chore: move Gpio and Clock structs to separate file
This commit is contained in:
		@@ -1,10 +1,11 @@
 | 
			
		||||
const std = @import("std");
 | 
			
		||||
const Bit = @import("bitfield").Bit;
 | 
			
		||||
const Bitfield = @import("bitfield").Bitfield;
 | 
			
		||||
const DateTime = @import("datetime").datetime.Datetime;
 | 
			
		||||
 | 
			
		||||
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
 | 
			
		||||
const Bit = @import("bitfield").Bit;
 | 
			
		||||
const Bitfield = @import("bitfield").Bitfield;
 | 
			
		||||
const Backup = @import("backup.zig").Backup;
 | 
			
		||||
const Gpio = @import("gpio.zig").Gpio;
 | 
			
		||||
const Allocator = std.mem.Allocator;
 | 
			
		||||
 | 
			
		||||
const force_rtc = @import("../emu.zig").force_rtc;
 | 
			
		||||
@@ -239,463 +240,3 @@ test "OOB Access" {
 | 
			
		||||
    std.debug.assert(pak.get(4) == 0x02); // 0x0002
 | 
			
		||||
    std.debug.assert(pak.get(5) == 0x00);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// GPIO Register Implementation
 | 
			
		||||
const Gpio = struct {
 | 
			
		||||
    const This = @This();
 | 
			
		||||
 | 
			
		||||
    data: u4,
 | 
			
		||||
    direction: u4,
 | 
			
		||||
    cnt: u1,
 | 
			
		||||
 | 
			
		||||
    device: Device,
 | 
			
		||||
 | 
			
		||||
    const Device = struct {
 | 
			
		||||
        ptr: ?*anyopaque,
 | 
			
		||||
        kind: Kind, // TODO: Make comptime known?
 | 
			
		||||
 | 
			
		||||
        const Kind = enum { Rtc, None };
 | 
			
		||||
 | 
			
		||||
        fn step(self: *Device, value: u4) u4 {
 | 
			
		||||
            return switch (self.kind) {
 | 
			
		||||
                .Rtc => blk: {
 | 
			
		||||
                    const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?));
 | 
			
		||||
                    break :blk clock.step(Clock.Data{ .raw = value });
 | 
			
		||||
                },
 | 
			
		||||
                .None => value,
 | 
			
		||||
            };
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        fn init(kind: Kind, ptr: ?*anyopaque) Device {
 | 
			
		||||
            return .{ .kind = kind, .ptr = ptr };
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Register = enum {
 | 
			
		||||
        Data,
 | 
			
		||||
        Direction,
 | 
			
		||||
        Control,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    fn init(allocator: Allocator, cpu: *Arm7tdmi, kind: Device.Kind) !*This {
 | 
			
		||||
        log.info("Device: {}", .{kind});
 | 
			
		||||
 | 
			
		||||
        const self = try allocator.create(This);
 | 
			
		||||
        self.* = .{
 | 
			
		||||
            .data = 0b0000,
 | 
			
		||||
            .direction = 0b1111, // TODO: What is GPIO DIrection set to by default?
 | 
			
		||||
            .cnt = 0b0,
 | 
			
		||||
 | 
			
		||||
            .device = switch (kind) {
 | 
			
		||||
                .Rtc => blk: {
 | 
			
		||||
                    const clock = try allocator.create(Clock);
 | 
			
		||||
                    clock.init(cpu, self);
 | 
			
		||||
 | 
			
		||||
                    break :blk Device{ .kind = kind, .ptr = clock };
 | 
			
		||||
                },
 | 
			
		||||
                .None => Device{ .kind = kind, .ptr = null },
 | 
			
		||||
            },
 | 
			
		||||
        };
 | 
			
		||||
 | 
			
		||||
        return self;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn deinit(self: *This, allocator: Allocator) void {
 | 
			
		||||
        switch (self.device.kind) {
 | 
			
		||||
            .Rtc => {
 | 
			
		||||
                allocator.destroy(@ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.device.ptr.?)));
 | 
			
		||||
            },
 | 
			
		||||
            .None => {},
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        self.* = undefined;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn write(self: *This, comptime reg: Register, value: if (reg == .Control) u1 else u4) void {
 | 
			
		||||
        switch (reg) {
 | 
			
		||||
            .Data => {
 | 
			
		||||
                const masked_value = value & self.direction;
 | 
			
		||||
 | 
			
		||||
                // The value which is actually stored in the GPIO register
 | 
			
		||||
                // might be modified by the device implementing the GPIO interface e.g. RTC reads
 | 
			
		||||
                self.data = self.device.step(masked_value);
 | 
			
		||||
            },
 | 
			
		||||
            .Direction => self.direction = value,
 | 
			
		||||
            .Control => self.cnt = value,
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn read(self: *const This, comptime reg: Register) if (reg == .Control) u1 else u4 {
 | 
			
		||||
        if (self.cnt == 0) return 0;
 | 
			
		||||
 | 
			
		||||
        return switch (reg) {
 | 
			
		||||
            .Data => self.data & ~self.direction,
 | 
			
		||||
            .Direction => self.direction,
 | 
			
		||||
            .Control => self.cnt,
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// GBA Real Time Clock
 | 
			
