style(bus): refactor several hardware abstractions
This commit is contained in:
parent
c71e954748
commit
13f6ee8ec4
|
@ -403,12 +403,12 @@ pub const Apu = struct {
|
|||
|
||||
if (@boolToInt(self.dma_cnt.chA_timer.read()) == tim_id) {
|
||||
self.chA.updateSample();
|
||||
if (self.chA.len() <= 15) cpu.bus.dma[1].requestSoundDma(0x0400_00A0);
|
||||
if (self.chA.len() <= 15) cpu.bus.dma[1].requestAudio(0x0400_00A0);
|
||||
}
|
||||
|
||||
if (@boolToInt(self.dma_cnt.chB_timer.read()) == tim_id) {
|
||||
self.chB.updateSample();
|
||||
if (self.chB.len() <= 15) cpu.bus.dma[2].requestSoundDma(0x0400_00A4);
|
||||
if (self.chB.len() <= 15) cpu.bus.dma[2].requestAudio(0x0400_00A4);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
|
|
@ -12,6 +12,36 @@ allocator: Allocator,
|
|||
|
||||
addr_latch: u32,
|
||||
|
||||
pub fn read(self: *Self, comptime T: type, r15: u32, addr: u32) T {
|
||||
if (r15 < Self.size) {
|
||||
self.addr_latch = addr;
|
||||
return self._read(T, addr);
|
||||
}
|
||||
|
||||
log.debug("Rejected read since r15=0x{X:0>8}", .{r15});
|
||||
return @truncate(T, self._read(T, self.addr_latch + 8));
|
||||
}
|
||||
|
||||
pub fn dbgRead(self: *const Self, comptime T: type, r15: u32, addr: u32) T {
|
||||
if (r15 < Self.size) return self._read(T, addr);
|
||||
return @truncate(T, self._read(T, self.addr_latch + 8));
|
||||
}
|
||||
|
||||
/// Read without the GBA safety checks
|
||||
fn _read(self: *const Self, comptime T: type, addr: u32) T {
|
||||
const buf = self.buf orelse std.debug.panic("[BIOS] ZBA tried to read {} from 0x{X:0>8} but not BIOS was present", .{ T, addr });
|
||||
|
||||
return switch (T) {
|
||||
u32, u16, u8 => std.mem.readIntSliceLittle(T, buf[addr..][0..@sizeOf(T)]),
|
||||
else => @compileError("BIOS: Unsupported read width"),
|
||||
};
|
||||
}
|
||||
|
||||
pub fn write(_: *Self, comptime T: type, addr: u32, value: T) void {
|
||||
@setCold(true);
|
||||
log.debug("Tried to write {} 0x{X:} to 0x{X:0>8} ", .{ T, value, addr });
|
||||
}
|
||||
|
||||
pub fn init(allocator: Allocator, maybe_path: ?[]const u8) !Self {
|
||||
const buf: ?[]u8 = if (maybe_path) |path| blk: {
|
||||
const file = try std.fs.cwd().openFile(path, .{});
|
||||
|
@ -31,34 +61,3 @@ pub fn deinit(self: *Self) void {
|
|||
if (self.buf) |buf| self.allocator.free(buf);
|
||||
self.* = undefined;
|
||||
}
|
||||
|
||||
pub fn read(self: *Self, comptime T: type, r15: u32, addr: u32) T {
|
||||
if (r15 < Self.size) {
|
||||
self.addr_latch = addr;
|
||||
return self.uncheckedRead(T, addr);
|
||||
}
|
||||
|
||||
log.debug("Rejected read since r15=0x{X:0>8}", .{r15});
|
||||
return @truncate(T, self.uncheckedRead(T, self.addr_latch + 8));
|
||||
}
|
||||
|
||||
pub fn dbgRead(self: *const Self, comptime T: type, r15: u32, addr: u32) T {
|
||||
if (r15 < Self.size) return self.uncheckedRead(T, addr);
|
||||
return @truncate(T, self.uncheckedRead(T, self.addr_latch + 8));
|
||||
}
|
||||
|
||||
fn uncheckedRead(self: *const Self, comptime T: type, addr: u32) T {
|
||||
if (self.buf) |buf| {
|
||||
return switch (T) {
|
||||
u32, u16, u8 => std.mem.readIntSliceLittle(T, buf[addr..][0..@sizeOf(T)]),
|
||||
else => @compileError("BIOS: Unsupported read width"),
|
||||
};
|
||||
}
|
||||
|
||||
std.debug.panic("[BIOS] ZBA tried to read {} from 0x{X:0>8} but not BIOS was present", .{ T, addr });
|
||||
}
|
||||
|
||||
pub fn write(_: *Self, comptime T: type, addr: u32, value: T) void {
|
||||
@setCold(true);
|
||||
