apu.fs, value),
0x6E => {},
0x70 => apu.ch3.setSound3CntL(@truncate(u8, value)),
0x72 => apu.ch3.setSound3CntH(value),
0x74 => apu.ch3.setSound3CntX(&apu.fs, value),
0x76 => {},
0x78 => apu.ch4.setSound4CntL(value),
0x7A => {},
0x7C => apu.ch4.setSound4CntH(&apu.fs, value),
0x7E => {},
0x80 => apu.setSoundCntL(value),
0x80 => apu.psg_cnt.raw = value, // SOUNDCNT_L
0x82 => apu.setSoundCntH(value),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x86 => {},
0x88 => apu.bias.raw = value, // SOUNDBIAS
0x8A, 0x8C, 0x8E => {},
0x90, 0x92, 0x94, 0x96, 0x98, 0x9A, 0x9C, 0x9E => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0, 0xA2 => log.err("Tried to write 0x{X:0>4}{} to FIFO_A", .{ value, T }),
0xA4, 0xA6 => log.err("Tried to write 0x{X:0>4}{} to FIFO_B", .{ value, T }),
// WAVE_RAM
0x90...0x9F => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => switch (byte_addr) {
u8 => switch (byte) {
0x60 => apu.ch1.setSound1CntL(value),
0x61 => {},
0x62 => apu.ch1.setNr11(value),
0x63 => apu.ch1.setNr12(value),
0x64 => apu.ch1.setNr13(value),
0x65 => apu.ch1.setNr14(&apu.fs, value),
0x66, 0x67 => {},
0x68 => apu.ch2.setNr21(value),
0x69 => apu.ch2.setNr22(value),
0x6A, 0x6B => {},
0x6C => apu.ch2.setNr23(value),
0x6D => apu.ch2.setNr24(&apu.fs, value),
0x6E, 0x6F => {},
0x70 => apu.ch3.setSound3CntL(value), // NR30
0x71 => {},
0x72 => apu.ch3.setNr31(value),
0x73 => apu.ch3.vol.raw = value, // NR32
0x74 => apu.ch3.setNr33(value),
0x75 => apu.ch3.setNr34(&apu.fs, value),
0x76, 0x77 => {},
0x78 => apu.ch4.setNr41(value),
0x79 => apu.ch4.setNr42(value),
0x7A, 0x7B => {},
0x7C => apu.ch4.poly.raw = value, // NR 43
0x7D => apu.ch4.setNr44(&apu.fs, value),
0x7E, 0x7F => {},
0x80, 0x81 => apu.setSoundCntL(setHalf(u16, apu.psg_cnt.raw, byte_addr, value)),
0x82, 0x83 => apu.setSoundCntH(setHalf(u16, apu.dma_cnt.raw, byte_addr, value)),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1),
0x85 => {},
0x86, 0x87 => {},
0x88, 0x89 => apu.bias.raw = setHalf(u16, apu.bias.raw, byte_addr, value), // SOUNDBIAS
0x8A...0x8F => {},
0x80 => apu.setNr50(value),
0x81 => apu.setNr51(value),
0x82 => apu.setSoundCntH(setLo(u16, apu.dma_cnt.raw, value)),
0x83 => apu.setSoundCntH(setHi(u16, apu.dma_cnt.raw, value)),
0x84 => apu.setSoundCntX(value >> 7 & 1 == 1), // NR52
0x89 => apu.setSoundBiasH(value),
0x90...0x9F => apu.ch3.wave_dev.write(T, apu.ch3.select, addr, value),
0xA0...0xA3 => log.err("Tried to write 0x{X:0>2}{} to FIFO_A", .{ value, T }),
0xA4...0xA7 => log.err("Tried to write 0x{X:0>2}{} to FIFO_B", .{ value, T }),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
},
else => @compileError("APU: Unsupported write width"),
@ -256,7 +189,7 @@ pub const Apu = struct {
.bias = .{ .raw = 0x0200 },
.sampling_cycle = 0b00,
.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, 1 << 15, host_format, 2, host_rate).?,
.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, 1 << 15, SDL.AUDIO_U16, 2, host_sample_rate).?,
.sched = sched,
.capacitor = 0,
@ -283,20 +216,10 @@ pub const Apu = struct {
/// SOUNDCNT
fn setSoundCnt(self: *Self, value: u32) void {
self.setSoundCntL(@truncate(u16, value));
self.psg_cnt.raw = @truncate(u16, value);
self.setSoundCntH(@truncate(u16, value >> 16));
}
/// SOUNDCNT_L
pub fn soundCntL(self: *const Self) u16 {
return self.psg_cnt.raw & 0xFF77;
}
/// SOUNDCNT_L
pub fn setSoundCntL(self: *Self, value: u16) void {
self.psg_cnt.raw = value;
}
/// SOUNDCNT_H
pub fn setSoundCntH(self: *Self, value: u16) void {
const new: io.DmaSoundControl = .{ .raw = value };
@ -309,11 +232,6 @@ pub const Apu = struct {
self.dma_cnt = new;
}
/// SOUNDCNT_H
pub fn soundCntH(self: *const Self) u16 {
return self.dma_cnt.raw & 0x770F;
}
/// NR52
pub fn setSoundCntX(self: *Self, value: bool) void {
self.cnt.apu_enable.write(value);
@ -344,6 +262,20 @@ pub const Apu = struct {
return apu_enable << 7 | ch4_enable << 3 | ch3_enable << 2 | ch2_enable << 1 | ch1_enable;
}
/// NR50
pub fn setNr50(self: *Self, byte: u8) void {
self.psg_cnt.raw = (self.psg_cnt.raw & 0xFF00) | byte;
}
/// NR51
pub fn setNr51(self: *Self, byte: u8) void {
self.psg_cnt.raw = @as(u16, byte) << 8 | (self.psg_cnt.raw & 0xFF);
}
pub fn setSoundBiasH(self: *Self, byte: u8) void {
self.bias.raw = (@as(u16, byte) << 8) | (self.bias.raw & 0xFF);
}
pub fn sampleAudio(self: *Self, late: u64) void {
self.sched.push(.SampleAudio, self.interval() -| late);
@ -407,6 +339,7 @@ pub const Apu = struct {
const ext_left = (clamped_left << 5) | (clamped_left >> 6);
const ext_right = (clamped_right << 5) | (clamped_right >> 6);
// FIXME: This rarely happens
if (self.sampling_cycle != self.bias.sampling_cycle.read()) self.replaceSDLResampler();
_ = SDL.SDL_AudioStreamPut(self.stream, &[2]u16{ ext_left, ext_right }, 2 * @sizeOf(u16));
@ -423,7 +356,7 @@ pub const Apu = struct {
defer SDL.SDL_FreeAudioStream(old_stream);
self.sampling_cycle = self.bias.sampling_cycle.read();
self.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, @intCast(c_int, sample_rate), host_format, 2, host_rate).?;
self.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_U16, 2, @intCast(c_int, sample_rate), SDL.AUDIO_U16, 2, host_sample_rate).?;
}
fn interval(self: *const Self) u64 {
@ -472,15 +405,11 @@ pub const Apu = struct {
if (!self.cnt.apu_enable.read()) return;
if (@boolToInt(self.dma_cnt.chA_timer.read()) == tim_id) {
if (!self.chA.enabled) return;
self.chA.updateSample();
if (self.chA.len() <= 15) cpu.bus.dma[1].requestAudio(0x0400_00A0);
}
if (@boolToInt(self.dma_cnt.chB_timer.read()) == tim_id) {
if (!self.chB.enabled) return;
self.chB.updateSample();
if (self.chB.len() <= 15) cpu.bus.dma[2].requestAudio(0x0400_00A4);
}
@ -494,28 +423,19 @@ pub fn DmaSound(comptime kind: DmaSoundKind) type {
fifo: SoundFifo,
kind: DmaSoundKind,
sample: i8,
enabled: bool,
fn init() Self {
return .{
.fifo = SoundFifo.init(),
.kind = kind,
.sample = 0,
.enabled = false,
};
}
pub fn push(self: *Self, value: u32) void {
if (!self.enabled) self.enable();
self.fifo.write(&intToBytes(u32, value)) catch |e| log.err("{} Error: {}", .{ kind, e });
}
fn enable(self: *Self) void {
@setCold(true);
self.enabled = true;
}
pub fn len(self: *const Self) usize {
return self.fifo.readableLength();
}
@ -536,8 +456,8 @@ const DmaSoundKind = enum {
};
pub const FrameSequencer = struct {
const interval = (1 << 24) / 512;
const Self = @This();
pub const interval = (1 << 24) / 512;
step: u3,

View File

@ -71,11 +71,6 @@ pub fn setSound3CntL(self: *Self, value: u8) void {
if (!self.select.enabled.read()) self.enabled = false;
}
/// NR30
pub fn sound3CntL(self: *const Self) u8 {
return self.select.raw & 0xE0;
}
/// NR31, NR32
pub fn sound3CntH(self: *const Self) u16 {
return @as(u16, self.length & 0xE0) << 8;
@ -99,11 +94,6 @@ pub fn setSound3CntX(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setNr34(fs, @truncate(u8, value >> 8));
}
/// NR33, NR34
pub fn sound3CntX(self: *const Self) u16 {
return self.freq.raw & 0x4000;
}
/// NR33
pub fn setNr33(self: *Self, byte: u8) void {
self.freq.raw = (self.freq.raw & 0xFF00) | byte;

View File

@ -1,7 +1,9 @@
//! Linear Feedback Shift Register
const io = @import("../../bus/io.zig");
/// Linear Feedback Shift Register
const Scheduler = @import("../../scheduler.zig").Scheduler;
const FrameSequencer = @import("../../apu.zig").FrameSequencer;
const Noise = @import("../Noise.zig");
const Self = @This();
pub const interval: u64 = (1 << 24) / (1 << 22);
@ -33,7 +35,7 @@ pub fn reload(self: *Self, poly: io.PolyCounter) void {
}
/// Scheduler Event Handler for LFSR Timer Expire
/// FIXME: This gets called a lot, slowing down the scheduler
/// FIXME: This gets called a lot, clogging up the Scheduler
pub fn onLfsrTimerExpire(self: *Self, poly: io.PolyCounter, late: u64) void {
// Obscure: "Using a noise channel clock shift of 14 or 15
// results in the LFSR receiving no clocks."