		||||
pub const Clock = struct {
 | 
			
		||||
    const This = @This();
 | 
			
		||||
 | 
			
		||||
    writer: Writer,
 | 
			
		||||
    reader: Reader,
 | 
			
		||||
    state: State,
 | 
			
		||||
    cnt: Control,
 | 
			
		||||
 | 
			
		||||
    year: u8,
 | 
			
		||||
    month: u5,
 | 
			
		||||
    day: u6,
 | 
			
		||||
    weekday: u3,
 | 
			
		||||
    hour: u6,
 | 
			
		||||
    minute: u7,
 | 
			
		||||
    second: u7,
 | 
			
		||||
 | 
			
		||||
    cpu: *Arm7tdmi,
 | 
			
		||||
    gpio: *const Gpio,
 | 
			
		||||
 | 
			
		||||
    const Register = enum {
 | 
			
		||||
        Control,
 | 
			
		||||
        DateTime,
 | 
			
		||||
        Time,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const State = union(enum) {
 | 
			
		||||
        Idle,
 | 
			
		||||
        Command,
 | 
			
		||||
        Write: Register,
 | 
			
		||||
        Read: Register,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Reader = struct {
 | 
			
		||||
        i: u4,
 | 
			
		||||
        count: u8,
 | 
			
		||||
 | 
			
		||||
        /// Reads a bit from RTC registers. Which bit it reads is dependent on
 | 
			
		||||
        ///
 | 
			
		||||
        /// 1. The RTC State Machine, whitch tells us which register we're accessing
 | 
			
		||||
        /// 2. A `count`, which keeps track of which byte is currently being read
 | 
			
		||||
        /// 3. An index, which keeps track of which bit of the byte determined by `count` is being read
 | 
			
		||||
        fn read(self: *Reader, clock: *const Clock, register: Register) u1 {
 | 
			
		||||
            const idx = @intCast(u3, self.i);
 | 
			
		||||
            defer self.i += 1;
 | 
			
		||||
 | 
			
		||||
            // FIXME: What do I do about the unused bits?
 | 
			
		||||
            return switch (register) {
 | 
			
		||||
                .Control => @truncate(u1, switch (self.count) {
 | 
			
		||||
                    0 => clock.cnt.raw >> idx,
 | 
			
		||||
                    else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
 | 
			
		||||
                }),
 | 
			
		||||
                .DateTime => @truncate(u1, switch (self.count) {
 | 
			
		||||
                    // Date
 | 
			
		||||
                    0 => clock.year >> idx,
 | 
			
		||||
                    1 => @as(u8, clock.month) >> idx,
 | 
			
		||||
                    2 => @as(u8, clock.day) >> idx,
 | 
			
		||||
                    3 => @as(u8, clock.weekday) >> idx,
 | 
			
		||||
 | 
			
		||||
                    // Time
 | 
			
		||||
                    4 => @as(u8, clock.hour) >> idx,
 | 
			
		||||
                    5 => @as(u8, clock.minute) >> idx,
 | 
			
		||||
                    6 => @as(u8, clock.second) >> idx,
 | 
			
		||||
                    else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 7 bytes)", .{ self.count, register }),
 | 
			
		||||
                }),
 | 
			
		||||
                .Time => @truncate(u1, switch (self.count) {
 | 
			
		||||
                    0 => @as(u8, clock.hour) >> idx,
 | 
			
		||||
                    1 => @as(u8, clock.minute) >> idx,
 | 
			
		||||
                    2 => @as(u8, clock.second) >> idx,
 | 
			
		||||
                    else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 3 bytes)", .{ self.count, register }),
 | 
			
		||||
                }),
 | 
			
		||||
            };
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Is true when a Reader has read a u8's worth of bits
 | 
			
		||||
        fn finished(self: *const Reader) bool {
 | 
			
		||||
            return self.i >= 8;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Resets the index used to shift bits out of RTC registers
 | 
			
		||||
        /// and `count`, which is used to keep track of which byte we're reading
 | 
			
		||||
        /// is incremeneted
 | 
			
		||||
        fn lap(self: *Reader) void {
 | 
			
		||||
            self.i = 0;
 | 
			
		||||
            self.count += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Resets the state of a `Reader` in preparation for a future
 | 
			
		||||
        /// read command
 | 
			
		||||
        fn reset(self: *Reader) void {
 | 
			
		||||
            self.i = 0;
 | 
			
		||||
            self.count = 0;
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Writer = struct {
 | 
			
		||||
        buf: u8,
 | 
			
		||||
        i: u4,
 | 
			
		||||
 | 
			
		||||
        /// The Number of bytes written since last reset
 | 
			
		||||
        count: u8,
 | 
			
		||||
 | 
			
		||||
        /// Append a bit to the internal bit buffer (aka an integer)
 | 
			
		||||
        fn push(self: *Writer, value: u1) void {
 | 
			
		||||
            const idx = @intCast(u3, self.i);
 | 
			
		||||
            self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
 | 
			
		||||
            self.i += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Takes the contents of the internal buffer and writes it to an RTC register
 | 
			
		||||
        /// Where it writes to is dependent on:
 | 
			
		||||
        ///
 | 
			
		||||
        /// 1. The RTC State Machine, whitch tells us which register we're accessing
 | 
			
		||||
        /// 2. A `count`, which keeps track of which byte is currently being read
 | 
			
		||||
        fn write(self: *const Writer, clock: *Clock, register: Register) void {
 | 
			
		||||
            // FIXME: What do do about unused bits?
 | 
			
		||||
            switch (register) {
 | 
			
		||||
                .Control => switch (self.count) {
 | 
			
		||||
                    0 => clock.cnt.raw = (clock.cnt.raw & 0x80) | (self.buf & 0x7F), // Bit 7 read-only
 | 
			
		||||
                    else => std.debug.panic("Tried to write to byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
 | 
			
		||||
                },
 | 
			
		||||
                .DateTime, .Time => log.debug("RTC: Ignoring {} write", .{register}),
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Is true when 8 bits have been shifted into the internal buffer
 | 
			