log.debug("Tried to write {} 0x{X:} to 0x{X:0>8} ", .{ T, value, addr });
|
||||
}
|
||||
|
|
|
@ -7,21 +7,6 @@ const Self = @This();
|
|||
buf: []u8,
|
||||
allocator: Allocator,
|
||||
|
||||
pub fn init(allocator: Allocator) !Self {
|
||||
const buf = try allocator.alloc(u8, ewram_size);
|
||||
std.mem.set(u8, buf, 0);
|
||||
|
||||
return Self{
|
||||
.buf = buf,
|
||||
.allocator = allocator,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn deinit(self: *Self) void {
|
||||
self.allocator.free(self.buf);
|
||||
self.* = undefined;
|
||||
}
|
||||
|
||||
pub fn read(self: *const Self, comptime T: type, address: usize) T {
|
||||
const addr = address & 0x3FFFF;
|
||||
|
||||
|
@ -39,3 +24,18 @@ pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void
|
|||
else => @compileError("EWRAM: Unsupported write width"),
|
||||
};
|
||||
}
|
||||
|
||||
pub fn init(allocator: Allocator) !Self {
|
||||
const buf = try allocator.alloc(u8, ewram_size);
|
||||
std.mem.set(u8, buf, 0);
|
||||
|
||||
return Self{
|
||||
.buf = buf,
|
||||
.allocator = allocator,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn deinit(self: *Self) void {
|
||||
self.allocator.free(self.buf);
|
||||
self.* = undefined;
|
||||
}
|
||||
|
|
|
@ -19,78 +19,11 @@ allocator: Allocator,
|
|||
backup: Backup,
|
||||
gpio: *Gpio,
|
||||
|
||||
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, rom_path: []const u8, save_path: ?[]const u8) !Self {
|
||||
const file = try std.fs.cwd().openFile(rom_path, .{});
|
||||
defer file.close();
|
||||
|
||||
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
|
||||
const title = file_buf[0xA0..0xAC].*;
|
||||
const kind = Backup.guessKind(file_buf);
|
||||
const device = if (force_rtc) .Rtc else guessDevice(file_buf);
|
||||
|
||||
logHeader(file_buf, &title);
|
||||
|
||||
return .{
|
||||
.buf = file_buf,
|
||||
.allocator = allocator,
|
||||
.title = title,
|
||||
.backup = try Backup.init(allocator, kind, title, save_path),
|
||||
.gpio = try Gpio.init(allocator, cpu, device),
|
||||
};
|
||||
}
|
||||
|
||||
/// Searches the ROM to see if it can determine whether the ROM it's searching uses
|
||||
/// any GPIO device, like a RTC for example.
|
||||
fn guessDevice(buf: []const u8) Gpio.Device.Kind {
|
||||
// Try to Guess if ROM uses RTC
|
||||
const needle = "RTC_V"; // I was told SIIRTC_V, though Pokemen Firered (USA) is a false negative
|
||||
|
||||
var i: usize = 0;
|
||||
while ((i + needle.len) < buf.len) : (i += 1) {
|
||||
if (std.mem.eql(u8, needle, buf[i..(i + needle.len)])) return .Rtc;
|
||||
}
|
||||
|
||||
// TODO: Detect other GPIO devices
|
||||
|
||||
return .None;
|
||||
}
|
||||
|
||||
fn logHeader(buf: []const u8, title: *const [12]u8) void {
|
||||
const code = buf[0xAC..0xB0];
|
||||
const maker = buf[0xB0..0xB2];
|
||||
const version = buf[0xBC];
|
||||
|
||||
log.info("Title: {s}", .{title});
|
||||
if (version != 0) log.info("Version: {}", .{version});
|
||||
log.info("Game Code: {s}", .{code});
|
||||
if (lookupMaker(maker)) |c| log.info("Maker: {s}", .{c}) else log.info("Maker Code: {s}", .{maker});
|
||||
}
|
||||
|
||||
fn lookupMaker(slice: *const [2]u8) ?[]const u8 {
|
||||
const id = @as(u16, slice[1]) << 8 | @as(u16, slice[0]);
|
||||
return switch (id) {
|
||||
0x3130 => "Nintendo",
|
||||
else => null,
|
||||
};
|
||||
}
|
||||
|
||||
inline fn isLarge(self: *const Self) bool {
|
||||
return self.buf.len > 0x100_0000;
|
||||
}
|
||||
|
||||
pub fn deinit(self: *Self) void {
|
||||
