|
|
|
@ -1,7 +1,13 @@
|
|
|
|
|
const std = @import("std");
|
|
|
|
|
const DateTime = @import("datetime").datetime.Datetime;
|
|
|
|
|
|
|
|
|
|
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
|
|
|
|
|
const Bit = @import("bitfield").Bit;
|
|
|
|
|
const Bitfield = @import("bitfield").Bitfield;
|
|
|
|
|
const Backup = @import("backup.zig").Backup;
|
|
|
|
|
const Allocator = std.mem.Allocator;
|
|
|
|
|
|
|
|
|
|
const force_rtc = @import("../emu.zig").force_rtc;
|
|
|
|
|
const log = std.log.scoped(.GamePak);
|
|
|
|
|
|
|
|
|
|
const Self = @This();
|
|
|
|
@ -10,31 +16,48 @@ title: [12]u8,
|
|
|
|
|
buf: []u8,
|
|
|
|
|
allocator: Allocator,
|
|
|
|
|
backup: Backup,
|
|
|
|
|
gpio: *Gpio,
|
|
|
|
|
|
|
|
|
|
pub fn init(allocator: Allocator, rom_path: []const u8, save_path: ?[]const u8) !Self {
|
|
|
|
|
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, rom_path: []const u8, save_path: ?[]const u8) !Self {
|
|
|
|
|
const file = try std.fs.cwd().openFile(rom_path, .{});
|
|
|
|
|
defer file.close();
|
|
|
|
|
|
|
|
|
|
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
|
|
|
|
|
const title = parseTitle(file_buf);
|
|
|
|
|
const kind = Backup.guessKind(file_buf) orelse .None;
|
|
|
|
|
const title = file_buf[0xA0..0xAC].*;
|
|
|
|
|
const kind = Backup.guessKind(file_buf);
|
|
|
|
|
const device = if (force_rtc) .Rtc else guessDevice(file_buf);
|
|
|
|
|
|
|
|
|
|
const pak = Self{
|
|
|
|
|
logHeader(file_buf, &title);
|
|
|
|
|
|
|
|
|
|
return .{
|
|
|
|
|
.buf = file_buf,
|
|
|
|
|
.allocator = allocator,
|
|
|
|
|
.title = title,
|
|
|
|
|
.backup = try Backup.init(allocator, kind, title, save_path),
|
|
|
|
|
.gpio = try Gpio.init(allocator, cpu, device),
|
|
|
|
|
};
|
|
|
|
|
pak.parseHeader();
|
|
|
|
|
|
|
|
|
|
return pak;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn parseHeader(self: *const Self) void {
|
|
|
|
|
const title = parseTitle(self.buf);
|
|
|
|
|
const code = self.buf[0xAC..0xB0];
|
|
|
|
|
const maker = self.buf[0xB0..0xB2];
|
|
|
|
|
const version = self.buf[0xBC];
|
|
|
|
|
/// Searches the ROM to see if it can determine whether the ROM it's searching uses
|
|
|
|
|
/// any GPIO device, like a RTC for example.
|
|
|
|
|
fn guessDevice(buf: []const u8) Gpio.Device.Kind {
|
|
|
|
|
// Try to Guess if ROM uses RTC
|
|
|
|
|
const needle = "RTC_V"; // I was told SIIRTC_V, though Pokemen Firered (USA) is a false negative
|
|
|
|
|
|
|
|
|
|
var i: usize = 0;
|
|
|
|
|
while ((i + needle.len) < buf.len) : (i += 1) {
|
|
|
|
|
if (std.mem.eql(u8, needle, buf[i..(i + needle.len)])) return .Rtc;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// TODO: Detect other GPIO devices
|
|
|
|
|
|
|
|
|
|
return .None;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn logHeader(buf: []const u8, title: *const [12]u8) void {
|
|
|
|
|
const code = buf[0xAC..0xB0];
|
|
|
|
|
const maker = buf[0xB0..0xB2];
|
|
|
|
|
const version = buf[0xBC];
|