		||||
        fn finished(self: *const Writer) bool {
 | 
			
		||||
            return self.i >= 8;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Resets the internal buffer
 | 
			
		||||
        /// resets the index used to shift bits into the internal buffer
 | 
			
		||||
        /// increments `count` (which keeps track of byte offsets) by one
 | 
			
		||||
        fn lap(self: *Writer) void {
 | 
			
		||||
            self.buf = 0;
 | 
			
		||||
            self.i = 0;
 | 
			
		||||
            self.count += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Resets `Writer` to a clean state in preparation for a future write command
 | 
			
		||||
        fn reset(self: *Writer) void {
 | 
			
		||||
            self.buf = 0;
 | 
			
		||||
            self.i = 0;
 | 
			
		||||
            self.count = 0;
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Data = extern union {
 | 
			
		||||
        sck: Bit(u8, 0),
 | 
			
		||||
        sio: Bit(u8, 1),
 | 
			
		||||
        cs: Bit(u8, 2),
 | 
			
		||||
        raw: u8,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Control = extern union {
 | 
			
		||||
        /// Unknown, value should be preserved though
 | 
			
		||||
        unk: Bit(u8, 1),
 | 
			
		||||
        /// Per-minute IRQ
 | 
			
		||||
        /// If set, fire a Gamepak IRQ every 30s,
 | 
			
		||||
        irq: Bit(u8, 3),
 | 
			
		||||
        /// 12/24 Hour Bit
 | 
			
		||||
        /// If set, 12h mode
 | 
			
		||||
        /// If cleared, 24h mode
 | 
			
		||||
        mode: Bit(u8, 6),
 | 
			
		||||
        /// Read-Only, bit cleared on read
 | 
			
		||||
        /// If is set, means that there has been a failure / time has been lost
 | 
			
		||||
        off: Bit(u8, 7),
 | 
			
		||||
        raw: u8,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    fn init(ptr: *This, cpu: *Arm7tdmi, gpio: *const Gpio) void {
 | 
			
		||||
        ptr.* = .{
 | 
			
		||||
            .writer = .{ .buf = 0, .i = 0, .count = 0 },
 | 
			
		||||
            .reader = .{ .i = 0, .count = 0 },
 | 
			
		||||
            .state = .Idle,
 | 
			
		||||
            .cnt = .{ .raw = 0 },
 | 
			
		||||
            .year = 0x01,
 | 
			
		||||
            .month = 0x6,
 | 
			
		||||
            .day = 0x13,
 | 
			
		||||
            .weekday = 0x3,
 | 
			
		||||
            .hour = 0x23,
 | 
			
		||||
            .minute = 0x59,
 | 
			
		||||
            .second = 0x59,
 | 
			
		||||
            .cpu = cpu,
 | 
			
		||||
            .gpio = gpio, // Can't use Arm7tdmi ptr b/c not initialized yet
 | 
			
		||||
        };
 | 
			
		||||
 | 
			
		||||
        cpu.sched.push(.RealTimeClock, 1 << 24); // Every Second
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn updateTime(self: *This, late: u64) void {
 | 
			
		||||
        self.cpu.sched.push(.RealTimeClock, (1 << 24) -| late); // Reschedule
 | 
			
		||||
 | 
			
		||||
        const now = DateTime.now();
 | 
			
		||||
        self.year = toBcd(u8, @intCast(u8, now.date.year - 2000));
 | 
			
		||||
        self.month = toBcd(u5, now.date.month);
 | 
			
		||||
        self.day = toBcd(u6, now.date.day);
 | 
			
		||||
        self.weekday = toBcd(u3, (now.date.weekday() + 1) % 7); // API is Monday = 0, Sunday = 6. We want Sunday = 0, Saturday = 6
 | 
			
		||||
        self.hour = toBcd(u6, now.time.hour);
 | 
			
		||||
        self.minute = toBcd(u7, now.time.minute);
 | 
			
		||||
        self.second = toBcd(u7, now.time.second);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn step(self: *This, value: Data) u4 {
 | 
			
		||||
        const cache: Data = .{ .raw = self.gpio.data };
 | 
			
		||||
 | 
			
		||||
        return switch (self.state) {
 | 
			
		||||
            .Idle => blk: {
 | 
			
		||||
                // FIXME: Maybe check incoming value to see if SCK is also high?
 | 
			
		||||
                if (cache.sck.read()) {
 | 
			
		||||
                    if (!cache.cs.read() and value.cs.read()) {
 | 
			
		||||
                        log.debug("RTC: Entering Command Mode", .{});
 | 
			
		||||
                        self.state = .Command;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                break :blk @truncate(u4, value.raw);
 | 
			
		||||
            },
 | 
			
		||||
            .Command => blk: {
 | 
			
		||||
                if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
 | 
			
		||||
 | 
			
		||||
                // If SCK rises, sample SIO
 | 
			
		||||
                if (!cache.sck.read() and value.sck.read()) {
 | 
			
		||||
                    self.writer.push(@boolToInt(value.sio.read()));
 | 
			
		||||
 | 
			
		||||
                    if (self.writer.finished()) {
 | 
			
		||||
                        self.state = self.processCommand(self.writer.buf);
 | 
			
		||||
                        self.writer.reset();
 | 
			
		||||
 | 
			
		||||
                        log.debug("RTC: Switching to {}", .{self.state});
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                break :blk @truncate(u4, value.raw);
 | 
			