self.backup.deinit();
|
||||
self.gpio.deinit(self.allocator);
|
||||
self.allocator.destroy(self.gpio);
|
||||
self.allocator.free(self.buf);
|
||||
self.* = undefined;
|
||||
}
|
||||
|
||||
pub fn read(self: *Self, comptime T: type, address: u32) T {
|
||||
const addr = address & 0x1FF_FFFF;
|
||||
|
||||
if (self.backup.kind == .Eeprom) {
|
||||
if (self.isLarge()) {
|
||||
if (self.buf.len > 0x100_0000) { // Large
|
||||
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
|
||||
// * Backup type is EEPROM
|
||||
// * Large ROM (Size is greater than 16MB)
|
||||
|
@ -142,11 +75,19 @@ pub fn read(self: *Self, comptime T: type, address: u32) T {
|
|||
};
|
||||
}
|
||||
|
||||
inline fn get(self: *const Self, i: u32) u8 {
|
||||
@setRuntimeSafety(false);
|
||||
if (i < self.buf.len) return self.buf[i];
|
||||
|
||||
const lhs = i >> 1 & 0xFFFF;
|
||||
return @truncate(u8, lhs >> 8 * @truncate(u5, i & 1));
|
||||
}
|
||||
|
||||
pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
|
||||
const addr = address & 0x1FF_FFFF;
|
||||
|
||||
if (self.backup.kind == .Eeprom) {
|
||||
if (self.isLarge()) {
|
||||
if (self.buf.len > 0x100_0000) { // Large
|
||||
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
|
||||
// * Backup type is EEPROM
|
||||
// * Large ROM (Size is greater than 16MB)
|
||||
|
@ -161,6 +102,35 @@ pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
|
|||
}
|
||||
}
|
||||
|
||||
if (self.gpio.cnt == 1) {
|
||||
// GPIO Can be read from
|
||||
// We assume that this will only be true when a ROM actually does want something from GPIO
|
||||
|
||||
switch (T) {
|
||||
u32 => switch (address) {
|
||||
// TODO: Do I even need to implement these?
|
||||
0x0800_00C4 => std.debug.panic("Handle 32-bit GPIO Data/Direction Reads", .{}),
|
||||
0x0800_00C6 => std.debug.panic("Handle 32-bit GPIO Direction/Control Reads", .{}),
|
||||
0x0800_00C8 => std.debug.panic("Handle 32-bit GPIO Control Reads", .{}),
|
||||
else => {},
|
||||
},
|
||||
u16 => switch (address) {
|
||||
// FIXME: What do 16-bit GPIO Reads look like?
|
||||
0x0800_00C4 => return self.gpio.read(.Data),
|
||||
0x0800_00C6 => return self.gpio.read(.Direction),
|
||||
0x0800_00C8 => return self.gpio.read(.Control),
|
||||
else => {},
|
||||
},
|
||||
u8 => switch (address) {
|
||||
0x0800_00C4 => return self.gpio.read(.Data),
|
||||
0x0800_00C6 => return self.gpio.read(.Direction),
|
||||
0x0800_00C8 => return self.gpio.read(.Control),
|
||||
else => {},
|
||||
},
|
||||
else => @compileError("GamePak[GPIO]: Unsupported read width"),
|
||||
}
|
||||
}
|
||||
|
||||
return switch (T) {
|
||||
u32 => (@as(T, self.get(addr + 3)) << 24) | (@as(T, self.get(addr + 2)) << 16) | (@as(T, self.get(addr + 1)) << 8) | (@as(T, self.get(addr))),
|
||||
u16 => (@as(T, self.get(addr + 1)) << 8) | @as(T, self.get(addr)),
|
||||
|
@ -175,7 +145,7 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
|
|||
if (self.backup.kind == .Eeprom) {
|
||||
const bit = @truncate(u1, value);
|
||||
|
||||
if (self.isLarge()) {
|
||||
if (self.buf.len > 0x100_0000) { // Large
|
||||
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
|
||||
// * Backup type is EEPROM
|
||||
// * Large ROM (Size is greater than 16MB)
|
||||
|
@ -213,12 +183,59 @@ pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value
|
|||
}
|
||||
}
|
||||
|
||||
fn get(self: *const Self, i: u32) u8 {
|
||||
@setRuntimeSafety(false);
|
||||
if (i < self.buf.len) return self.buf[i];
|
||||