|
|
|
|
|
|
|
|
|
log.info("Title: {s}", .{title});
|
|
|
|
|
if (version != 0) log.info("Version: {}", .{version});
|
|
|
|
@ -42,10 +65,6 @@ fn parseHeader(self: *const Self) void {
|
|
|
|
|
if (lookupMaker(maker)) |c| log.info("Maker: {s}", .{c}) else log.info("Maker Code: {s}", .{maker});
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn parseTitle(buf: []u8) [12]u8 {
|
|
|
|
|
return buf[0xA0..0xAC].*;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn lookupMaker(slice: *const [2]u8) ?[]const u8 {
|
|
|
|
|
const id = @as(u16, slice[1]) << 8 | @as(u16, slice[0]);
|
|
|
|
|
return switch (id) {
|
|
|
|
@ -60,6 +79,8 @@ inline fn isLarge(self: *const Self) bool {
|
|
|
|
|
|
|
|
|
|
pub fn deinit(self: *Self) void {
|
|
|
|
|
self.backup.deinit();
|
|
|
|
|
self.gpio.deinit(self.allocator);
|
|
|
|
|
self.allocator.destroy(self.gpio);
|
|
|
|
|
self.allocator.free(self.buf);
|
|
|
|
|
self.* = undefined;
|
|
|
|
|
}
|
|
|
|
@ -83,6 +104,35 @@ pub fn read(self: *Self, comptime T: type, address: u32) T {
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (self.gpio.cnt == 1) {
|
|
|
|
|
// GPIO Can be read from
|
|
|
|
|
// We assume that this will only be true when a ROM actually does want something from GPIO
|
|
|
|
|
|
|
|
|
|
switch (T) {
|
|
|
|
|
u32 => switch (address) {
|
|
|
|
|
// TODO: Do I even need to implement these?
|
|
|
|
|
0x0800_00C4 => std.debug.panic("Handle 32-bit GPIO Data/Direction Reads", .{}),
|
|
|
|
|
0x0800_00C6 => std.debug.panic("Handle 32-bit GPIO Direction/Control Reads", .{}),
|
|
|
|
|
0x0800_00C8 => std.debug.panic("Handle 32-bit GPIO Control Reads", .{}),
|
|
|
|
|
else => {},
|
|
|
|
|
},
|
|
|
|
|
u16 => switch (address) {
|
|
|
|
|
// FIXME: What do 16-bit GPIO Reads look like?
|
|
|
|
|
0x0800_00C4 => return self.gpio.read(.Data),
|
|
|
|
|
0x0800_00C6 => return self.gpio.read(.Direction),
|
|
|
|
|
0x0800_00C8 => return self.gpio.read(.Control),
|
|
|
|
|
else => {},
|
|
|
|
|
},
|
|
|
|
|
u8 => switch (address) {
|
|
|
|
|
0x0800_00C4 => return self.gpio.read(.Data),
|
|
|
|
|
0x0800_00C6 => return self.gpio.read(.Direction),
|
|
|
|
|
0x0800_00C8 => return self.gpio.read(.Control),
|
|
|
|
|
else => {},
|
|
|
|
|
},
|
|
|
|
|
else => @compileError("GamePak[GPIO]: Unsupported read width"),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return switch (T) {
|
|
|
|
|
u32 => (@as(T, self.get(addr + 3)) << 24) | (@as(T, self.get(addr + 2)) << 16) | (@as(T, self.get(addr + 1)) << 8) | (@as(T, self.get(addr))),
|
|
|
|
|
u16 => (@as(T, self.get(addr + 1)) << 8) | @as(T, self.get(addr)),
|
|
|
|
@ -141,17 +191,23 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
|
|
|
|
|
|
|
|
|
|
switch (T) {
|
|
|
|
|
u32 => switch (address) {
|
|
|
|
|
0x0800_00C4 => log.debug("Wrote {} 0x{X:} to I/O Port Data and Direction", .{ T, value }),
|
|
|
|
|
0x0800_00C6 => log.debug("Wrote {} 0x{X:} to I/O Port Direction and Control", .{ T, value }),