		||||
            },
 | 
			
		||||
            .Write => |register| blk: {
 | 
			
		||||
                if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
 | 
			
		||||
 | 
			
		||||
                // If SCK rises, sample SIO
 | 
			
		||||
                if (!cache.sck.read() and value.sck.read()) {
 | 
			
		||||
                    self.writer.push(@boolToInt(value.sio.read()));
 | 
			
		||||
 | 
			
		||||
                    const register_width: u32 = switch (register) {
 | 
			
		||||
                        .Control => 1,
 | 
			
		||||
                        .DateTime => 7,
 | 
			
		||||
                        .Time => 3,
 | 
			
		||||
                    };
 | 
			
		||||
 | 
			
		||||
                    if (self.writer.finished()) {
 | 
			
		||||
                        self.writer.write(self, register); // write inner buffer to RTC register
 | 
			
		||||
                        self.writer.lap();
 | 
			
		||||
 | 
			
		||||
                        if (self.writer.count == register_width) {
 | 
			
		||||
                            self.writer.reset();
 | 
			
		||||
                            self.state = .Idle;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                break :blk @truncate(u4, value.raw);
 | 
			
		||||
            },
 | 
			
		||||
            .Read => |register| blk: {
 | 
			
		||||
                if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
 | 
			
		||||
                var ret = value;
 | 
			
		||||
 | 
			
		||||
                // if SCK rises, sample SIO
 | 
			
		||||
                if (!cache.sck.read() and value.sck.read()) {
 | 
			
		||||
                    ret.sio.write(self.reader.read(self, register) == 0b1);
 | 
			
		||||
 | 
			
		||||
                    const register_width: u32 = switch (register) {
 | 
			
		||||
                        .Control => 1,
 | 
			
		||||
                        .DateTime => 7,
 | 
			
		||||
                        .Time => 3,
 | 
			
		||||
                    };
 | 
			
		||||
 | 
			
		||||
                    if (self.reader.finished()) {
 | 
			
		||||
                        self.reader.lap();
 | 
			
		||||
 | 
			
		||||
                        if (self.reader.count == register_width) {
 | 
			
		||||
                            self.reader.reset();
 | 
			
		||||
                            self.state = .Idle;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                break :blk @truncate(u4, ret.raw);
 | 
			
		||||
            },
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn reset(self: *This) void {
 | 
			
		||||
        // mGBA and NBA only zero the control register. We will do the same
 | 
			
		||||
        log.debug("RTC: Reset (control register was zeroed)", .{});
 | 
			
		||||
 | 
			
		||||
        self.cnt.raw = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn irq(self: *This) void {
 | 
			
		||||
        // TODO: Confirm that this is the right behaviour
 | 
			
		||||
        log.debug("RTC: Force GamePak IRQ", .{});
 | 
			
		||||
 | 
			
		||||
        self.cpu.bus.io.irq.game_pak.set();
 | 
			
		||||
        self.cpu.handleInterrupt();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn processCommand(self: *This, raw_command: u8) State {
 | 
			
		||||
        const command = blk: {
 | 
			
		||||
            // If High Nybble is 0x6, no need to switch the endianness
 | 
			
		||||
            if (raw_command >> 4 & 0xF == 0x6) break :blk raw_command;
 | 
			
		||||
 | 
			
		||||
            // Turns out reversing the order of bits isn't trivial at all
 | 
			
		||||
            // https://stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
 | 
			
		||||
            var ret = raw_command;
 | 
			
		||||
            ret = (ret & 0xF0) >> 4 | (ret & 0x0F) << 4;
 | 
			
		||||
            ret = (ret & 0xCC) >> 2 | (ret & 0x33) << 2;
 | 
			
		||||
            ret = (ret & 0xAA) >> 1 | (ret & 0x55) << 1;
 | 
			
		||||
 | 
			
		||||
            break :blk ret;
 | 
			
		||||
        };
 | 
			
		||||
        log.debug("RTC: Handling Command 0x{X:0>2} [0b{b:0>8}]", .{ command, command });
 | 
			
		||||
 | 
			
		||||
        const is_write = command & 1 == 0;
 | 
			
		||||
        const rtc_register = @truncate(u3, command >> 1 & 0x7);
 | 
			
		||||
 | 
			
		||||
        if (is_write) {
 | 
			
		||||
            return switch (rtc_register) {
 | 
			
		||||
                0 => blk: {
 | 
			
		||||
                    self.reset();
 | 
			
		||||
                    break :blk .Idle;
 | 
			
		||||
                },
 | 
			
		||||
                1 => .{ .Write = .Control },
 | 
			
		||||
                2 => .{ .Write = .DateTime },
 | 
			
		||||
                3 => .{ .Write = .Time },
 | 
			
		||||
                6 => blk: {
 | 
			
		||||
                    self.irq();
 | 
			
		||||
                    break :blk .Idle;
 | 
			
		||||
                },
 | 
			
		||||
                4, 5, 7 => .Idle,
 | 
			
		||||
            };
 | 
			
		||||
        } else {
 | 
			
		||||
            return switch (rtc_register) {
 | 
			
		||||
                1 => .{ .Read = .Control },
 | 
			
		||||
                2 => .{ .Read = .DateTime },
 | 
			
		||||
                3 => .{ .Read = .Time },
 | 
			
		||||
                0, 4, 5, 6, 7 => .Idle, // Do Nothing
 | 
			
		||||
            };
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
fn toBcd(comptime T: type, value: u8) T {
 | 
			
		||||
    var input = value;
 | 
			
		||||
    var ret: u8 = 0;
 | 
			
		||||
    var shift: u3 = 0;
 | 
			
		||||
 | 
			
		||||
    while (input > 0) {
 | 
			
		||||
        ret |= (input % 10) << (shift << 2);
 | 
			
		||||
        shift += 1;
 | 
			
		||||
        input /= 10;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return @truncate(T, ret);
 | 
			