View File

@ -2,6 +2,7 @@ const std = @import("std");
const io = @import("../../bus/io.zig");
const Scheduler = @import("../../scheduler.zig").Scheduler;
const FrameSequencer = @import("../../apu.zig").FrameSequencer;
const ToneSweep = @import("../ToneSweep.zig");
const Tone = @import("../Tone.zig");

View File

@ -2,6 +2,8 @@ const std = @import("std");
const io = @import("../../bus/io.zig");
const Scheduler = @import("../../scheduler.zig").Scheduler;
const FrameSequencer = @import("../../apu.zig").FrameSequencer;
const Wave = @import("../Wave.zig");
const buf_len = 0x20;
pub const interval: u64 = (1 << 24) / (1 << 22);

View File

@ -1,6 +1,10 @@
const std = @import("std");
const config = @import("../../config.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const DateTime = @import("datetime").datetime.Datetime;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const Backup = @import("backup.zig").Backup;
const Gpio = @import("gpio.zig").Gpio;
@ -105,13 +109,14 @@ pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
switch (T) {
u32 => switch (address) {
// FIXME: Do I even need to implement these?
// TODO: Do I even need to implement these?
0x0800_00C4 => std.debug.panic("Handle 32-bit GPIO Data/Direction Reads", .{}),
0x0800_00C6 => std.debug.panic("Handle 32-bit GPIO Direction/Control Reads", .{}),
0x0800_00C8 => std.debug.panic("Handle 32-bit GPIO Control Reads", .{}),
else => {},
},
u16 => switch (address) {
// FIXME: What do 16-bit GPIO Reads look like?
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),

View File

@ -151,8 +151,8 @@ pub const Backup = struct {
const file_path = try self.savePath(allocator, path);
defer allocator.free(file_path);
const expected = "untitled.sav";
if (std.mem.eql(u8, file_path[file_path.len - expected.len .. file_path.len], expected)) {
// FIXME: Don't rely on this lol
if (std.mem.eql(u8, file_path[file_path.len - 12 .. file_path.len], "untitled.sav")) {
return log.err("ROM header lacks title, no save loaded", .{});
}

View File

@ -63,7 +63,7 @@ pub const Eeprom = struct {
}
if (self.state == .RequestEnd) {
// if (bit != 0) log.debug("EEPROM Request did not end in 0u1. TODO: is this ok?", .{});
if (bit != 0) log.debug("EEPROM Request did not end in 0u1. TODO: is this ok?", .{});
self.state = .Ready;
return;
}

View File

@ -8,9 +8,8 @@ const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
pub const DmaTuple = std.meta.Tuple(&[_]type{ DmaController(0), DmaController(1), DmaController(2), DmaController(3) });
const log = std.log.scoped(.DmaTransfer);
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const setQuart = util.setQuart;
const setHi = util.setHi;
const setLo = util.setLo;
const rotr = @import("../../util.zig").rotr;
@ -19,126 +18,78 @@ pub fn create() DmaTuple {
}
pub fn read(comptime T: type, dma: *const DmaTuple, addr: u32) ?T {
const byte_addr = @truncate(u8, addr);
const byte = @truncate(u8, addr);
return switch (T) {
u32 => switch (byte_addr) {
0xB0, 0xB4 => null, // DMA0SAD, DMA0DAD,
0xB8 => @as(T, dma.*[0].dmacntH()) << 16, // DMA0CNT_L is write-only
0xBC, 0xC0 => null, // DMA1SAD, DMA1DAD
0xC4 => @as(T, dma.*[1].dmacntH()) << 16, // DMA1CNT_L is write-only
0xC8, 0xCC => null, // DMA2SAD, DMA2DAD
0xD0 => @as(T, dma.*[2].dmacntH()) << 16, // DMA2CNT_L is write-only
0xD4, 0xD8 => null, // DMA3SAD, DMA3DAD
0xDC => @as(T, dma.*[3].dmacntH()) << 16, // DMA3CNT_L is write-only
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
u32 => switch (byte) {
0xB8 => @as(T, dma.*[0].cnt.raw) << 16,
0xC4 => @as(T, dma.*[1].cnt.raw) << 16,
0xD0 => @as(T, dma.*[2].cnt.raw) << 16,
0xDC => @as(T, dma.*[3].cnt.raw) << 16,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte_addr) {
0xB0, 0xB2, 0xB4, 0xB6 => null, // DMA0SAD, DMA0DAD
0xB8 => 0x0000, // DMA0CNT_L, suite.gba expects 0x0000 instead of 0xDEAD
0xBA => dma.*[0].dmacntH(),
0xBC, 0xBE, 0xC0, 0xC2 => null, // DMA1SAD, DMA1DAD
0xC4 => 0x0000, // DMA1CNT_L
0xC6 => dma.*[1].dmacntH(),
0xC8, 0xCA, 0xCC, 0xCE => null, // DMA2SAD, DMA2DAD
0xD0 => 0x0000, // DMA2CNT_L
0xD2 => dma.*[2].dmacntH(),
0xD4, 0xD6, 0xD8, 0xDA => null, // DMA3SAD, DMA3DAD
0xDC => 0x0000, // DMA3CNT_L
0xDE => dma.*[3].dmacntH(),
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0xB0...0xB7 => null, // DMA0SAD, DMA0DAD
0xB8, 0xB9 => 0x00, // DMA0CNT_L
0xBA, 0xBB => @truncate(T, dma.*[0].dmacntH() >> getHalf(byte_addr)),
0xBC...0xC3 => null, // DMA1SAD, DMA1DAD
0xC4, 0xC5 => 0x00, // DMA1CNT_L
0xC6, 0xC7 => @truncate(T, dma.*[1].dmacntH() >> getHalf(byte_addr)),
0xC8...0xCF => null, // DMA2SAD, DMA2DAD
0xD0, 0xD1 => 0x00, // DMA2CNT_L
0xD2, 0xD3 => @truncate(T, dma.*[2].dmacntH() >> getHalf(byte_addr)),
0xD4...0xDB => null, // DMA3SAD, DMA3DAD
0xDC, 0xDD => 0x00, // DMA3CNT_L
0xDE, 0xDF => @truncate(T, dma.*[3].dmacntH() >> getHalf(byte_addr)),
else => util.io.read.err(T, log, "unexpected {} read from 0x{X:0>8}", .{ T, addr }),
u16 => switch (byte) {
0xBA => dma.*[0].cnt.raw,
0xC6 => dma.*[1].cnt.raw,
0xD2 => dma.*[2].cnt.raw,
0xDE => dma.*[3].cnt.raw,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
u8 => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
else => @compileError("DMA: Unsupported read width"),
};
}
pub fn write(comptime T: type, dma: *DmaTuple, addr: u32, value: T) void {
const byte_addr = @truncate(u8, addr);
const byte = @truncate(u8, addr);
switch (T) {
u32 => switch (byte_addr) {
u32 => switch (byte) {
0xB0 => dma.*[0].setDmasad(value),
0xB4 => dma.*[0].setDmadad(value),
0xB8 => dma.*[0].setDmacnt(value),
0xBC => dma.*[1].setDmasad(value),
0xC0 => dma.*[1].setDmadad(value),
0xC4 => dma.*[1].setDmacnt(value),
0xC8 => dma.*[2].setDmasad(value),
0xCC => dma.*[2].setDmadad(value),
0xD0 => dma.*[2].setDmacnt(value),
0xD4 => dma.*[3].setDmasad(value),
0xD8 => dma.*[3].setDmadad(value),
0xDC => dma.*[3].setDmacnt(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (byte_addr) {
0xB0, 0xB2 => dma.*[0].setDmasad(setHalf(u32, dma.*[0].sad, byte_addr, value)),
0xB4, 0xB6 => dma.*[0].setDmadad(setHalf(u32, dma.*[0].dad, byte_addr, value)),
u16 => switch (byte) {
0xB0 => dma.*[0].setDmasad(setLo(u32, dma.*[0].sad, value)),
0xB2 => dma.*[0].setDmasad(setHi(u32, dma.*[0].sad, value)),
0xB4 => dma.*[0].setDmadad(setLo(u32, dma.*[0].dad, value)),
0xB6 => dma.*[0].setDmadad(setHi(u32, dma.*[0].dad, value)),
0xB8 => dma.*[0].setDmacntL(value),
0xBA => dma.*[0].setDmacntH(value),
0xBC, 0xBE => dma.*[1].setDmasad(setHalf(u32, dma.*[1].sad, byte_addr, value)),
0xC0, 0xC2 => dma.*[1].setDmadad(setHalf(u32, dma.*[1].dad, byte_addr, value)),
0xBC => dma.*[1].setDmasad(setLo(u32, dma.*[1].sad, value)),
0xBE => dma.*[1].setDmasad(setHi(u32, dma.*[1].sad, value)),
0xC0 => dma.*[1].setDmadad(setLo(u32, dma.*[1].dad, value)),
0xC2 => dma.*[1].setDmadad(setHi(u32, dma.*[1].dad, value)),
0xC4 => dma.*[1].setDmacntL(value),
0xC6 => dma.*[1].setDmacntH(value),
0xC8, 0xCA => dma.*[2].setDmasad(setHalf(u32, dma.*[2].sad, byte_addr, value)),
0xCC, 0xCE => dma.*[2].setDmadad(setHalf(u32, dma.*[2].dad, byte_addr, value)),
0xC8 => dma.*[2].setDmasad(setLo(u32, dma.*[2].sad, value)),
0xCA => dma.*[2].setDmasad(setHi(u32, dma.*[2].sad, value)),
0xCC => dma.*[2].setDmadad(setLo(u32, dma.*[2].dad, value)),
0xCE => dma.*[2].setDmadad(setHi(u32, dma.*[2].dad, value)),
0xD0 => dma.*[2].setDmacntL(value),
0xD2 => dma.*[2].setDmacntH(value),
0xD4, 0xD6 => dma.*[3].setDmasad(setHalf(u32, dma.*[3].sad, byte_addr, value)),
0xD8, 0xDA => dma.*[3].setDmadad(setHalf(u32, dma.*[3].dad, byte_addr, value)),
0xD4 => dma.*[3].setDmasad(setLo(u32, dma.*[3].sad, value)),
0xD6 => dma.*[3].setDmasad(setHi(u32, dma.*[3].sad, value)),
0xD8 => dma.*[3].setDmadad(setLo(u32, dma.*[3].dad, value)),
0xDA => dma.*[3].setDmadad(setHi(u32, dma.*[3].dad, value)),
0xDC => dma.*[3].setDmacntL(value),
0xDE => dma.*[3].setDmacntH(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => switch (byte_addr) {
0xB0, 0xB1, 0xB2, 0xB3 => dma.*[0].setDmasad(setQuart(dma.*[0].sad, byte_addr, value)),
0xB4, 0xB5, 0xB6, 0xB7 => dma.*[0].setDmadad(setQuart(dma.*[0].dad, byte_addr, value)),
0xB8, 0xB9 => dma.*[0].setDmacntL(setHalf(u16, dma.*[0].word_count, byte_addr, value)),
0xBA, 0xBB => dma.*[0].setDmacntH(setHalf(u16, dma.*[0].cnt.raw, byte_addr, value)),
0xBC, 0xBD, 0xBE, 0xBF => dma.*[1].setDmasad(setQuart(dma.*[1].sad, byte_addr, value)),
0xC0, 0xC1, 0xC2, 0xC3 => dma.*[1].setDmadad(setQuart(dma.*[1].dad, byte_addr, value)),
0xC4, 0xC5 => dma.*[1].setDmacntL(setHalf(u16, dma.*[1].word_count, byte_addr, value)),
0xC6, 0xC7 => dma.*[1].setDmacntH(setHalf(u16, dma.*[1].cnt.raw, byte_addr, value)),
0xC8, 0xC9, 0xCA, 0xCB => dma.*[2].setDmasad(setQuart(dma.*[2].sad, byte_addr, value)),
0xCC, 0xCD, 0xCE, 0xCF => dma.*[2].setDmadad(setQuart(dma.*[2].dad, byte_addr, value)),
0xD0, 0xD1 => dma.*[2].setDmacntL(setHalf(u16, dma.*[2].word_count, byte_addr, value)),
0xD2, 0xD3 => dma.*[2].setDmacntH(setHalf(u16, dma.*[2].cnt.raw, byte_addr, value)),
0xD4, 0xD5, 0xD6, 0xD7 => dma.*[3].setDmasad(setQuart(dma.*[3].sad, byte_addr, value)),
0xD8, 0xD9, 0xDA, 0xDB => dma.*[3].setDmadad(setQuart(dma.*[3].dad, byte_addr, value)),
0xDC, 0xDD => dma.*[3].setDmacntL(setHalf(u16, dma.*[3].word_count, byte_addr, value)),
0xDE, 0xDF => dma.*[3].setDmacntH(setHalf(u16, dma.*[3].cnt.raw, byte_addr, value)),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
else => @compileError("DMA: Unsupported write width"),
}
}
@ -207,10 +158,6 @@ fn DmaController(comptime id: u2) type {
self.word_count = @truncate(@TypeOf(self.word_count), halfword);
}
pub fn dmacntH(self: *const Self) u16 {
return self.cnt.raw & if (id == 3) 0xFFE0 else 0xF7E0;
}
pub fn setDmacntH(self: *Self, halfword: u16) void {
const new = DmaControl{ .raw = halfword };
@ -259,6 +206,7 @@ fn DmaController(comptime id: u2) type {
switch (sad_adj) {
.Increment => self.sad_latch +%= offset,
.Decrement => self.sad_latch -%= offset,
// FIXME: Is just ignoring this ok?
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
.Fixed => {},
}
@ -334,10 +282,10 @@ fn DmaController(comptime id: u2) type {
}
pub fn onBlanking(bus: *Bus, comptime kind: DmaKind) void {
comptime var i: usize = 0;
inline while (i < 4) : (i += 1) {
bus.dma[i].poll(kind);
}
bus.dma[0].poll(kind);
bus.dma[1].poll(kind);
bus.dma[2].poll(kind);
bus.dma[3].poll(kind);
}
const Adjustment = enum(u2) {