|
|
|
|
|
else => {},
|
|
|
|
|
0x0800_00C4 => {
|
|
|
|
|
self.gpio.write(.Data, @truncate(u4, value));
|
|
|
|
|
self.gpio.write(.Direction, @truncate(u4, value >> 16));
|
|
|
|
|
},
|
|
|
|
|
0x0800_00C6 => {
|
|
|
|
|
self.gpio.write(.Direction, @truncate(u4, value));
|
|
|
|
|
self.gpio.write(.Control, @truncate(u1, value >> 16));
|
|
|
|
|
},
|
|
|
|
|
else => log.err("Wrote {} 0x{X:0>8} to 0x{X:0>8}, Unhandled", .{ T, value, address }),
|
|
|
|
|
},
|
|
|
|
|
u16 => switch (address) {
|
|
|
|
|
0x0800_00C4 => log.debug("Wrote {} 0x{X:} to I/O Port Data", .{ T, value }),
|
|
|
|
|
0x0800_00C6 => log.debug("Wrote {} 0x{X:} to I/O Port Direction", .{ T, value }),
|
|
|
|
|
0x0800_00C8 => log.debug("Wrote {} 0x{X:} to I/O Port Control", .{ T, value }),
|
|
|
|
|
else => {},
|
|
|
|
|
0x0800_00C4 => self.gpio.write(.Data, @truncate(u4, value)),
|
|
|
|
|
0x0800_00C6 => self.gpio.write(.Direction, @truncate(u4, value)),
|
|
|
|
|
0x0800_00C8 => self.gpio.write(.Control, @truncate(u1, value)),
|
|
|
|
|
else => log.err("Wrote {} 0x{X:0>4} to 0x{X:0>8}, Unhandled", .{ T, value, address }),
|
|
|
|
|
},
|
|
|
|
|
u8 => log.debug("Wrote {} 0x{X:} to 0x{X:0>8}, Ignored.", .{ T, value, address }),
|
|
|
|
|
u8 => log.debug("Wrote {} 0x{X:0>2} to 0x{X:0>8}, Ignored.", .{ T, value, address }),
|
|
|
|
|
else => @compileError("GamePak: Unsupported write width"),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -183,3 +239,463 @@ test "OOB Access" {
|
|
|
|
|
std.debug.assert(pak.get(4) == 0x02); // 0x0002
|
|
|
|
|
std.debug.assert(pak.get(5) == 0x00);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// GPIO Register Implementation
|
|
|
|
|
const Gpio = struct {
|
|
|
|
|
const This = @This();
|
|
|
|
|
|
|
|
|
|
data: u4,
|
|
|
|
|
direction: u4,
|
|
|
|
|
cnt: u1,
|
|
|
|
|
|
|
|
|
|
device: Device,
|
|
|
|
|
|
|
|
|
|
const Device = struct {
|
|
|
|
|
ptr: ?*anyopaque,
|
|
|
|
|
kind: Kind, // TODO: Make comptime known?
|
|
|
|
|
|
|
|
|
|
const Kind = enum { Rtc, None };
|
|
|
|
|
|
|
|
|
|
fn step(self: *Device, value: u4) u4 {
|
|
|
|
|
return switch (self.kind) {
|
|
|
|
|
.Rtc => blk: {
|
|
|
|
|
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?));
|
|
|
|
|
break :blk clock.step(Clock.Data{ .raw = value });
|
|
|
|
|
},
|
|
|
|
|
.None => value,
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn init(kind: Kind, ptr: ?*anyopaque) Device {
|
|
|
|
|
return .{ .kind = kind, .ptr = ptr };
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const Register = enum {
|
|
|
|
|
Data,
|
|
|
|
|
Direction,
|
|
|
|
|
Control,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
fn init(allocator: Allocator, cpu: *Arm7tdmi, kind: Device.Kind) !*This {
|
|
|
|
|
log.info("Device: {}", .{kind});
|
|
|
|
|
|
|
|
|
|
const self = try allocator.create(This);
|
|
|
|
|
self.* = .{
|
|
|
|
|
.data = 0b0000,
|
|
|
|
|
.direction = 0b1111, // TODO: What is GPIO DIrection set to by default?