		||||
}
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										463
									
								
								src/core/bus/gpio.zig
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										463
									
								
								src/core/bus/gpio.zig
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,463 @@
 | 
			
		||||
const std = @import("std");
 | 
			
		||||
const Bit = @import("bitfield").Bit;
 | 
			
		||||
const Bitfield = @import("bitfield").Bitfield;
 | 
			
		||||
const DateTime = @import("datetime").datetime.Datetime;
 | 
			
		||||
 | 
			
		||||
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
 | 
			
		||||
const Allocator = std.mem.Allocator;
 | 
			
		||||
 | 
			
		||||
/// GPIO Register Implementation
 | 
			
		||||
pub const Gpio = struct {
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
    const log = std.log.scoped(.Gpio);
 | 
			
		||||
 | 
			
		||||
    data: u4,
 | 
			
		||||
    direction: u4,
 | 
			
		||||
    cnt: u1,
 | 
			
		||||
 | 
			
		||||
    device: Device,
 | 
			
		||||
 | 
			
		||||
    const Register = enum { Data, Direction, Control };
 | 
			
		||||
 | 
			
		||||
    pub const Device = struct {
 | 
			
		||||
        ptr: ?*anyopaque,
 | 
			
		||||
        kind: Kind, // TODO: Make comptime known?
 | 
			
		||||
 | 
			
		||||
        pub const Kind = enum { Rtc, None };
 | 
			
		||||
 | 
			
		||||
        fn step(self: *Device, value: u4) u4 {
 | 
			
		||||
            return switch (self.kind) {
 | 
			
		||||
                .Rtc => blk: {
 | 
			
		||||
                    const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?));
 | 
			
		||||
                    break :blk clock.step(Clock.Data{ .raw = value });
 | 
			
		||||
                },
 | 
			
		||||
                .None => value,
 | 
			
		||||
            };
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        fn init(kind: Kind, ptr: ?*anyopaque) Device {
 | 
			
		||||
            return .{ .kind = kind, .ptr = ptr };
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    pub fn write(self: *Self, comptime reg: Register, value: if (reg == .Control) u1 else u4) void {
 | 
			
		||||
        switch (reg) {
 | 
			
		||||
            .Data => {
 | 
			
		||||
                const masked_value = value & self.direction;
 | 
			
		||||
 | 
			
		||||
                // The value which is actually stored in the GPIO register
 | 
			
		||||
                // might be modified by the device implementing the GPIO interface e.g. RTC reads
 | 
			
		||||
                self.data = self.device.step(masked_value);
 | 
			
		||||
            },
 | 
			
		||||
            .Direction => self.direction = value,
 | 
			
		||||
            .Control => self.cnt = value,
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn read(self: *const Self, comptime reg: Register) if (reg == .Control) u1 else u4 {
 | 
			
		||||
        if (self.cnt == 0) return 0;
 | 
			
		||||
 | 
			
		||||
        return switch (reg) {
 | 
			
		||||
            .Data => self.data & ~self.direction,
 | 
			
		||||
            .Direction => self.direction,
 | 
			
		||||
            .Control => self.cnt,
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn init(allocator: Allocator, cpu: *Arm7tdmi, kind: Device.Kind) !*Self {
 | 
			
		||||
        log.info("Device: {}", .{kind});
 | 
			
		||||
 | 
			
		||||
        const self = try allocator.create(Self);
 | 
			
		||||
        self.* = .{
 | 
			
		||||
            .data = 0b0000,
 | 
			
		||||
            .direction = 0b1111, // TODO: What is GPIO DIrection set to by default?
 | 
			
		||||
            .cnt = 0b0,
 | 
			
		||||
 | 
			
		||||
            .device = switch (kind) {
 | 
			
		||||
                .Rtc => blk: {
 | 
			
		||||
                    const clock = try allocator.create(Clock);
 | 
			
		||||
                    clock.init(cpu, self);
 | 
			
		||||
 | 
			
		||||
                    break :blk Device{ .kind = kind, .ptr = clock };
 | 
			
		||||
                },
 | 
			
		||||
                .None => Device{ .kind = kind, .ptr = null },
 | 
			
		||||
            },
 | 
			
		||||
        };
 | 
			
		||||
 | 
			
		||||
        return self;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn deinit(self: *Self, allocator: Allocator) void {
 | 
			
		||||
        switch (self.device.kind) {
 | 
			
		||||
            .Rtc => allocator.destroy(@ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.device.ptr.?))),
 | 
			
		||||
            .None => {},
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        self.* = undefined;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/// GBA Real Time Clock
 | 
			
		||||
pub const Clock = struct {
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
    const log = std.log.scoped(.Rtc);
 | 
			
		||||
 | 
			
		||||
    writer: Writer,
 | 
			
		||||
    reader: Reader,
 | 
			
		||||
    state: State,
 | 
			
		||||
    cnt: Control,
 | 
			
		||||
 | 
			
		||||
    year: u8,
 | 
			
		||||
    month: u5,
 | 
			
		||||
    day: u6,
 | 
			
		||||
    weekday: u3,
 | 
			
		||||
    hour: u6,
 | 
			
		||||
    minute: u7,
 | 
			
		||||
    second: u7,
 | 
			
		||||
 | 
			
		||||
    cpu: *Arm7tdmi,
 | 
			
		||||
    gpio: *const Gpio,
 | 
			
		||||
 | 
			
		||||
    const Register = enum {
 | 
			
		||||
        Control,
 | 
			
		||||
        DateTime,
 | 
			
		||||
        Time,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const State = union(enum) {
 | 
			