View File

@ -1,5 +1,6 @@
const std = @import("std");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const DateTime = @import("datetime").datetime.Datetime;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
@ -71,7 +72,7 @@ pub const Gpio = struct {
self.* = .{
.data = 0b0000,
.direction = 0b1111, // TODO: What is GPIO Direction set to by default?
.direction = 0b1111, // TODO: What is GPIO DIrection set to by default?
.cnt = 0b0,
.device = switch (kind) {

View File

@ -1,16 +1,18 @@
const std = @import("std");
const builtin = @import("builtin");
const timer = @import("timer.zig");
const dma = @import("dma.zig");
const apu = @import("../apu.zig");
const ppu = @import("../ppu.zig");
const util = @import("../../util.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Bus = @import("../Bus.zig");
const DmaController = @import("dma.zig").DmaController;
const Scheduler = @import("../scheduler.zig").Scheduler;
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const setHi = util.setHi;
const setLo = util.setLo;
const log = std.log.scoped(.@"I/O");
@ -22,7 +24,6 @@ pub const Io = struct {
ie: InterruptEnable,
irq: InterruptRequest,
postflg: PostFlag,
waitcnt: WaitControl,
haltcnt: HaltControl,
keyinput: KeyInput,
@ -32,7 +33,6 @@ pub const Io = struct {
.ie = .{ .raw = 0x0000 },
.irq = .{ .raw = 0x0000 },
.keyinput = .{ .raw = 0x03FF },
.waitcnt = .{ .raw = 0x0000_0000 }, // Bit 15 == 0 for GBA
.postflg = .FirstBoot,
.haltcnt = .Execute,
};
@ -48,10 +48,9 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
return switch (T) {
u32 => switch (address) {
// Display
0x0400_0000...0x0400_0054 => ppu.read(T, &bus.ppu, address),
// Sound
0x0400_0060...0x0400_00A4 => apu.read(T, &bus.apu, address),
0x0400_0000 => bus.ppu.dispcnt.raw,
0x0400_0004 => @as(T, bus.ppu.vcount.raw) << 16 | bus.ppu.dispstat.raw,
0x0400_0006 => @as(T, bus.ppu.bg[0].cnt.raw) << 16 | bus.ppu.vcount.raw,
// DMA Transfers
0x0400_00B0...0x0400_00DC => dma.read(T, &bus.dma, address),
@ -69,18 +68,26 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
0x0400_0150 => util.io.read.todo(log, "Read {} from JOY_RECV", .{T}),
// Interrupts
0x0400_0200 => @as(u32, bus.io.irq.raw) << 16 | bus.io.ie.raw,
0x0400_0204 => bus.io.waitcnt.raw,
0x0400_0200 => @as(T, bus.io.irq.raw) << 16 | bus.io.ie.raw,
0x0400_0208 => @boolToInt(bus.io.ime),
0x0400_0300 => @enumToInt(bus.io.postflg),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
u16 => switch (address) {
// Display
0x0400_0000...0x0400_0054 => ppu.read(T, &bus.ppu, address),
0x0400_0000 => bus.ppu.dispcnt.raw,
0x0400_0004 => bus.ppu.dispstat.raw,
0x0400_0006 => bus.ppu.vcount.raw,
0x0400_0008 => bus.ppu.bg[0].cnt.raw,
0x0400_000A => bus.ppu.bg[1].cnt.raw,
0x0400_000C => bus.ppu.bg[2].cnt.raw,
0x0400_000E => bus.ppu.bg[3].cnt.raw,
0x0400_004C => util.io.read.todo(log, "Read {} from MOSAIC", .{T}),
0x0400_0050 => bus.ppu.bldcnt.raw,
0x0400_0052 => bus.ppu.bldalpha.raw,
0x0400_0054 => bus.ppu.bldy.raw,
// Sound
0x0400_0060...0x0400_00A6 => apu.read(T, &bus.apu, address),
0x0400_0060...0x0400_009E => apu.read(T, &bus.apu, address),
// DMA Transfers
0x0400_00B0...0x0400_00DE => dma.read(T, &bus.dma, address),
@ -96,34 +103,28 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
// Serial Communication 2
0x0400_0134 => util.io.read.todo(log, "Read {} from RCNT", .{T}),
0x0400_0136 => 0x0000,
0x0400_0142 => 0x0000,
0x0400_015A => 0x0000,
// Interrupts
0x0400_0200 => bus.io.ie.raw,
0x0400_0202 => bus.io.irq.raw,
0x0400_0204 => bus.io.waitcnt.raw,
0x0400_0206 => 0x0000,
0x0400_0204 => util.io.read.todo(log, "Read {} from WAITCNT", .{T}),
0x0400_0208 => @boolToInt(bus.io.ime),
0x0400_020A => 0x0000,
0x0400_0300 => @enumToInt(bus.io.postflg),
0x0400_0302 => 0x0000,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
u8 => return switch (address) {
// Display
0x0400_0000...0x0400_0055 => ppu.read(T, &bus.ppu, address),
0x0400_0000 => @truncate(T, bus.ppu.dispcnt.raw),
0x0400_0004 => @truncate(T, bus.ppu.dispstat.raw),
0x0400_0005 => @truncate(T, bus.ppu.dispcnt.raw >> 8),
0x0400_0006 => @truncate(T, bus.ppu.vcount.raw),
0x0400_0008 => @truncate(T, bus.ppu.bg[0].cnt.raw),
0x0400_0009 => @truncate(T, bus.ppu.bg[0].cnt.raw >> 8),
0x0400_000A => @truncate(T, bus.ppu.bg[1].cnt.raw),
0x0400_000B => @truncate(T, bus.ppu.bg[1].cnt.raw >> 8),
// Sound
0x0400_0060...0x0400_00A7 => apu.read(T, &bus.apu, address),
// DMA Transfers
0x0400_00B0...0x0400_00DF => dma.read(T, &bus.dma, address),
// Timers
0x0400_0100...0x0400_010F => timer.read(T, &bus.tim, address),
// Serial Communication 1
0x0400_0128 => util.io.read.todo(log, "Read {} from SIOCNT_L", .{T}),
@ -132,20 +133,10 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) ?T {
// Serial Communication 2
0x0400_0135 => util.io.read.todo(log, "Read {} from RCNT_H", .{T}),
0x0400_0136, 0x0400_0137 => 0x00,
0x0400_0142, 0x0400_0143 => 0x00,
0x0400_015A, 0x0400_015B => 0x00,
// Interrupts
0x0400_0200, 0x0400_0201 => @truncate(T, bus.io.ie.raw >> getHalf(@truncate(u8, address))),
0x0400_0202, 0x0400_0203 => @truncate(T, bus.io.irq.raw >> getHalf(@truncate(u8, address))),
0x0400_0204, 0x0400_0205 => @truncate(T, bus.io.waitcnt.raw >> getHalf(@truncate(u8, address))),
0x0400_0206, 0x0400_0207 => 0x00,
0x0400_0208, 0x0400_0209 => @truncate(T, @as(u16, @boolToInt(bus.io.ime)) >> getHalf(@truncate(u8, address))),
0x0400_020A, 0x0400_020B => 0x00,
0x0400_0200 => @truncate(T, bus.io.ie.raw),
0x0400_0300 => @enumToInt(bus.io.postflg),
0x0400_0301 => null,
0x0400_0302, 0x0400_0303 => 0x00,
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, address }),
},
else => @compileError("I/O: Unsupported read width"),
@ -156,7 +147,34 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
return switch (T) {
u32 => switch (address) {
// Display
0x0400_0000...0x0400_0054 => ppu.write(T, &bus.ppu, address, value),
0x0400_0000 => bus.ppu.dispcnt.raw = @truncate(u16, value),
0x0400_0004 => {
bus.ppu.dispstat.raw = @truncate(u16, value);
bus.ppu.vcount.raw = @truncate(u16, value >> 16);
},
0x0400_0008 => bus.ppu.setAdjCnts(0, value),
0x0400_000C => bus.ppu.setAdjCnts(2, value),
0x0400_0010 => bus.ppu.setBgOffsets(0, value),
0x0400_0014 => bus.ppu.setBgOffsets(1, value),
0x0400_0018 => bus.ppu.setBgOffsets(2, value),
0x0400_001C => bus.ppu.setBgOffsets(3, value),
0x0400_0020 => bus.ppu.aff_bg[0].writePaPb(value),
0x0400_0024 => bus.ppu.aff_bg[0].writePcPd(value),
0x0400_0028 => bus.ppu.aff_bg[0].setX(bus.ppu.dispstat.vblank.read(), value),
0x0400_002C => bus.ppu.aff_bg[0].setY(bus.ppu.dispstat.vblank.read(), value),
0x0400_0030 => bus.ppu.aff_bg[1].writePaPb(value),
0x0400_0034 => bus.ppu.aff_bg[1].writePcPd(value),
0x0400_0038 => bus.ppu.aff_bg[1].setX(bus.ppu.dispstat.vblank.read(), value),
0x0400_003C => bus.ppu.aff_bg[1].setY(bus.ppu.dispstat.vblank.read(), value),
0x0400_0040 => bus.ppu.win.setH(value),
0x0400_0044 => bus.ppu.win.setV(value),
0x0400_0048 => bus.ppu.win.setIo(value),
0x0400_004C => log.debug("Wrote 0x{X:0>8} to MOSAIC", .{value}),
0x0400_0050 => {
bus.ppu.bldcnt.raw = @truncate(u16, value);
bus.ppu.bldalpha.raw = @truncate(u16, value >> 16);
},
0x0400_0054 => bus.ppu.bldy.raw = @truncate(u16, value),
0x0400_0058...0x0400_005C => {}, // Unused
// Sound
@ -192,28 +210,65 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
// Interrupts
0x0400_0200 => bus.io.setIrqs(value),
0x0400_0204 => bus.io.waitcnt.set(@truncate(u16, value)),
0x0400_0204 => log.debug("Wrote 0x{X:0>8} to WAITCNT", .{value}),
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0300 => {
bus.io.postflg = @intToEnum(PostFlag, value & 1);
bus.io.haltcnt = if (value >> 15 & 1 == 0) .Halt else @panic("TODO: Implement STOP");
},
0x0400_020C...0x0400_021C => {}, // Unused
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, address }),
},
u16 => switch (address) {
// Display