|
|
|
|
|
.cnt = 0b0,
|
|
|
|
|
|
|
|
|
|
.device = switch (kind) {
|
|
|
|
|
.Rtc => blk: {
|
|
|
|
|
const clock = try allocator.create(Clock);
|
|
|
|
|
clock.init(cpu, self);
|
|
|
|
|
|
|
|
|
|
break :blk Device{ .kind = kind, .ptr = clock };
|
|
|
|
|
},
|
|
|
|
|
.None => Device{ .kind = kind, .ptr = null },
|
|
|
|
|
},
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
return self;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn deinit(self: *This, allocator: Allocator) void {
|
|
|
|
|
switch (self.device.kind) {
|
|
|
|
|
.Rtc => {
|
|
|
|
|
allocator.destroy(@ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.device.ptr.?)));
|
|
|
|
|
},
|
|
|
|
|
.None => {},
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
self.* = undefined;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn write(self: *This, comptime reg: Register, value: if (reg == .Control) u1 else u4) void {
|
|
|
|
|
switch (reg) {
|
|
|
|
|
.Data => {
|
|
|
|
|
const masked_value = value & self.direction;
|
|
|
|
|
|
|
|
|
|
// The value which is actually stored in the GPIO register
|
|
|
|
|
// might be modified by the device implementing the GPIO interface e.g. RTC reads
|
|
|
|
|
self.data = self.device.step(masked_value);
|
|
|
|
|
},
|
|
|
|
|
.Direction => self.direction = value,
|
|
|
|
|
.Control => self.cnt = value,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn read(self: *const This, comptime reg: Register) if (reg == .Control) u1 else u4 {
|
|
|
|
|
if (self.cnt == 0) return 0;
|
|
|
|
|
|
|
|
|
|
return switch (reg) {
|
|
|
|
|
.Data => self.data & ~self.direction,
|
|
|
|
|
.Direction => self.direction,
|
|
|
|
|
.Control => self.cnt,
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/// GBA Real Time Clock
|
|
|
|
|
pub const Clock = struct {
|
|
|
|
|
const This = @This();
|
|
|
|
|
|
|
|
|
|
writer: Writer,
|
|
|
|
|
reader: Reader,
|
|
|
|
|
state: State,
|
|
|
|
|
cnt: Control,
|
|
|
|
|
|
|
|
|
|
year: u8,
|
|
|
|
|
month: u5,
|
|
|
|
|
day: u6,
|
|
|
|
|
weekday: u3,
|
|
|
|
|
hour: u6,
|
|
|
|
|
minute: u7,
|
|
|
|
|
second: u7,
|
|
|
|
|
|
|
|
|
|
cpu: *Arm7tdmi,
|
|
|
|
|
gpio: *const Gpio,
|
|
|
|
|
|
|
|
|
|
const Register = enum {
|
|
|
|
|
Control,
|
|
|
|
|
DateTime,
|
|
|
|
|
Time,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const State = union(enum) {
|
|
|
|
|
Idle,
|
|
|
|
|
Command,
|
|
|
|
|
Write: Register,
|
|
|
|
|
Read: Register,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const Reader = struct {
|
|
|
|
|
i: u4,
|
|
|
|
|
count: u8,
|
|
|
|
|
|
|
|
|
|
/// Reads a bit from RTC registers. Which bit it reads is dependent on
|
|
|
|
|
///
|
|
|
|
|
/// 1. The RTC State Machine, whitch tells us which register we're accessing
|
|
|
|
|
/// 2. A `count`, which keeps track of which byte is currently being read
|
|
|
|
|
/// 3. An index, which keeps track of which bit of the byte determined by `count` is being read
|
|
|
|
|
fn read(self: *Reader, clock: *const Clock, register: Register) u1 {
|
|
|
|
|
const idx = @intCast(u3, self.i);
|
|
|
|
|
defer self.i += 1;
|
|
|
|
|
|
|
|
|
|
// FIXME: What do I do about the unused bits?
|
|
|
|
|
return switch (register) {
|
|
|
|
|
.Control => @truncate(u1, switch (self.count) {
|
|
|
|
|
0 => clock.cnt.raw >> idx,
|
|
|
|
|
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
|
|
|
|
|
}),
|
|
|
|
|
.DateTime => @truncate(u1, switch (self.count) {
|
|
|
|
|
// Date
|
|
|
|
|
0 => clock.year >> idx,
|
|
|
|
|
1 => @as(u8, clock.month) >> idx,
|
|
|
|
|
2 => @as(u8, clock.day) >> idx,
|
|
|
|
|
3 => @as(u8, clock.weekday) >> idx,
|
|
|
|