		||||
        Idle,
 | 
			
		||||
        Command,
 | 
			
		||||
        Write: Register,
 | 
			
		||||
        Read: Register,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Reader = struct {
 | 
			
		||||
        i: u4,
 | 
			
		||||
        count: u8,
 | 
			
		||||
 | 
			
		||||
        /// Reads a bit from RTC registers. Which bit it reads is dependent on
 | 
			
		||||
        ///
 | 
			
		||||
        /// 1. The RTC State Machine, whitch tells us which register we're accessing
 | 
			
		||||
        /// 2. A `count`, which keeps track of which byte is currently being read
 | 
			
		||||
        /// 3. An index, which keeps track of which bit of the byte determined by `count` is being read
 | 
			
		||||
        fn read(self: *Reader, clock: *const Clock, register: Register) u1 {
 | 
			
		||||
            const idx = @intCast(u3, self.i);
 | 
			
		||||
            defer self.i += 1;
 | 
			
		||||
 | 
			
		||||
            // FIXME: What do I do about the unused bits?
 | 
			
		||||
            return switch (register) {
 | 
			
		||||
                .Control => @truncate(u1, switch (self.count) {
 | 
			
		||||
                    0 => clock.cnt.raw >> idx,
 | 
			
		||||
                    else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
 | 
			
		||||
                }),
 | 
			
		||||
                .DateTime => @truncate(u1, switch (self.count) {
 | 
			
		||||
                    // Date
 | 
			
		||||
                    0 => clock.year >> idx,
 | 
			
		||||
                    1 => @as(u8, clock.month) >> idx,
 | 
			
		||||
                    2 => @as(u8, clock.day) >> idx,
 | 
			
		||||
                    3 => @as(u8, clock.weekday) >> idx,
 | 
			
		||||
 | 
			
		||||
                    // Time
 | 
			
		||||
                    4 => @as(u8, clock.hour) >> idx,
 | 
			
		||||
                    5 => @as(u8, clock.minute) >> idx,
 | 
			
		||||
                    6 => @as(u8, clock.second) >> idx,
 | 
			
		||||
                    else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 7 bytes)", .{ self.count, register }),
 | 
			
		||||
                }),
 | 
			
		||||
                .Time => @truncate(u1, switch (self.count) {
 | 
			
		||||
                    0 => @as(u8, clock.hour) >> idx,
 | 
			
		||||
                    1 => @as(u8, clock.minute) >> idx,
 | 
			
		||||
                    2 => @as(u8, clock.second) >> idx,
 | 
			
		||||
                    else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 3 bytes)", .{ self.count, register }),
 | 
			
		||||
                }),
 | 
			
		||||
            };
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Is true when a Reader has read a u8's worth of bits
 | 
			
		||||
        fn finished(self: *const Reader) bool {
 | 
			
		||||
            return self.i >= 8;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Resets the index used to shift bits out of RTC registers
 | 
			
		||||
        /// and `count`, which is used to keep track of which byte we're reading
 | 
			
		||||
        /// is incremeneted
 | 
			
		||||
        fn lap(self: *Reader) void {
 | 
			
		||||
            self.i = 0;
 | 
			
		||||
            self.count += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Resets the state of a `Reader` in preparation for a future
 | 
			
		||||
        /// read command
 | 
			
		||||
        fn reset(self: *Reader) void {
 | 
			
		||||
            self.i = 0;
 | 
			
		||||
            self.count = 0;
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Writer = struct {
 | 
			
		||||
        buf: u8,
 | 
			
		||||
        i: u4,
 | 
			
		||||
 | 
			
		||||
        /// The Number of bytes written since last reset
 | 
			
		||||
        count: u8,
 | 
			
		||||
 | 
			
		||||
        /// Append a bit to the internal bit buffer (aka an integer)
 | 
			
		||||
        fn push(self: *Writer, value: u1) void {
 | 
			
		||||
            const idx = @intCast(u3, self.i);
 | 
			
		||||
            self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
 | 
			
		||||
            self.i += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Takes the contents of the internal buffer and writes it to an RTC register
 | 
			
		||||
        /// Where it writes to is dependent on:
 | 
			
		||||
        ///
 | 
			
		||||
        /// 1. The RTC State Machine, whitch tells us which register we're accessing
 | 
			
		||||
        /// 2. A `count`, which keeps track of which byte is currently being read
 | 
			
		||||
        fn write(self: *const Writer, clock: *Clock, register: Register) void {
 | 
			
		||||
            // FIXME: What do do about unused bits?
 | 
			
		||||
            switch (register) {
 | 
			
		||||
                .Control => switch (self.count) {
 | 
			
		||||
                    0 => clock.cnt.raw = (clock.cnt.raw & 0x80) | (self.buf & 0x7F), // Bit 7 read-only
 | 
			
		||||
                    else => std.debug.panic("Tried to write to byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
 | 
			
		||||
                },
 | 
			
		||||
                .DateTime, .Time => log.debug("Ignoring {} write", .{register}),
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Is true when 8 bits have been shifted into the internal buffer
 | 
			
		||||
        fn finished(self: *const Writer) bool {
 | 
			
		||||
            return self.i >= 8;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Resets the internal buffer
 | 
			
		||||
        /// resets the index used to shift bits into the internal buffer
 | 
			
		||||
        /// increments `count` (which keeps track of byte offsets) by one
 | 
			
		||||
        fn lap(self: *Writer) void {
 | 
			
		||||
            self.buf = 0;
 | 
			
		||||
            self.i = 0;
 | 
			
		||||
            self.count += 1;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        /// Resets `Writer` to a clean state in preparation for a future write command
 | 
			