0x0400_0000...0x0400_0054 => ppu.write(T, &bus.ppu, address, value),
0x0400_0056 => {}, // Not used
0x0400_0000 => bus.ppu.dispcnt.raw = value,
0x0400_0004 => bus.ppu.dispstat.raw = value,
0x0400_0006 => {}, // vcount is read-only
0x0400_0008 => bus.ppu.bg[0].cnt.raw = value,
0x0400_000A => bus.ppu.bg[1].cnt.raw = value,
0x0400_000C => bus.ppu.bg[2].cnt.raw = value,
0x0400_000E => bus.ppu.bg[3].cnt.raw = value,
0x0400_0010 => bus.ppu.bg[0].hofs.raw = value, // TODO: Don't write out every HOFS / VOFS?
0x0400_0012 => bus.ppu.bg[0].vofs.raw = value,
0x0400_0014 => bus.ppu.bg[1].hofs.raw = value,
0x0400_0016 => bus.ppu.bg[1].vofs.raw = value,
0x0400_0018 => bus.ppu.bg[2].hofs.raw = value,
0x0400_001A => bus.ppu.bg[2].vofs.raw = value,
0x0400_001C => bus.ppu.bg[3].hofs.raw = value,
0x0400_001E => bus.ppu.bg[3].vofs.raw = value,
0x0400_0020 => bus.ppu.aff_bg[0].pa = @bitCast(i16, value),
0x0400_0022 => bus.ppu.aff_bg[0].pb = @bitCast(i16, value),
0x0400_0024 => bus.ppu.aff_bg[0].pc = @bitCast(i16, value),
0x0400_0026 => bus.ppu.aff_bg[0].pd = @bitCast(i16, value),
0x0400_0028 => bus.ppu.aff_bg[0].x = @bitCast(i32, setLo(u32, @bitCast(u32, bus.ppu.aff_bg[0].x), value)),
0x0400_002A => bus.ppu.aff_bg[0].x = @bitCast(i32, setHi(u32, @bitCast(u32, bus.ppu.aff_bg[0].x), value)),
0x0400_002C => bus.ppu.aff_bg[0].y = @bitCast(i32, setLo(u32, @bitCast(u32, bus.ppu.aff_bg[0].y), value)),
0x0400_002E => bus.ppu.aff_bg[0].y = @bitCast(i32, setHi(u32, @bitCast(u32, bus.ppu.aff_bg[0].y), value)),
0x0400_0030 => bus.ppu.aff_bg[1].pa = @bitCast(i16, value),
0x0400_0032 => bus.ppu.aff_bg[1].pb = @bitCast(i16, value),
0x0400_0034 => bus.ppu.aff_bg[1].pc = @bitCast(i16, value),
0x0400_0036 => bus.ppu.aff_bg[1].pd = @bitCast(i16, value),
0x0400_0038 => bus.ppu.aff_bg[1].x = @bitCast(i32, setLo(u32, @bitCast(u32, bus.ppu.aff_bg[1].x), value)),
0x0400_003A => bus.ppu.aff_bg[1].x = @bitCast(i32, setHi(u32, @bitCast(u32, bus.ppu.aff_bg[1].x), value)),
0x0400_003C => bus.ppu.aff_bg[1].y = @bitCast(i32, setLo(u32, @bitCast(u32, bus.ppu.aff_bg[1].y), value)),
0x0400_003E => bus.ppu.aff_bg[1].y = @bitCast(i32, setHi(u32, @bitCast(u32, bus.ppu.aff_bg[1].y), value)),
0x0400_0040 => bus.ppu.win.h[0].raw = value,
0x0400_0042 => bus.ppu.win.h[1].raw = value,
0x0400_0044 => bus.ppu.win.v[0].raw = value,
0x0400_0046 => bus.ppu.win.v[1].raw = value,
0x0400_0048 => bus.ppu.win.in.raw = value,
0x0400_004A => bus.ppu.win.out.raw = value,
0x0400_004C => log.debug("Wrote 0x{X:0>4} to MOSAIC", .{value}),
0x0400_0050 => bus.ppu.bldcnt.raw = value,
0x0400_0052 => bus.ppu.bldalpha.raw = value,
0x0400_0054 => bus.ppu.bldy.raw = value,
0x0400_004E, 0x0400_0056 => {}, // Not used
// Sound
0x0400_0060...0x0400_00A6 => apu.write(T, &bus.apu, address, value),
0x0400_0060...0x0400_009E => apu.write(T, &bus.apu, address, value),
// Dma Transfers
0x0400_00B0...0x0400_00DE => dma.write(T, &bus.dma, address, value),
// Timers
0x0400_0100...0x0400_010E => timer.write(T, &bus.tim, address, value),
0x0400_0114 => {},
0x0400_0114 => {}, // TODO: Gyakuten Saiban writes 0x8000 to 0x0400_0114
0x0400_0110 => {}, // Not Used,
// Serial Communication 1
@ -237,29 +292,35 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
// Interrupts
0x0400_0200 => bus.io.ie.raw = value,
0x0400_0202 => bus.io.irq.raw &= ~value,
0x0400_0204 => bus.io.waitcnt.set(value),
0x0400_0206 => {},
0x0400_0204 => log.debug("Wrote 0x{X:0>4} to WAITCNT", .{value}),
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_020A => {},
0x0400_0300 => {
bus.io.postflg = @intToEnum(PostFlag, value & 1);
bus.io.haltcnt = if (value >> 15 & 1 == 0) .Halt else @panic("TODO: Implement STOP");
},
0x0400_0206, 0x0400_020A => {}, // Not Used
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, address }),
},
u8 => switch (address) {
// Display
0x0400_0000...0x0400_0055 => ppu.write(T, &bus.ppu, address, value),
0x0400_0004 => bus.ppu.dispstat.raw = setLo(u16, bus.ppu.dispstat.raw, value),
0x0400_0005 => bus.ppu.dispstat.raw = setHi(u16, bus.ppu.dispstat.raw, value),
0x0400_0008 => bus.ppu.bg[0].cnt.raw = setLo(u16, bus.ppu.bg[0].cnt.raw, value),
0x0400_0009 => bus.ppu.bg[0].cnt.raw = setHi(u16, bus.ppu.bg[0].cnt.raw, value),
0x0400_000A => bus.ppu.bg[1].cnt.raw = setLo(u16, bus.ppu.bg[1].cnt.raw, value),
0x0400_000B => bus.ppu.bg[1].cnt.raw = setHi(u16, bus.ppu.bg[1].cnt.raw, value),
0x0400_0040 => bus.ppu.win.h[0].raw = setLo(u16, bus.ppu.win.h[0].raw, value),
0x0400_0041 => bus.ppu.win.h[0].raw = setHi(u16, bus.ppu.win.h[0].raw, value),
0x0400_0042 => bus.ppu.win.h[1].raw = setLo(u16, bus.ppu.win.h[1].raw, value),
0x0400_0043 => bus.ppu.win.h[1].raw = setHi(u16, bus.ppu.win.h[1].raw, value),
0x0400_0044 => bus.ppu.win.v[0].raw = setLo(u16, bus.ppu.win.v[0].raw, value),
0x0400_0045 => bus.ppu.win.v[0].raw = setHi(u16, bus.ppu.win.v[0].raw, value),
0x0400_0046 => bus.ppu.win.v[1].raw = setLo(u16, bus.ppu.win.v[1].raw, value),
0x0400_0047 => bus.ppu.win.v[1].raw = setHi(u16, bus.ppu.win.v[1].raw, value),
0x0400_0048 => bus.ppu.win.in.raw = setLo(u16, bus.ppu.win.in.raw, value),
0x0400_0049 => bus.ppu.win.in.raw = setHi(u16, bus.ppu.win.in.raw, value),
0x0400_004A => bus.ppu.win.out.raw = setLo(u16, bus.ppu.win.out.raw, value),
0x0400_0054 => bus.ppu.bldy.raw = setLo(u16, bus.ppu.bldy.raw, value),
// Sound
0x0400_0060...0x0400_00A7 => apu.write(T, &bus.apu, address, value),
// Dma Transfers
0x0400_00B0...0x0400_00DF => dma.write(T, &bus.dma, address, value),
// Timers
0x0400_0100...0x0400_010F => timer.write(T, &bus.tim, address, value),
// Serial Communication 1
0x0400_0120 => log.debug("Wrote 0x{X:0>2} to SIODATA32_L_L", .{value}),
0x0400_0128 => log.debug("Wrote 0x{X:0>2} to SIOCNT_L", .{value}),
@ -269,16 +330,9 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
0x0400_0140 => log.debug("Wrote 0x{X:0>2} to JOYCNT_L", .{value}),
// Interrupts
0x0400_0200, 0x0400_0201 => bus.io.ie.raw = setHalf(u16, bus.io.ie.raw, @truncate(u8, address), value),
0x0400_0202 => bus.io.irq.raw &= ~@as(u16, value),
0x0400_0203 => bus.io.irq.raw &= ~@as(u16, value) << 8, // TODO: Is this good?
0x0400_0204, 0x0400_0205 => bus.io.waitcnt.set(setHalf(u16, @truncate(u16, bus.io.waitcnt.raw), @truncate(u8, address), value)),
0x0400_0206, 0x0400_0207 => {},
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0209 => {},
0x0400_020A, 0x0400_020B => {},
0x0400_0300 => bus.io.postflg = @intToEnum(PostFlag, value & 1),
0x0400_0300 => bus.io.postflg = std.meta.intToEnum(PostFlag, value & 1) catch unreachable,
0x0400_0301 => bus.io.haltcnt = if (value >> 7 & 1 == 0) .Halt else std.debug.panic("TODO: Implement STOP", .{}),
0x0400_0410 => log.debug("Wrote 0x{X:0>2} to the common yet undocumented 0x{X:0>8}", .{ value, address }),
@ -317,22 +371,14 @@ pub const DisplayControl = extern union {
/// Read / Write
pub const DisplayStatus = extern union {
/// read-only
vblank: Bit(u16, 0),
/// read-only
hblank: Bit(u16, 1),
// read-only
coincidence: Bit(u16, 2),
vblank_irq: Bit(u16, 3),
hblank_irq: Bit(u16, 4),
vcount_irq: Bit(u16, 5),
vcount_trigger: Bitfield(u16, 8, 8),
raw: u16,
pub fn set(self: *DisplayStatus, value: u16) void {
const mask: u16 = 0x00C7; // set bits are read-only
self.raw = (self.raw & mask) | (value & ~mask);
}
};
/// Read Only
@ -636,24 +682,3 @@ pub const SoundBias = extern union {
sampling_cycle: Bitfield(u16, 14, 2),
raw: u16,
};
/// Read / Write
pub const WaitControl = extern union {
sram_cnt: Bitfield(u16, 0, 2),
s0_first: Bitfield(u16, 2, 2),
s0_second: Bit(u16, 4),
s1_first: Bitfield(u16, 5, 2),
s1_second: Bit(u16, 7),
s2_first: Bitfield(u16, 8, 2),
s2_second: Bit(u16, 10),
phi_out: Bitfield(u16, 11, 2),
prefetch_enable: Bit(u16, 14),
pak_kind: Bit(u16, 15),
raw: u16,
pub fn set(self: *WaitControl, value: u16) void {
const mask: u16 = 0x8000; // set bits are read-only
self.raw = (self.raw & mask) | (value & ~mask);
}
};