|
|
|
|
|
|
// Time
|
|
|
|
|
4 => @as(u8, clock.hour) >> idx,
|
|
|
|
|
5 => @as(u8, clock.minute) >> idx,
|
|
|
|
|
6 => @as(u8, clock.second) >> idx,
|
|
|
|
|
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 7 bytes)", .{ self.count, register }),
|
|
|
|
|
}),
|
|
|
|
|
.Time => @truncate(u1, switch (self.count) {
|
|
|
|
|
0 => @as(u8, clock.hour) >> idx,
|
|
|
|
|
1 => @as(u8, clock.minute) >> idx,
|
|
|
|
|
2 => @as(u8, clock.second) >> idx,
|
|
|
|
|
else => std.debug.panic("Tried to read from byte #{} of {} (hint: there's only 3 bytes)", .{ self.count, register }),
|
|
|
|
|
}),
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Is true when a Reader has read a u8's worth of bits
|
|
|
|
|
fn finished(self: *const Reader) bool {
|
|
|
|
|
return self.i >= 8;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Resets the index used to shift bits out of RTC registers
|
|
|
|
|
/// and `count`, which is used to keep track of which byte we're reading
|
|
|
|
|
/// is incremeneted
|
|
|
|
|
fn lap(self: *Reader) void {
|
|
|
|
|
self.i = 0;
|
|
|
|
|
self.count += 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Resets the state of a `Reader` in preparation for a future
|
|
|
|
|
/// read command
|
|
|
|
|
fn reset(self: *Reader) void {
|
|
|
|
|
self.i = 0;
|
|
|
|
|
self.count = 0;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const Writer = struct {
|
|
|
|
|
buf: u8,
|
|
|
|
|
i: u4,
|
|
|
|
|
|
|
|
|
|
/// The Number of bytes written since last reset
|
|
|
|
|
count: u8,
|
|
|
|
|
|
|
|
|
|
/// Append a bit to the internal bit buffer (aka an integer)
|
|
|
|
|
fn push(self: *Writer, value: u1) void {
|
|
|
|
|
const idx = @intCast(u3, self.i);
|
|
|
|
|
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
|
|
|
|
|
self.i += 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Takes the contents of the internal buffer and writes it to an RTC register
|
|
|
|
|
/// Where it writes to is dependent on:
|
|
|
|
|
///
|
|
|
|
|
/// 1. The RTC State Machine, whitch tells us which register we're accessing
|
|
|
|
|
/// 2. A `count`, which keeps track of which byte is currently being read
|
|
|
|
|
fn write(self: *const Writer, clock: *Clock, register: Register) void {
|
|
|
|
|
// FIXME: What do do about unused bits?
|
|
|
|
|
switch (register) {
|
|
|
|
|
.Control => switch (self.count) {
|
|
|
|
|
0 => clock.cnt.raw = (clock.cnt.raw & 0x80) | (self.buf & 0x7F), // Bit 7 read-only
|
|
|
|
|
else => std.debug.panic("Tried to write to byte #{} of {} (hint: there's only 1 byte)", .{ self.count, register }),
|
|
|
|
|
},
|
|
|
|
|
.DateTime, .Time => log.debug("RTC: Ignoring {} write", .{register}),
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Is true when 8 bits have been shifted into the internal buffer
|
|
|
|
|
fn finished(self: *const Writer) bool {
|
|
|
|
|
return self.i >= 8;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Resets the internal buffer
|
|
|
|
|
/// resets the index used to shift bits into the internal buffer
|
|
|
|
|
/// increments `count` (which keeps track of byte offsets) by one
|
|
|
|
|
fn lap(self: *Writer) void {
|
|
|
|
|
self.buf = 0;
|
|
|
|
|
self.i = 0;
|
|
|
|
|
self.count += 1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Resets `Writer` to a clean state in preparation for a future write command
|
|
|
|
|
fn reset(self: *Writer) void {
|
|
|
|
|
self.buf = 0;
|
|
|
|
|
self.i = 0;
|
|
|
|
|
self.count = 0;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const Data = extern union {
|
|
|
|
|
sck: Bit(u8, 0),
|
|
|
|
|
sio: Bit(u8, 1),
|
|
|
|
|
cs: Bit(u8, 2),