		||||
        fn reset(self: *Writer) void {
 | 
			
		||||
            self.buf = 0;
 | 
			
		||||
            self.i = 0;
 | 
			
		||||
            self.count = 0;
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Data = extern union {
 | 
			
		||||
        sck: Bit(u8, 0),
 | 
			
		||||
        sio: Bit(u8, 1),
 | 
			
		||||
        cs: Bit(u8, 2),
 | 
			
		||||
        raw: u8,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    const Control = extern union {
 | 
			
		||||
        /// Unknown, value should be preserved though
 | 
			
		||||
        unk: Bit(u8, 1),
 | 
			
		||||
        /// Per-minute IRQ
 | 
			
		||||
        /// If set, fire a Gamepak IRQ every 30s,
 | 
			
		||||
        irq: Bit(u8, 3),
 | 
			
		||||
        /// 12/24 Hour Bit
 | 
			
		||||
        /// If set, 12h mode
 | 
			
		||||
        /// If cleared, 24h mode
 | 
			
		||||
        mode: Bit(u8, 6),
 | 
			
		||||
        /// Read-Only, bit cleared on read
 | 
			
		||||
        /// If is set, means that there has been a failure / time has been lost
 | 
			
		||||
        off: Bit(u8, 7),
 | 
			
		||||
        raw: u8,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    fn init(ptr: *Self, cpu: *Arm7tdmi, gpio: *const Gpio) void {
 | 
			
		||||
        ptr.* = .{
 | 
			
		||||
            .writer = .{ .buf = 0, .i = 0, .count = 0 },
 | 
			
		||||
            .reader = .{ .i = 0, .count = 0 },
 | 
			
		||||
            .state = .Idle,
 | 
			
		||||
            .cnt = .{ .raw = 0 },
 | 
			
		||||
            .year = 0x01,
 | 
			
		||||
            .month = 0x6,
 | 
			
		||||
            .day = 0x13,
 | 
			
		||||
            .weekday = 0x3,
 | 
			
		||||
            .hour = 0x23,
 | 
			
		||||
            .minute = 0x59,
 | 
			
		||||
            .second = 0x59,
 | 
			
		||||
            .cpu = cpu,
 | 
			
		||||
            .gpio = gpio, // Can't use Arm7tdmi ptr b/c not initialized yet
 | 
			
		||||
        };
 | 
			
		||||
 | 
			
		||||
        cpu.sched.push(.RealTimeClock, 1 << 24); // Every Second
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn updateTime(self: *Self, late: u64) void {
 | 
			
		||||
        self.cpu.sched.push(.RealTimeClock, (1 << 24) -| late); // Reschedule
 | 
			
		||||
 | 
			
		||||
        const now = DateTime.now();
 | 
			
		||||
        self.year = bcd(u8, @intCast(u8, now.date.year - 2000));
 | 
			
		||||
        self.month = bcd(u5, now.date.month);
 | 
			
		||||
        self.day = bcd(u6, now.date.day);
 | 
			
		||||
        self.weekday = bcd(u3, (now.date.weekday() + 1) % 7); // API is Monday = 0, Sunday = 6. We want Sunday = 0, Saturday = 6
 | 
			
		||||
        self.hour = bcd(u6, now.time.hour);
 | 
			
		||||
        self.minute = bcd(u7, now.time.minute);
 | 
			
		||||
        self.second = bcd(u7, now.time.second);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn step(self: *Self, value: Data) u4 {
 | 
			
		||||
        const cache: Data = .{ .raw = self.gpio.data };
 | 
			
		||||
 | 
			
		||||
        return switch (self.state) {
 | 
			
		||||
            .Idle => blk: {
 | 
			
		||||
                // FIXME: Maybe check incoming value to see if SCK is also high?
 | 
			
		||||
                if (cache.sck.read()) {
 | 
			
		||||
                    if (!cache.cs.read() and value.cs.read()) {
 | 
			
		||||
                        log.debug("Entering Command Mode", .{});
 | 
			
		||||
                        self.state = .Command;
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                break :blk @truncate(u4, value.raw);
 | 
			
		||||
            },
 | 
			
		||||
            .Command => blk: {
 | 
			
		||||
                if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
 | 
			
		||||
 | 
			
		||||
                // If SCK rises, sample SIO
 | 
			
		||||
                if (!cache.sck.read() and value.sck.read()) {
 | 
			
		||||
                    self.writer.push(@boolToInt(value.sio.read()));
 | 
			
		||||
 | 
			
		||||
                    if (self.writer.finished()) {
 | 
			
		||||
                        self.state = self.processCommand(self.writer.buf);
 | 
			
		||||
                        self.writer.reset();
 | 
			
		||||
 | 
			
		||||
                        log.debug("Switching to {}", .{self.state});
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                break :blk @truncate(u4, value.raw);
 | 
			
		||||
            },
 | 
			
		||||
            .Write => |register| blk: {
 | 
			
		||||
                if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
 | 
			
		||||
 | 
			
		||||
                // If SCK rises, sample SIO
 | 
			
		||||
                if (!cache.sck.read() and value.sck.read()) {
 | 
			
		||||
                    self.writer.push(@boolToInt(value.sio.read()));
 | 
			
		||||
 | 
			
		||||
                    const register_width: u32 = switch (register) {
 | 
			
		||||
                        .Control => 1,
 | 
			
		||||
                        .DateTime => 7,
 | 
			
		||||
                        .Time => 3,
 | 
			
		||||
                    };
 | 
			
		||||
 | 
			
		||||
                    if (self.writer.finished()) {
 | 
			
		||||
                        self.writer.write(self, register); // write inner buffer to RTC register
 | 
			