View File

@ -2,99 +2,68 @@ const std = @import("std");
const util = @import("../../util.zig");
const TimerControl = @import("io.zig").TimerControl;
const Io = @import("io.zig").Io;
const Scheduler = @import("../scheduler.zig").Scheduler;
const Event = @import("../scheduler.zig").Event;
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
pub const TimerTuple = std.meta.Tuple(&[_]type{ Timer(0), Timer(1), Timer(2), Timer(3) });
const log = std.log.scoped(.Timer);
const getHalf = util.getHalf;
const setHalf = util.setHalf;
pub fn create(sched: *Scheduler) TimerTuple {
return .{ Timer(0).init(sched), Timer(1).init(sched), Timer(2).init(sched), Timer(3).init(sched) };
}
pub fn read(comptime T: type, tim: *const TimerTuple, addr: u32) ?T {
const nybble_addr = @truncate(u4, addr);
const nybble = @truncate(u4, addr);
return switch (T) {
u32 => switch (nybble_addr) {
u32 => switch (nybble) {
0x0 => @as(T, tim.*[0].cnt.raw) << 16 | tim.*[0].timcntL(),
0x4 => @as(T, tim.*[1].cnt.raw) << 16 | tim.*[1].timcntL(),
0x8 => @as(T, tim.*[2].cnt.raw) << 16 | tim.*[2].timcntL(),
0xC => @as(T, tim.*[3].cnt.raw) << 16 | tim.*[3].timcntL(),
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (nybble_addr) {
u16 => switch (nybble) {
0x0 => tim.*[0].timcntL(),
0x2 => tim.*[0].cnt.raw,
0x4 => tim.*[1].timcntL(),
0x6 => tim.*[1].cnt.raw,
0x8 => tim.*[2].timcntL(),
0xA => tim.*[2].cnt.raw,
0xC => tim.*[3].timcntL(),
0xE => tim.*[3].cnt.raw,
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (nybble_addr) {
0x0, 0x1 => @truncate(T, tim.*[0].timcntL() >> getHalf(nybble_addr)),
0x2, 0x3 => @truncate(T, tim.*[0].cnt.raw >> getHalf(nybble_addr)),
0x4, 0x5 => @truncate(T, tim.*[1].timcntL() >> getHalf(nybble_addr)),
0x6, 0x7 => @truncate(T, tim.*[1].cnt.raw >> getHalf(nybble_addr)),
0x8, 0x9 => @truncate(T, tim.*[2].timcntL() >> getHalf(nybble_addr)),
0xA, 0xB => @truncate(T, tim.*[2].cnt.raw >> getHalf(nybble_addr)),
0xC, 0xD => @truncate(T, tim.*[3].timcntL() >> getHalf(nybble_addr)),
0xE, 0xF => @truncate(T, tim.*[3].cnt.raw >> getHalf(nybble_addr)),
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
},
u8 => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
else => @compileError("TIM: Unsupported read width"),
};
}
pub fn write(comptime T: type, tim: *TimerTuple, addr: u32, value: T) void {
const nybble_addr = @truncate(u4, addr);
const nybble = @truncate(u4, addr);
return switch (T) {
u32 => switch (nybble_addr) {
u32 => switch (nybble) {
0x0 => tim.*[0].setTimcnt(value),
0x4 => tim.*[1].setTimcnt(value),
0x8 => tim.*[2].setTimcnt(value),
0xC => tim.*[3].setTimcnt(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (nybble_addr) {
u16 => switch (nybble) {
0x0 => tim.*[0].setTimcntL(value),
0x2 => tim.*[0].setTimcntH(value),
0x4 => tim.*[1].setTimcntL(value),
0x6 => tim.*[1].setTimcntH(value),
0x8 => tim.*[2].setTimcntL(value),
0xA => tim.*[2].setTimcntH(value),
0xC => tim.*[3].setTimcntL(value),
0xE => tim.*[3].setTimcntH(value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => switch (nybble_addr) {
0x0, 0x1 => tim.*[0].setTimcntL(setHalf(u16, tim.*[0]._reload, nybble_addr, value)),
0x2, 0x3 => tim.*[0].setTimcntH(setHalf(u16, tim.*[0].cnt.raw, nybble_addr, value)),
0x4, 0x5 => tim.*[1].setTimcntL(setHalf(u16, tim.*[1]._reload, nybble_addr, value)),
0x6, 0x7 => tim.*[1].setTimcntH(setHalf(u16, tim.*[1].cnt.raw, nybble_addr, value)),
0x8, 0x9 => tim.*[2].setTimcntL(setHalf(u16, tim.*[2]._reload, nybble_addr, value)),
0xA, 0xB => tim.*[2].setTimcntH(setHalf(u16, tim.*[2].cnt.raw, nybble_addr, value)),
0xC, 0xD => tim.*[3].setTimcntL(setHalf(u16, tim.*[3]._reload, nybble_addr, value)),
0xE, 0xF => tim.*[3].setTimcntH(setHalf(u16, tim.*[3].cnt.raw, nybble_addr, value)),
},
u8 => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
else => @compileError("TIM: Unsupported write width"),
};
}
@ -190,15 +159,19 @@ fn Timer(comptime id: u2) type {
// Perform Cascade Behaviour
switch (id) {
inline 0, 1, 2 => |idx| {
const next = idx + 1;
if (cpu.bus.tim[next].cnt.cascade.read()) {
cpu.bus.tim[next]._counter +%= 1;
if (cpu.bus.tim[next]._counter == 0) cpu.bus.tim[next].onTimerExpire(cpu, late);
}
0 => if (cpu.bus.tim[1].cnt.cascade.read()) {
cpu.bus.tim[1]._counter +%= 1;
if (cpu.bus.tim[1]._counter == 0) cpu.bus.tim[1].onTimerExpire(cpu, late);
},
3 => {}, // THere is no timer for TIM3 to cascade to
1 => if (cpu.bus.tim[2].cnt.cascade.read()) {
cpu.bus.tim[2]._counter +%= 1;
if (cpu.bus.tim[2]._counter == 0) cpu.bus.tim[2].onTimerExpire(cpu, late);
},
2 => if (cpu.bus.tim[3].cnt.cascade.read()) {
cpu.bus.tim[3]._counter +%= 1;
if (cpu.bus.tim[3]._counter == 0) cpu.bus.tim[3].onTimerExpire(cpu, late);
},
3 => {}, // There is no Timer for TIM3 to "cascade" to,
}
// Reschedule Timer if we're not cascading

View File

@ -1,9 +1,11 @@
const std = @import("std");
const util = @import("../util.zig");
const Bus = @import("Bus.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Scheduler = @import("scheduler.zig").Scheduler;
const FilePaths = @import("../util.zig").FilePaths;
const Logger = @import("../util.zig").Logger;
const File = std.fs.File;
@ -455,12 +457,29 @@ pub const Arm7tdmi = struct {
}
pub fn stepDmaTransfer(self: *Self) bool {
comptime var i: usize = 0;
inline while (i < 4) : (i += 1) {
if (self.bus.dma[i].in_progress) {
self.bus.dma[i].step(self);
return true;
}
const dma0 = &self.bus.dma[0];
const dma1 = &self.bus.dma[1];
const dma2 = &self.bus.dma[2];
const dma3 = &self.bus.dma[3];
if (dma0.in_progress) {
dma0.step(self);
return true;
}
if (dma1.in_progress) {
dma1.step(self);
return true;
}
if (dma2.in_progress) {
dma2.step(self);
return true;
}
if (dma3.in_progress) {
dma3.step(self);
return true;
}
return false;
@ -608,29 +627,25 @@ pub const Arm7tdmi = struct {
}
};
const condition_lut = [_]u16{
0xF0F0, // EQ - Equal
0x0F0F, // NE - Not Equal
0xCCCC, // CS - Unsigned higher or same
0x3333, // CC - Unsigned lower
0xFF00, // MI - Negative
0x00FF, // PL - Positive or Zero
0xAAAA, // VS - Overflow
0x5555, // VC - No Overflow
0x0C0C, // HI - unsigned hierh
0xF3F3, // LS - unsigned lower or same
0xAA55, // GE - greater or equal
0x55AA, // LT - less than
0x0A05, // GT - greater than
0xF5FA, // LE - less than or equal
0xFFFF, // AL - always
0x0000, // NV - never
};
pub inline fn checkCond(cpsr: PSR, cond: u4) bool {
const flags = @truncate(u4, cpsr.raw >> 28);
return condition_lut[cond] & (@as(u16, 1) << flags) != 0;
pub fn checkCond(cpsr: PSR, cond: u4) bool {
return switch (cond) {
0x0 => cpsr.z.read(), // EQ - Equal
0x1 => !cpsr.z.read(), // NE - Not equal
0x2 => cpsr.c.read(), // CS - Unsigned higher or same
0x3 => !cpsr.c.read(), // CC - Unsigned lower
0x4 => cpsr.n.read(), // MI - Negative
0x5 => !cpsr.n.read(), // PL - Positive or zero
0x6 => cpsr.v.read(), // VS - Overflow
0x7 => !cpsr.v.read(), // VC - No overflow
0x8 => cpsr.c.read() and !cpsr.z.read(), // HI - unsigned higher
0x9 => !cpsr.c.read() or cpsr.z.read(), // LS - unsigned lower or same
0xA => cpsr.n.read() == cpsr.v.read(), // GE - Greater or equal
0xB => cpsr.n.read() != cpsr.v.read(), // LT - Less than
0xC => !cpsr.z.read() and (cpsr.n.read() == cpsr.v.read()), // GT - Greater than
0xD => cpsr.z.read() or (cpsr.n.read() != cpsr.v.read()), // LE - Less than or equal
0xE => true, // AL - Always
0xF => false, // NV - Never (reserved in ARMv3 and up, but seems to have not changed?)
};
}
const Pipeline = struct {

View File

@ -57,6 +57,7 @@ pub fn blockDataTransfer(comptime P: bool, comptime U: bool, comptime S: bool, c
cpu.r[15] = bus.read(u32, und_addr);
cpu.pipe.reload(cpu);
} else {
// FIXME: Should r15 on write be +12 ahead?
bus.write(u32, und_addr, cpu.r[15] + 4);
}

View File

@ -1,3 +1,5 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;

View File

@ -1,3 +1,5 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;

View File

@ -1,3 +1,5 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").arm.InstrFn;

View File

@ -1,3 +1,6 @@
const std = @import("std");
const util = @import("../../../util.zig");
const shifter = @import("../barrel_shifter.zig");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;

View File

@ -1,3 +1,5 @@
const std = @import("std");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
const CPSR = @import("../cpu.zig").PSR;

View File

@ -1,3 +1,5 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;