|
|
|
|
|
raw: u8,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const Control = extern union {
|
|
|
|
|
/// Unknown, value should be preserved though
|
|
|
|
|
unk: Bit(u8, 1),
|
|
|
|
|
/// Per-minute IRQ
|
|
|
|
|
/// If set, fire a Gamepak IRQ every 30s,
|
|
|
|
|
irq: Bit(u8, 3),
|
|
|
|
|
/// 12/24 Hour Bit
|
|
|
|
|
/// If set, 12h mode
|
|
|
|
|
/// If cleared, 24h mode
|
|
|
|
|
mode: Bit(u8, 6),
|
|
|
|
|
/// Read-Only, bit cleared on read
|
|
|
|
|
/// If is set, means that there has been a failure / time has been lost
|
|
|
|
|
off: Bit(u8, 7),
|
|
|
|
|
raw: u8,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
fn init(ptr: *This, cpu: *Arm7tdmi, gpio: *const Gpio) void {
|
|
|
|
|
ptr.* = .{
|
|
|
|
|
.writer = .{ .buf = 0, .i = 0, .count = 0 },
|
|
|
|
|
.reader = .{ .i = 0, .count = 0 },
|
|
|
|
|
.state = .Idle,
|
|
|
|
|
.cnt = .{ .raw = 0 },
|
|
|
|
|
.year = 0x01,
|
|
|
|
|
.month = 0x6,
|
|
|
|
|
.day = 0x13,
|
|
|
|
|
.weekday = 0x3,
|
|
|
|
|
.hour = 0x23,
|
|
|
|
|
.minute = 0x59,
|
|
|
|
|
.second = 0x59,
|
|
|
|
|
.cpu = cpu,
|
|
|
|
|
.gpio = gpio, // Can't use Arm7tdmi ptr b/c not initialized yet
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
cpu.sched.push(.RealTimeClock, 1 << 24); // Every Second
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pub fn updateTime(self: *This, late: u64) void {
|
|
|
|
|
self.cpu.sched.push(.RealTimeClock, (1 << 24) -| late); // Reschedule
|
|
|
|
|
|
|
|
|
|
const now = DateTime.now();
|
|
|
|
|
self.year = toBcd(u8, @intCast(u8, now.date.year - 2000));
|
|
|
|
|
self.month = toBcd(u5, now.date.month);
|
|
|
|
|
self.day = toBcd(u6, now.date.day);
|
|
|
|
|
self.weekday = toBcd(u3, (now.date.weekday() + 1) % 7); // API is Monday = 0, Sunday = 6. We want Sunday = 0, Saturday = 6
|
|
|
|
|
self.hour = toBcd(u6, now.time.hour);
|
|
|
|
|
self.minute = toBcd(u7, now.time.minute);
|
|
|
|
|
self.second = toBcd(u7, now.time.second);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn step(self: *This, value: Data) u4 {
|
|
|
|
|
const cache: Data = .{ .raw = self.gpio.data };
|
|
|
|
|
|
|
|
|
|
return switch (self.state) {
|
|
|
|
|
.Idle => blk: {
|
|
|
|
|
// FIXME: Maybe check incoming value to see if SCK is also high?
|
|
|
|
|
if (cache.sck.read()) {
|
|
|
|
|
if (!cache.cs.read() and value.cs.read()) {
|
|
|
|
|
log.debug("RTC: Entering Command Mode", .{});
|
|
|
|
|
self.state = .Command;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break :blk @truncate(u4, value.raw);
|
|
|
|
|
},
|
|
|
|
|
.Command => blk: {
|
|
|
|
|
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
|
|
|
|
|
|
|
|
|
|
// If SCK rises, sample SIO
|
|
|
|
|
if (!cache.sck.read() and value.sck.read()) {
|
|
|
|
|
self.writer.push(@boolToInt(value.sio.read()));
|
|
|
|
|
|
|
|
|
|
if (self.writer.finished()) {
|
|
|
|
|
self.state = self.processCommand(self.writer.buf);
|
|
|
|
|
self.writer.reset();
|
|
|
|
|
|
|
|
|
|
log.debug("RTC: Switching to {}", .{self.state});
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break :blk @truncate(u4, value.raw);
|
|
|
|
|
},
|
|
|
|
|
.Write => |register| blk: {
|
|
|
|
|
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
|
|
|
|
|
|
|
|
|
|
// If SCK rises, sample SIO
|
|
|
|
|
if (!cache.sck.read() and value.sck.read()) {
|
|
|
|
|
self.writer.push(@boolToInt(value.sio.read()));
|
|
|
|
|
|
|
|
|
|
const register_width: u32 = switch (register) {
|
|
|
|
|
.Control => 1,
|
|
|
|
|
.DateTime => 7,
|
|
|
|
|
.Time => 3,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
if (self.writer.finished()) {
|
|
|
|
|