		||||
                        self.writer.lap();
 | 
			
		||||
 | 
			
		||||
                        if (self.writer.count == register_width) {
 | 
			
		||||
                            self.writer.reset();
 | 
			
		||||
                            self.state = .Idle;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                break :blk @truncate(u4, value.raw);
 | 
			
		||||
            },
 | 
			
		||||
            .Read => |register| blk: {
 | 
			
		||||
                if (!value.cs.read()) log.err("Expected CS to be set during {}, however CS was cleared", .{self.state});
 | 
			
		||||
                var ret = value;
 | 
			
		||||
 | 
			
		||||
                // if SCK rises, sample SIO
 | 
			
		||||
                if (!cache.sck.read() and value.sck.read()) {
 | 
			
		||||
                    ret.sio.write(self.reader.read(self, register) == 0b1);
 | 
			
		||||
 | 
			
		||||
                    const register_width: u32 = switch (register) {
 | 
			
		||||
                        .Control => 1,
 | 
			
		||||
                        .DateTime => 7,
 | 
			
		||||
                        .Time => 3,
 | 
			
		||||
                    };
 | 
			
		||||
 | 
			
		||||
                    if (self.reader.finished()) {
 | 
			
		||||
                        self.reader.lap();
 | 
			
		||||
 | 
			
		||||
                        if (self.reader.count == register_width) {
 | 
			
		||||
                            self.reader.reset();
 | 
			
		||||
                            self.state = .Idle;
 | 
			
		||||
                        }
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                break :blk @truncate(u4, ret.raw);
 | 
			
		||||
            },
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn reset(self: *Self) void {
 | 
			
		||||
        // mGBA and NBA only zero the control register. We will do the same
 | 
			
		||||
        log.debug("Reset (control register was zeroed)", .{});
 | 
			
		||||
 | 
			
		||||
        self.cnt.raw = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn irq(self: *Self) void {
 | 
			
		||||
        // TODO: Confirm that this is the right behaviour
 | 
			
		||||
        log.debug("Force GamePak IRQ", .{});
 | 
			
		||||
 | 
			
		||||
        self.cpu.bus.io.irq.game_pak.set();
 | 
			
		||||
        self.cpu.handleInterrupt();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn processCommand(self: *Self, raw_command: u8) State {
 | 
			
		||||
        const command = blk: {
 | 
			
		||||
            // If High Nybble is 0x6, no need to switch the endianness
 | 
			
		||||
            if (raw_command >> 4 & 0xF == 0x6) break :blk raw_command;
 | 
			
		||||
 | 
			
		||||
            // Turns out reversing the order of bits isn't trivial at all
 | 
			
		||||
            // https://stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
 | 
			
		||||
            var ret = raw_command;
 | 
			
		||||
            ret = (ret & 0xF0) >> 4 | (ret & 0x0F) << 4;
 | 
			
		||||
            ret = (ret & 0xCC) >> 2 | (ret & 0x33) << 2;
 | 
			
		||||
            ret = (ret & 0xAA) >> 1 | (ret & 0x55) << 1;
 | 
			
		||||
 | 
			
		||||
            break :blk ret;
 | 
			
		||||
        };
 | 
			
		||||
        log.debug("Handling Command 0x{X:0>2} [0b{b:0>8}]", .{ command, command });
 | 
			
		||||
 | 
			
		||||
        const is_write = command & 1 == 0;
 | 
			
		||||
        const rtc_register = @truncate(u3, command >> 1 & 0x7);
 | 
			
		||||
 | 
			
		||||
        if (is_write) {
 | 
			
		||||
            return switch (rtc_register) {
 | 
			
		||||
                0 => blk: {
 | 
			
		||||
                    self.reset();
 | 
			
		||||
                    break :blk .Idle;
 | 
			
		||||
                },
 | 
			
		||||
                1 => .{ .Write = .Control },
 | 
			
		||||
                2 => .{ .Write = .DateTime },
 | 
			
		||||
                3 => .{ .Write = .Time },
 | 
			
		||||
                6 => blk: {
 | 
			
		||||
                    self.irq();
 | 
			
		||||
                    break :blk .Idle;
 | 
			
		||||
                },
 | 
			
		||||
                4, 5, 7 => .Idle,
 | 
			
		||||
            };
 | 
			
		||||
        } else {
 | 
			
		||||
            return switch (rtc_register) {
 | 
			
		||||
                1 => .{ .Read = .Control },
 | 
			
		||||
                2 => .{ .Read = .DateTime },
 | 
			
		||||
                3 => .{ .Read = .Time },
 | 
			
		||||
                0, 4, 5, 6, 7 => .Idle, // Do Nothing
 | 
			
		||||
            };
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
fn bcd(comptime T: type, value: u8) T {
 | 
			
		||||
    var input = value;
 | 
			
		||||
    var ret: u8 = 0;
 | 
			
		||||
    var shift: u3 = 0;
 | 
			
		||||
 | 
			
		||||
    while (input > 0) {
 | 
			
		||||
        ret |= (input % 10) << (shift << 2);
 | 
			
		||||
        shift += 1;
 | 
			
		||||
        input /= 10;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return @truncate(T, ret);
 | 
			
		||||
}
 | 
			
		||||
@@ -2,7 +2,7 @@ const std = @import("std");
 | 
			
		||||
 | 
			
		||||
const Bus = @import("Bus.zig");
 | 
			
		||||
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
 | 
			
		||||
const Clock = @import("bus/GamePak.zig").Clock;
 | 
			
		||||
const Clock = @import("bus/gpio.zig").Clock;
 | 
			
		||||
 | 
			
		||||
const Order = std.math.Order;
 | 
			
		||||
const PriorityQueue = std.PriorityQueue;
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user