View File

@ -1,3 +1,5 @@
const std = @import("std");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").thumb.InstrFn;

View File

@ -2,29 +2,29 @@ const std = @import("std");
const SDL = @import("sdl2");
const config = @import("../config.zig");
const Bus = @import("Bus.zig");
const Scheduler = @import("scheduler.zig").Scheduler;
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const FpsTracker = @import("../util.zig").FpsTracker;
const FilePaths = @import("../util.zig").FilePaths;
const Timer = std.time.Timer;
const Thread = std.Thread;
const Atomic = std.atomic.Atomic;
const Allocator = std.mem.Allocator;
/// 4 Cycles in 1 dot
const cycles_per_dot = 4;
// 228 Lines which consist of 308 dots (which are 4 cycles long)
const cycles_per_frame: u64 = 228 * (308 * 4); //280896
const clock_rate: u64 = 1 << 24; // 16.78MHz
/// The GBA draws 228 Horizontal which each consist 308 dots
/// (note: not all lines are visible)
const cycles_per_frame = 228 * (308 * cycles_per_dot); //280896
// TODO: Don't truncate this, be more accurate w/ timing
// 59.6046447754ns (truncated to just 59ns)
const clock_period: u64 = std.time.ns_per_s / clock_rate;
const frame_period = (clock_period * cycles_per_frame);
/// The GBA ARM7TDMI runs at 2^24 Hz
const clock_rate = 1 << 24; // 16.78MHz
/// The # of nanoseconds a frame should take
const frame_period = (std.time.ns_per_s * cycles_per_frame) / clock_rate;
/// Exact Value: 59.7275005696Hz
/// The inverse of the frame period
pub const frame_rate: f64 = @intToFloat(f64, clock_rate) / cycles_per_frame;
// 59.7275005696Hz
pub const frame_rate = @intToFloat(f64, std.time.ns_per_s) /
((@intToFloat(f64, std.time.ns_per_s) / @intToFloat(f64, clock_rate)) * @intToFloat(f64, cycles_per_frame));
const log = std.log.scoped(.Emulation);
@ -36,7 +36,7 @@ const RunKind = enum {
};
pub fn run(quit: *Atomic(bool), scheduler: *Scheduler, cpu: *Arm7tdmi, tracker: *FpsTracker) void {
const audio_sync = config.config().guest.audio_sync and !config.config().host.mute;
const audio_sync = config.config().guest.audio_sync;
if (audio_sync) log.info("Audio sync enabled", .{});
if (config.config().guest.video_sync) {
@ -105,7 +105,6 @@ pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void {
}
fn audioSync(audio_sync: bool, stream: *SDL.SDL_AudioStream, is_buffer_full: *bool) void {
comptime std.debug.assert(@import("../platform.zig").sample_format == SDL.AUDIO_U16);
const sample_size = 2 * @sizeOf(u16);
const max_buf_size: c_int = 0x400;
@ -133,10 +132,11 @@ fn videoSync(timer: *Timer, wake_time: u64) u64 {
// TODO: Better sleep impl?
fn sleep(timer: *Timer, wake_time: u64) ?u64 {
// const step = std.time.ns_per_ms * 10; // 10ms
const timestamp = timer.read();
// ns_late is non zero if we are late.
var ns_late = timestamp -| wake_time;
const ns_late = timestamp -| wake_time;
// If we're more than a frame late, skip the rest of this loop
// Recalculate what our new wake time should be so that we can
@ -144,18 +144,15 @@ fn sleep(timer: *Timer, wake_time: u64) ?u64 {
if (ns_late > frame_period) return timestamp + frame_period;
const sleep_for = frame_period - ns_late;
const step = 2 * std.time.ns_per_ms; // Granularity of 2ms
const times = sleep_for / step;
var i: usize = 0;
// // Employ several sleep calls in periods of 10ms
// // By doing this the behaviour should average out to be
// // more consistent
// const loop_count = sleep_for / step; // How many groups of 10ms
while (i < times) : (i += 1) {
std.time.sleep(step);
// var i: usize = 0;
// while (i < loop_count) : (i += 1) std.time.sleep(step);
// Upon wakeup, check to see if this particular sleep was longer than expected
// if so we should exit early, but probably not skip a whole frame period
ns_late = timer.read() -| wake_time;
if (ns_late > frame_period) return null;
}
std.time.sleep(sleep_for);
return null;
}