self.writer.write(self, register); // write inner buffer to RTC register
|
|
|
|
|
self.writer.lap();
|
|
|
|
|
|
|
|
|
|
if (self.writer.count == register_width) {
|
|
|
|
|
self.writer.reset();
|
|
|
|
|
self.state = .Idle;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break :blk @truncate(u4, value.raw);
|
|
|
|
|
},
|
|
|
|
|
.Read => |register| blk: {
|
|
|
|
|
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
|
|
|
|
|
var ret = value;
|
|
|
|
|
|
|
|
|
|
// if SCK rises, sample SIO
|
|
|
|
|
if (!cache.sck.read() and value.sck.read()) {
|
|
|
|
|
ret.sio.write(self.reader.read(self, register) == 0b1);
|
|
|
|
|
|
|
|
|
|
const register_width: u32 = switch (register) {
|
|
|
|
|
.Control => 1,
|
|
|
|
|
.DateTime => 7,
|
|
|
|
|
.Time => 3,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
if (self.reader.finished()) {
|
|
|
|
|
self.reader.lap();
|
|
|
|
|
|
|
|
|
|
if (self.reader.count == register_width) {
|
|
|
|
|
self.reader.reset();
|
|
|
|
|
self.state = .Idle;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
break :blk @truncate(u4, ret.raw);
|
|
|
|
|
},
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn reset(self: *This) void {
|
|
|
|
|
// mGBA and NBA only zero the control register. We will do the same
|
|
|
|
|
log.debug("RTC: Reset (control register was zeroed)", .{});
|
|
|
|
|
|
|
|
|
|
self.cnt.raw = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn irq(self: *This) void {
|
|
|
|
|
// TODO: Confirm that this is the right behaviour
|
|
|
|
|
log.debug("RTC: Force GamePak IRQ", .{});
|
|
|
|
|
|
|
|
|
|
self.cpu.bus.io.irq.game_pak.set();
|
|
|
|
|
self.cpu.handleInterrupt();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn processCommand(self: *This, raw_command: u8) State {
|
|
|
|
|
const command = blk: {
|
|
|
|
|
// If High Nybble is 0x6, no need to switch the endianness
|
|
|
|
|
if (raw_command >> 4 & 0xF == 0x6) break :blk raw_command;
|
|
|
|
|
|
|
|
|
|
// Turns out reversing the order of bits isn't trivial at all
|
|
|
|
|
// https://stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
|
|
|
|
|
var ret = raw_command;
|
|
|
|
|
ret = (ret & 0xF0) >> 4 | (ret & 0x0F) << 4;
|
|
|
|
|
ret = (ret & 0xCC) >> 2 | (ret & 0x33) << 2;
|
|
|
|
|
ret = (ret & 0xAA) >> 1 | (ret & 0x55) << 1;
|
|
|
|
|
|
|
|
|
|
break :blk ret;
|
|
|
|
|
};
|
|
|
|
|
log.debug("RTC: Handling Command 0x{X:0>2} [0b{b:0>8}]", .{ command, command });
|
|
|
|
|
|
|
|
|
|
const is_write = command & 1 == 0;
|
|
|
|
|
const rtc_register = @truncate(u3, command >> 1 & 0x7);
|
|
|
|
|
|
|
|
|
|
if (is_write) {
|
|
|
|
|
return switch (rtc_register) {
|
|
|
|
|
0 => blk: {
|
|
|
|
|
self.reset();
|
|
|
|
|
break :blk .Idle;
|
|
|
|
|
},
|
|
|
|
|
1 => .{ .Write = .Control },
|
|
|
|
|
2 => .{ .Write = .DateTime },
|
|
|
|
|
3 => .{ .Write = .Time },
|
|
|
|
|
6 => blk: {
|
|
|
|
|
self.irq();
|
|
|
|
|
break :blk .Idle;
|
|
|
|
|
},
|
|
|
|
|
4, 5, 7 => .Idle,
|
|
|
|
|
};
|
|
|
|
|
} else {
|
|
|
|
|
return switch (rtc_register) {
|
|
|
|
|
1 => .{ .Read = .Control },
|
|
|
|
|
2 => .{ .Read = .DateTime },
|
|
|
|
|
3 => .{ .Read = .Time },
|
|
|
|
|
0, 4, 5, 6, 7 => .Idle, // Do Nothing
|
|
|
|
|
};
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
fn toBcd(comptime T: type, value: u8) T {
|
|
|
|
|
var input = value;
|
|
|
|
|
var ret: u8 = 0;
|
|
|
|
|
var shift: u3 = 0;
|
|
|
|
|
|
|
|
|
|
while (input > 0) {
|
|
|
|
|
ret |= (input % 10) << (shift << 2);
|
|
|
|
|
shift += 1;
|
|
|
|
|
input /= 10;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return @truncate(T, ret);
|
|
|
|
|
}
|
|
|
|
|