View File

@ -1,7 +1,5 @@
const std = @import("std");
const io = @import("bus/io.zig");
const util = @import("../util.zig");
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const dma = @import("bus/dma.zig");
@ -15,230 +13,12 @@ const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const FrameBuffer = @import("../util.zig").FrameBuffer;
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.PPU);
const getHalf = util.getHalf;
const setHalf = util.setHalf;
const setQuart = util.setQuart;
const pollDmaOnBlank = @import("bus/dma.zig").pollDmaOnBlank;
const log = std.log.scoped(.Ppu);
pub const width = 240;
pub const height = 160;
pub const framebuf_pitch = width * @sizeOf(u32);
pub fn read(comptime T: type, ppu: *const Ppu, addr: u32) ?T {
const byte_addr = @truncate(u8, addr);
return switch (T) {
u32 => switch (byte_addr) {
0x00 => ppu.dispcnt.raw, // Green Swap is in high half-word
0x04 => @as(T, ppu.vcount.raw) << 16 | ppu.dispstat.raw,
0x08 => @as(T, ppu.bg[1].bg1Cnt()) << 16 | ppu.bg[0].bg0Cnt(),
0x0C => @as(T, ppu.bg[3].cnt.raw) << 16 | ppu.bg[2].cnt.raw,
0x10, 0x14, 0x18, 0x1C => null, // BGXHOFS/VOFS
0x20, 0x24, 0x28, 0x2C => null, // BG2 Rot/Scaling
0x30, 0x34, 0x38, 0x3C => null, // BG3 Rot/Scaling
0x40, 0x44 => null, // WINXH/V Registers
0x48 => @as(T, ppu.win.getOut()) << 16 | ppu.win.getIn(),
0x4C => null, // MOSAIC, undefined in high byte
0x50 => @as(T, ppu.bld.getAlpha()) << 16 | ppu.bld.getCnt(),
0x54 => null, // BLDY, undefined in high half-wrd
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte_addr) {
0x00 => ppu.dispcnt.raw,
0x02 => null, // Green Swap
0x04 => ppu.dispstat.raw,
0x06 => ppu.vcount.raw,
0x08 => ppu.bg[0].bg0Cnt(),
0x0A => ppu.bg[1].bg1Cnt(),
0x0C => ppu.bg[2].cnt.raw,
0x0E => ppu.bg[3].cnt.raw,
0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x1E => null, // BGXHOFS/VOFS
0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E => null, // BG2 Rot/Scaling
0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E => null, // BG3 Rot/Scaling
0x40, 0x42, 0x44, 0x46 => null, // WINXH/V Registers
0x48 => ppu.win.getIn(),
0x4A => ppu.win.getOut(),
0x4C => null, // MOSAIC
0x4E => null,
0x50 => ppu.bld.getCnt(),
0x52 => ppu.bld.getAlpha(),
0x54 => null, // BLDY
else => util.io.read.err(T, log, "unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0x00, 0x01 => @truncate(T, ppu.dispcnt.raw >> getHalf(byte_addr)),
0x02, 0x03 => null,
0x04, 0x05 => @truncate(T, ppu.dispstat.raw >> getHalf(byte_addr)),
0x06, 0x07 => @truncate(T, ppu.vcount.raw >> getHalf(byte_addr)),
0x08, 0x09 => @truncate(T, ppu.bg[0].bg0Cnt() >> getHalf(byte_addr)),
0x0A, 0x0B => @truncate(T, ppu.bg[1].bg1Cnt() >> getHalf(byte_addr)),
0x0C, 0x0D => @truncate(T, ppu.bg[2].cnt.raw >> getHalf(byte_addr)),
0x0E, 0x0F => @truncate(T, ppu.bg[3].cnt.raw >> getHalf(byte_addr)),
0x10...0x1F => null, // BGXHOFS/VOFS
0x20...0x2F => null, // BG2 Rot/Scaling
0x30...0x3F => null, // BG3 Rot/Scaling
0x40...0x47 => null, // WINXH/V Registers
0x48, 0x49 => @truncate(T, ppu.win.getIn() >> getHalf(byte_addr)),
0x4A, 0x4B => @truncate(T, ppu.win.getOut() >> getHalf(byte_addr)),
0x4C, 0x4D => null, // MOSAIC
0x4E, 0x4F => null,
0x50, 0x51 => @truncate(T, ppu.bld.getCnt() >> getHalf(byte_addr)),
0x52, 0x53 => @truncate(T, ppu.bld.getAlpha() >> getHalf(byte_addr)),
0x54, 0x55 => null, // BLDY
else => util.io.read.err(T, log, "unexpected {} read from 0x{X:0>8}", .{ T, addr }),
},
else => @compileError("PPU: Unsupported read width"),
};
}
pub fn write(comptime T: type, ppu: *Ppu, addr: u32, value: T) void {
const byte_addr = @truncate(u8, addr); // prefixed with 0x0400_00
switch (T) {
u32 => switch (byte_addr) {
0x00 => ppu.dispcnt.raw = @truncate(u16, value),
0x04 => {
ppu.dispstat.set(@truncate(u16, value));
ppu.vcount.raw = @truncate(u16, value >> 16);
},
0x08 => ppu.setAdjCnts(0, value),
0x0C => ppu.setAdjCnts(2, value),
0x10 => ppu.setBgOffsets(0, value),
0x14 => ppu.setBgOffsets(1, value),
0x18 => ppu.setBgOffsets(2, value),
0x1C => ppu.setBgOffsets(3, value),
0x20 => ppu.aff_bg[0].writePaPb(value),
0x24 => ppu.aff_bg[0].writePcPd(value),
0x28 => ppu.aff_bg[0].setX(ppu.dispstat.vblank.read(), value),
0x2C => ppu.aff_bg[0].setY(ppu.dispstat.vblank.read(), value),
0x30 => ppu.aff_bg[1].writePaPb(value),
0x34 => ppu.aff_bg[1].writePcPd(value),
0x38 => ppu.aff_bg[1].setX(ppu.dispstat.vblank.read(), value),
0x3C => ppu.aff_bg[1].setY(ppu.dispstat.vblank.read(), value),
0x40 => ppu.win.setH(value),
0x44 => ppu.win.setV(value),
0x48 => ppu.win.setIo(value),
0x4C => log.debug("Wrote 0x{X:0>8} to MOSAIC", .{value}),
0x50 => {
ppu.bld.cnt.raw = @truncate(u16, value);
ppu.bld.alpha.raw = @truncate(u16, value >> 16);
},
0x54 => ppu.bld.y.raw = @truncate(u16, value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (byte_addr) {
0x00 => ppu.dispcnt.raw = value,
0x02 => {}, // Green Swap
0x04 => ppu.dispstat.set(value),
0x06 => {}, // VCOUNT
0x08 => ppu.bg[0].cnt.raw = value,
0x0A => ppu.bg[1].cnt.raw = value,
0x0C => ppu.bg[2].cnt.raw = value,
0x0E => ppu.bg[3].cnt.raw = value,
0x10 => ppu.bg[0].hofs.raw = value, // TODO: Don't write out every HOFS / VOFS?
0x12 => ppu.bg[0].vofs.raw = value,
0x14 => ppu.bg[1].hofs.raw = value,
0x16 => ppu.bg[1].vofs.raw = value,
0x18 => ppu.bg[2].hofs.raw = value,
0x1A => ppu.bg[2].vofs.raw = value,
0x1C => ppu.bg[3].hofs.raw = value,
0x1E => ppu.bg[3].vofs.raw = value,
0x20 => ppu.aff_bg[0].pa = @bitCast(i16, value),
0x22 => ppu.aff_bg[0].pb = @bitCast(i16, value),
0x24 => ppu.aff_bg[0].pc = @bitCast(i16, value),
0x26 => ppu.aff_bg[0].pd = @bitCast(i16, value),
0x28, 0x2A => ppu.aff_bg[0].x = @bitCast(i32, setHalf(u32, @bitCast(u32, ppu.aff_bg[0].x), byte_addr, value)),
0x2C, 0x2E => ppu.aff_bg[0].y = @bitCast(i32, setHalf(u32, @bitCast(u32, ppu.aff_bg[0].y), byte_addr, value)),
0x30 => ppu.aff_bg[1].pa = @bitCast(i16, value),
0x32 => ppu.aff_bg[1].pb = @bitCast(i16, value),
0x34 => ppu.aff_bg[1].pc = @bitCast(i16, value),
0x36 => ppu.aff_bg[1].pd = @bitCast(i16, value),
0x38, 0x3A => ppu.aff_bg[1].x = @bitCast(i32, setHalf(u32, @bitCast(u32, ppu.aff_bg[1].x), byte_addr, value)),
0x3C, 0x3E => ppu.aff_bg[1].y = @bitCast(i32, setHalf(u32, @bitCast(u32, ppu.aff_bg[1].y), byte_addr, value)),
0x40 => ppu.win.h[0].raw = value,
0x42 => ppu.win.h[1].raw = value,
0x44 => ppu.win.v[0].raw = value,
0x46 => ppu.win.v[1].raw = value,
0x48 => ppu.win.in.raw = value,
0x4A => ppu.win.out.raw = value,
0x4C => log.debug("Wrote 0x{X:0>4} to MOSAIC", .{value}),
0x4E => {},
0x50 => ppu.bld.cnt.raw = value,
0x52 => ppu.bld.alpha.raw = value,
0x54 => ppu.bld.y.raw = value,
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => switch (byte_addr) {
0x00, 0x01 => ppu.dispcnt.raw = setHalf(u16, ppu.dispcnt.raw, byte_addr, value),
0x02, 0x03 => {}, // Green Swap
0x04, 0x05 => ppu.dispstat.set(setHalf(u16, ppu.dispstat.raw, byte_addr, value)),
0x06, 0x07 => {}, // VCOUNT
// BGXCNT
0x08, 0x09 => ppu.bg[0].cnt.raw = setHalf(u16, ppu.bg[0].cnt.raw, byte_addr, value),
0x0A, 0x0B => ppu.bg[1].cnt.raw = setHalf(u16, ppu.bg[1].cnt.raw, byte_addr, value),
0x0C, 0x0D => ppu.bg[2].cnt.raw = setHalf(u16, ppu.bg[2].cnt.raw, byte_addr, value),
0x0E, 0x0F => ppu.bg[3].cnt.raw = setHalf(u16, ppu.bg[3].cnt.raw, byte_addr, value),
// BGX HOFS/VOFS
0x10, 0x11 => ppu.bg[0].hofs.raw = setHalf(u16, ppu.bg[0].hofs.raw, byte_addr, value),
0x12, 0x13 => ppu.bg[0].vofs.raw = setHalf(u16, ppu.bg[0].vofs.raw, byte_addr, value),
0x14, 0x15 => ppu.bg[1].hofs.raw = setHalf(u16, ppu.bg[1].hofs.raw, byte_addr, value),
0x16, 0x17 => ppu.bg[1].vofs.raw = setHalf(u16, ppu.bg[1].vofs.raw, byte_addr, value),
0x18, 0x19 => ppu.bg[2].hofs.raw = setHalf(u16, ppu.bg[2].hofs.raw, byte_addr, value),
0x1A, 0x1B => ppu.bg[2].vofs.raw = setHalf(u16, ppu.bg[2].vofs.raw, byte_addr, value),
0x1C, 0x1D => ppu.bg[3].hofs.raw = setHalf(u16, ppu.bg[3].hofs.raw, byte_addr, value),
0x1E, 0x1F => ppu.bg[3].vofs.raw = setHalf(u16, ppu.bg[3].vofs.raw, byte_addr, value),
// BG2 Rot/Scaling
0x20, 0x21 => ppu.aff_bg[0].pa = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[0].pa), byte_addr, value)),
0x22, 0x23 => ppu.aff_bg[0].pb = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[0].pb), byte_addr, value)),
0x24, 0x25 => ppu.aff_bg[0].pc = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[0].pc), byte_addr, value)),
0x26, 0x27 => ppu.aff_bg[0].pd = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[0].pd), byte_addr, value)),
0x28, 0x29, 0x2A, 0x2B => ppu.aff_bg[0].x = @bitCast(i32, setQuart(@bitCast(u32, ppu.aff_bg[0].x), byte_addr, value)),
0x2C, 0x2D, 0x2E, 0x2F => ppu.aff_bg[0].y = @bitCast(i32, setQuart(@bitCast(u32, ppu.aff_bg[0].y), byte_addr, value)),
// BG3 Rot/Scaling
0x30, 0x31 => ppu.aff_bg[1].pa = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[1].pa), byte_addr, value)),
0x32, 0x33 => ppu.aff_bg[1].pb = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[1].pb), byte_addr, value)),
0x34, 0x35 => ppu.aff_bg[1].pc = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[1].pc), byte_addr, value)),
0x36, 0x37 => ppu.aff_bg[1].pd = @bitCast(i16, setHalf(u16, @bitCast(u16, ppu.aff_bg[1].pd), byte_addr, value)),
0x38, 0x39, 0x3A, 0x3B => ppu.aff_bg[1].x = @bitCast(i32, setQuart(@bitCast(u32, ppu.aff_bg[1].x), byte_addr, value)),
0x3C, 0x3D, 0x3E, 0x3F => ppu.aff_bg[1].y = @bitCast(i32, setQuart(@bitCast(u32, ppu.aff_bg[1].y), byte_addr, value)),
// Window
0x40, 0x41 => ppu.win.h[0].raw = setHalf(u16, ppu.win.h[0].raw, byte_addr, value),
0x42, 0x43 => ppu.win.h[1].raw = setHalf(u16, ppu.win.h[1].raw, byte_addr, value),
0x44, 0x45 => ppu.win.v[0].raw = setHalf(u16, ppu.win.v[0].raw, byte_addr, value),
0x46, 0x47 => ppu.win.v[1].raw = setHalf(u16, ppu.win.v[1].raw, byte_addr, value),
0x48, 0x49 => ppu.win.in.raw = setHalf(u16, ppu.win.in.raw, byte_addr, value),
0x4A, 0x4B => ppu.win.out.raw = setHalf(u16, ppu.win.out.raw, byte_addr, value),
0x4C, 0x4D => log.debug("Wrote 0x{X:0>2} to MOSAIC", .{value}),
0x4E, 0x4F => {},
// Blending
0x50, 0x51 => ppu.bld.cnt.raw = setHalf(u16, ppu.bld.cnt.raw, byte_addr, value),
0x52, 0x53 => ppu.bld.alpha.raw = setHalf(u16, ppu.bld.alpha.raw, byte_addr, value),
0x54, 0x55 => ppu.bld.y.raw = setHalf(u16, ppu.bld.y.raw, byte_addr, value),
else => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
},
else => @compileError("PPU: Unsupported write width"),
}
}
pub const Ppu = struct {
const Self = @This();
@ -252,7 +32,9 @@ pub const Ppu = struct {
dispstat: io.DisplayStatus,
vcount: io.VCount,
bld: Blend,
bldcnt: io.BldCnt,
bldalpha: io.BldAlpha,
bldy: io.BldY,
vram: Vram,
palette: Palette,
@ -283,10 +65,12 @@ pub const Ppu = struct {
.win = Window.init(),
.bg = [_]Background{Background.init()} ** 4,
.aff_bg = [_]AffineBackground{AffineBackground.init()} ** 2,
.bld = Blend.create(),
.dispcnt = .{ .raw = 0x0000 },
.dispstat = .{ .raw = 0x0000 },
.vcount = .{ .raw = 0x0000 },
.bldcnt = .{ .raw = 0x0000 },
.bldalpha = .{ .raw = 0x0000 },
.bldy = .{ .raw = 0x0000 },
.scanline = try Scanline.init(allocator),
.scanline_sprites = sprites,
@ -381,7 +165,7 @@ pub const Ppu = struct {
const x = (sprite.x() +% i) % width;
const ix = @bitCast(i9, x);
if (!shouldDrawSprite(self.bld.cnt, &self.scanline, x)) continue;
if (!shouldDrawSprite(self.bldcnt, &self.scanline, x)) continue;
const sprite_start = sprite.x();
const isprite_start = @bitCast(i9, sprite_start);
@ -410,7 +194,7 @@ pub const Ppu = struct {
// Sprite Palette starts at 0x0500_0200
if (pal_id != 0) {
const bgr555 = self.palette.read(u16, 0x200 + pal_id * 2);
copyToSpriteBuffer(self.bld.cnt, &self.scanline, x, bgr555);
copyToSpriteBuffer(self.bldcnt, &self.scanline, x, bgr555);
}
}
}
@ -431,7 +215,7 @@ pub const Ppu = struct {
const x = (sprite.x() +% i) % width;
const ix = @bitCast(i9, x);
if (!shouldDrawSprite(self.bld.cnt, &self.scanline, x)) continue;
if (!shouldDrawSprite(self.bldcnt, &self.scanline, x)) continue;
const sprite_start = sprite.x();
const isprite_start = @bitCast(i9, sprite_start);
@ -466,7 +250,7 @@ pub const Ppu = struct {
// Sprite Palette starts at 0x0500_0200
if (pal_id != 0) {
const bgr555 = self.palette.read(u16, 0x200 + pal_id * 2);
copyToSpriteBuffer(self.bld.cnt, &self.scanline, x, bgr555);
copyToSpriteBuffer(self.bldcnt, &self.scanline, x, bgr555);
}
}
}
@ -715,11 +499,11 @@ pub const Ppu = struct {
fn getBgr555(self: *Self, maybe_top: ?u16, maybe_btm: ?u16) u16 {
if (maybe_btm) |btm| {
return switch (self.bld.cnt.mode.read()) {
return switch (self.bldcnt.mode.read()) {
0b00 => if (maybe_top) |top| top else btm,
0b01 => if (maybe_top) |top| alphaBlend(btm, top, self.bld.alpha) else btm,
0b01 => if (maybe_top) |top| alphaBlend(btm, top, self.bldalpha) else btm,
0b10 => blk: {
const evy: u16 = self.bld.y.evy.read();
const evy: u16 = self.bldy.evy.read();
const r = btm & 0x1F;
const g = (btm >> 5) & 0x1F;
@ -732,7 +516,7 @@ pub const Ppu = struct {
break :blk (bld_b << 10) | (bld_g << 5) | bld_r;
},
0b11 => blk: {
const evy: u16 = self.bld.y.evy.read();
const evy: u16 = self.bldy.evy.read();
const btm_r = btm & 0x1F;
const btm_g = (btm >> 5) & 0x1F;
@ -752,9 +536,9 @@ pub const Ppu = struct {
}
fn copyToBackgroundBuffer(self: *Self, comptime n: u2, bounds: ?WindowBounds, i: usize, bgr555: u16) void {
if (self.bld.cnt.mode.read() != 0b00) {
if (self.bldcnt.mode.read() != 0b00) {
// Standard Alpha Blending
const a_layers = self.bld.cnt.layer_a.read();
const a_layers = self.bldcnt.layer_a.read();
const is_blend_enabled = (a_layers >> n) & 1 == 1;
// If Alpha Blending is enabled and we've found an eligible layer for
@ -815,9 +599,9 @@ pub const Ppu = struct {
// If Alpha Blending isn't enabled, then we've already found a higher prio
// pixel, we can return early
if (self.bld.cnt.mode.read() != 0b01) return false;
if (self.bldcnt.mode.read() != 0b01) return false;
const b_layers = self.bld.cnt.layer_b.read();
const b_layers = self.bldcnt.layer_b.read();
const win_part = if (bounds) |win| blk: {
// Window Enabled
@ -928,30 +712,6 @@ pub const Ppu = struct {
}
};
const Blend = struct {
const Self = @This();
cnt: io.BldCnt,
alpha: io.BldAlpha,
y: io.BldY,
pub fn create() Self {
return .{
.cnt = .{ .raw = 0x000 },
.alpha = .{ .raw = 0x000 },
.y = .{ .raw = 0x000 },
};
}
pub fn getCnt(self: *const Self) u16 {
return self.cnt.raw & 0x3FFF;
}
pub fn getAlpha(self: *const Self) u16 {
return self.alpha.raw & 0x1F1F;
}
};
const Window = struct {
const Self = @This();
@ -971,14 +731,6 @@ const Window = struct {
};
}
pub fn getIn(self: *const Self) u16 {
return self.in.raw & 0x3F3F;
}
pub fn getOut(self: *const Self) u16 {
return self.out.raw & 0x3F3F;
}
fn inRange(self: *const Self, comptime id: u1, x: u9, y: u8) bool {
const h = self.h[id];
const v = self.v[id];
@ -1031,17 +783,6 @@ const Background = struct {
.vofs = .{ .raw = 0x0000 },
};
}
/// For whatever reason, some higher bits of BG0CNT
/// are masked out
pub inline fn bg0Cnt(self: *const Self) u16 {
return self.cnt.raw & 0xDFFF;
}
/// BG1CNT inherits the same mask as BG0CNTs
pub inline fn bg1Cnt(self: *const Self) u16 {
return self.bg0Cnt();
}
};
const AffineBackground = struct {

View File

@ -50,7 +50,7 @@ pub fn deinit(self: *Self) void {
self.* = undefined;
}
pub fn mirror(address: usize) usize {
fn mirror(address: usize) usize {
// Mirrored in steps of 128K (64K + 32K + 32K) (abcc)
const addr = address & 0x1FFFF;

View File

@ -1,5 +1,6 @@
const std = @import("std");
const Bus = @import("Bus.zig");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Clock = @import("bus/gpio.zig").Clock;
@ -46,7 +47,10 @@ pub const Scheduler = struct {
},
.TimerOverflow => |id| {
switch (id) {
inline 0...3 => |idx| cpu.bus.tim[idx].onTimerExpire(cpu, late),
0 => cpu.bus.tim[0].onTimerExpire(cpu, late),
1 => cpu.bus.tim[1].onTimerExpire(cpu, late),
2 => cpu.bus.tim[2].onTimerExpire(cpu, late),
3 => cpu.bus.tim[3].onTimerExpire(cpu, late),
}
},
.ApuChannel => |id| {

View File

@ -126,7 +126,7 @@ fn ensureDirectoriesExist(data_path: []const u8) !void {
// (~/.local/share/zba/save for linux, ??? for macOS)
// Will recursively create directories
try dir.makePath("zba" ++ std.fs.path.sep_str ++ "save");
try dir.makePath("zba" ++ [_]u8{std.fs.path.sep} ++ "save");
}
fn romPath(result: *const clap.Result(clap.Help, &params, clap.parsers.default)) []const u8 {

View File

@ -11,12 +11,10 @@ const FpsTracker = @import("util.zig").FpsTracker;
const span = @import("util.zig").span;
const pitch = @import("core/ppu.zig").framebuf_pitch;
const gba_width = @import("core/ppu.zig").width;
const gba_height = @import("core/ppu.zig").height;
pub const sample_rate = 1 << 15;
pub const sample_format = SDL.AUDIO_U16;
const default_title: []const u8 = "ZBA";
pub const Gui = struct {
@ -202,10 +200,7 @@ pub const Gui = struct {
SDL.SDLK_s => io.keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => io.keyinput.start.set(),
SDL.SDLK_RSHIFT => io.keyinput.select.set(),
SDL.SDLK_i => {
comptime std.debug.assert(sample_format == SDL.AUDIO_U16);
log.err("Sample Count: {}", .{@intCast(u32, SDL.SDL_AudioStreamAvailable(cpu.bus.apu.stream)) / (2 * @sizeOf(u16))});
},
SDL.SDLK_i => log.err("Sample Count: {}", .{@intCast(u32, SDL.SDL_AudioStreamAvailable(cpu.bus.apu.stream)) / (2 * @sizeOf(u16))}),
SDL.SDLK_j => log.err("Scheduler Capacity: {} | Scheduler Event Count: {}", .{ scheduler.queue.capacity(), scheduler.queue.count() }),
SDL.SDLK_k => {
// Dump IWRAM to file
@ -258,6 +253,7 @@ pub const Gui = struct {
const Audio = struct {
const Self = @This();
const log = std.log.scoped(.PlatformAudio);
const sample_rate = @import("core/apu.zig").host_sample_rate;
device: SDL.SDL_AudioDeviceID,
@ -265,22 +261,16 @@ const Audio = struct {
var have: SDL.SDL_AudioSpec = undefined;
var want: SDL.SDL_AudioSpec = std.mem.zeroes(SDL.SDL_AudioSpec);
want.freq = sample_rate;
want.format = sample_format;
want.format = SDL.AUDIO_U16;
want.channels = 2;
want.samples = 0x100;
want.callback = Self.callback;
want.userdata = apu;
std.debug.assert(sample_format == SDL.AUDIO_U16);
log.info("Host Sample Rate: {}Hz, Host Format: SDL.AUDIO_U16", .{sample_rate});
const device = SDL.SDL_OpenAudioDevice(null, 0, &want, &have, 0);
if (device == 0) panic();
if (!config.config().host.mute) {
SDL.SDL_PauseAudioDevice(device, 0); // Unpause Audio
log.info("Unpaused Device", .{});
}
SDL.SDL_PauseAudioDevice(device, 0); // Unpause Audio
return .{ .device = device };
}
@ -291,10 +281,18 @@ const Audio = struct {
}
export fn callback(userdata: ?*anyopaque, stream: [*c]u8, len: c_int) void {
const T = *Apu;
const apu = @ptrCast(T, @alignCast(@alignOf(T), userdata));
const apu = @ptrCast(*Apu, @alignCast(@alignOf(*Apu), userdata));
_ = SDL.SDL_AudioStreamGet(apu.stream, stream, len);
// TODO: Find a better way to mute this
if (!config.config().host.mute) {
_ = SDL.SDL_AudioStreamGet(apu.stream, stream, len);
} else {
// FIXME: I don't think this hack to remove DC Offset is acceptable :thinking:
std.mem.set(u8, stream[0..@intCast(usize, len)], 0x40);
}
// If we don't write anything, play silence otherwise garbage will be played
// if (written == 0) std.mem.set(u8, stream[0..@intCast(usize, len)], 0x40);
}
};

View File

@ -14,9 +14,9 @@ pub fn sext(comptime T: type, comptime U: type, value: T) T {
const iT = std.meta.Int(.signed, @typeInfo(T).Int.bits);
const ExtU = if (@typeInfo(U).Int.signedness == .unsigned) T else iT;
const shift_amt = @intCast(Log2Int(T), @typeInfo(T).Int.bits - @typeInfo(U).Int.bits);
const shift = @intCast(Log2Int(T), @typeInfo(T).Int.bits - @typeInfo(U).Int.bits);
return @bitCast(T, @bitCast(iT, @as(ExtU, @truncate(U, value)) << shift_amt) >> shift_amt);
return @bitCast(T, @bitCast(iT, @as(ExtU, @truncate(U, value)) << shift) >> shift);
}
/// See https://godbolt.org/z/W3en9Eche
@ -145,9 +145,7 @@ pub const io = struct {
return 0;
}
pub fn undef(comptime T: type, comptime log: anytype, comptime format: []const u8, args: anytype) ?T {
@setCold(true);
pub fn undef(comptime T: type, log: anytype, comptime format: []const u8, args: anytype) ?T {
const unhandled_io = config.config().debug.unhandled_io;
log.warn(format, args);
@ -155,13 +153,6 @@ pub const io = struct {
return null;
}
pub fn err(comptime T: type, comptime log: anytype, comptime format: []const u8, args: anytype) ?T {
@setCold(true);
log.err(format, args);
return null;
}
};
pub const write = struct {
@ -284,37 +275,22 @@ pub const audio = struct {
};
};
/// Sets a quarter (8) of the bits of the u32 `left` to the value of u8 `right`
pub inline fn setQuart(left: u32, addr: u8, right: u8) u32 {
const offset = @truncate(u2, addr);
return switch (offset) {
0b00 => (left & 0xFFFF_FF00) | right,
0b01 => (left & 0xFFFF_00FF) | @as(u32, right) << 8,
0b10 => (left & 0xFF00_FFFF) | @as(u32, right) << 16,
0b11 => (left & 0x00FF_FFFF) | @as(u32, right) << 24,
/// Sets the high bits of an integer to a value
pub inline fn setLo(comptime T: type, left: T, right: HalfInt(T)) T {
return switch (T) {
u32 => (left & 0xFFFF_0000) | right,
u16 => (left & 0xFF00) | right,
u8 => (left & 0xF0) | right,
else => @compileError("unsupported type"),
};
}
/// Calculates the correct shift offset for an aligned/unaligned u8 read
///
/// TODO: Support u16 reads of u32 values?
pub inline fn getHalf(byte: u8) u4 {
return @truncate(u4, byte & 1) << 3;
}
pub inline fn setHalf(comptime T: type, left: T, addr: u8, right: HalfInt(T)) T {
const offset = @truncate(u1, addr >> if (T == u32) 1 else 0);
/// sets the low bits of an integer to a value
pub inline fn setHi(comptime T: type, left: T, right: HalfInt(T)) T {
return switch (T) {
u32 => switch (offset) {
0b0 => (left & 0xFFFF_0000) | right,
0b1 => (left & 0x0000_FFFF) | @as(u32, right) << 16,
},
u16 => switch (offset) {
0b0 => (left & 0xFF00) | right,
0b1 => (left & 0x00FF) | @as(u16, right) << 8,
},
u32 => (left & 0x0000_FFFF) | @as(u32, right) << 16,
u16 => (left & 0x00FF) | @as(u16, right) << 8,
u8 => (left & 0x0F) | @as(u8, right) << 4,
else => @compileError("unsupported type"),
};
}