pub fn init(allocator: Allocator, cpu: *Arm7tdmi, rom_path: []const u8, save_path: ?[]const u8) !Self {
|
||||
const file = try std.fs.cwd().openFile(rom_path, .{});
|
||||
defer file.close();
|
||||
|
||||
const lhs = i >> 1 & 0xFFFF;
|
||||
return @truncate(u8, lhs >> 8 * @truncate(u5, i & 1));
|
||||
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
|
||||
const title = file_buf[0xA0..0xAC].*;
|
||||
const kind = Backup.guessKind(file_buf);
|
||||
const device = if (force_rtc) .Rtc else guessDevice(file_buf);
|
||||
|
||||
logHeader(file_buf, &title);
|
||||
|
||||
return .{
|
||||
.buf = file_buf,
|
||||
.allocator = allocator,
|
||||
.title = title,
|
||||
.backup = try Backup.init(allocator, kind, title, save_path),
|
||||
.gpio = try Gpio.init(allocator, cpu, device),
|
||||
};
|
||||
}
|
||||
|
||||
pub fn deinit(self: *Self) void {
|
||||
self.backup.deinit();
|
||||
self.gpio.deinit(self.allocator);
|
||||
self.allocator.destroy(self.gpio);
|
||||
self.allocator.free(self.buf);
|
||||
self.* = undefined;
|
||||
}
|
||||
|
||||
/// Searches the ROM to see if it can determine whether the ROM it's searching uses
|
||||
/// any GPIO device, like a RTC for example.
|
||||
fn guessDevice(buf: []const u8) Gpio.Device.Kind {
|
||||
// Try to Guess if ROM uses RTC
|
||||
const needle = "RTC_V"; // I was told SIIRTC_V, though Pokemen Firered (USA) is a false negative
|
||||
|
||||
var i: usize = 0;
|
||||
while ((i + needle.len) < buf.len) : (i += 1) {
|
||||
if (std.mem.eql(u8, needle, buf[i..(i + needle.len)])) return .Rtc;
|
||||
}
|
||||
|
||||
// TODO: Detect other GPIO devices
|
||||
|
||||
return .None;
|
||||
}
|
||||
|
||||
fn logHeader(buf: []const u8, title: *const [12]u8) void {
|
||||
const code = buf[0xAC..0xB0];
|
||||
const maker = buf[0xB0..0xB2];
|
||||
const version = buf[0xBC];
|
||||
|
||||
log.info("Title: {s}", .{title});
|
||||
if (version != 0) log.info("Version: {}", .{version});
|
||||
log.info("Game Code: {s}", .{code});
|
||||
log.info("Maker Code: {s}", .{maker});
|
||||
}
|
||||
|
||||
test "OOB Access" {
|
||||
|
|
|
@ -7,21 +7,6 @@ const Self = @This();
|
|||
buf: []u8,
|
||||
allocator: Allocator,
|
||||
|
||||
pub fn init(allocator: Allocator) !Self {
|
||||
const buf = try allocator.alloc(u8, iwram_size);
|
||||
std.mem.set(u8, buf, 0);
|
||||
|
||||
return Self{
|
||||
.buf = buf,
|
||||
.allocator = allocator,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn deinit(self: *Self) void {
|
||||
self.allocator.free(self.buf);
|
||||
self.* = undefined;
|
||||
}
|
||||
|
||||
pub fn read(self: *const Self, comptime T: type, address: usize) T {
|
||||
const addr = address & 0x7FFF;
|
||||
|
||||
|
@ -39,3 +24,18 @@ pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void
|
|||
else => @compileError("IWRAM: Unsupported write width"),
|
||||
};
|
||||
}
|
||||
|
||||
pub fn init(allocator: Allocator) !Self {
|
||||
const buf = try allocator.alloc(u8, iwram_size);
|
||||
std.mem.set(u8, buf, 0);
|
||||
|
||||
return Self{
|
||||
.buf = buf,
|
||||
.allocator = allocator,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn deinit(self: *Self) void {
|
||||
self.allocator.free(self.buf);
|
||||
self.* = undefined;
|
||||
}
|
||||
|
|
|
@ -40,48 +40,48 @@ pub fn write(comptime T: type, dma: *DmaTuple, addr: u32, value: T) void {
|
|||
|
||||
switch (T) {
|
||||
u32 => switch (byte) {
|
||||
0xB0 => dma.*[0].setSad(value),
|
||||
0xB4 => dma.*[0].setDad(value),
|
||||
0xB8 => dma.*[0].setCnt(value),
|
||||
0xBC => dma.*[1].setSad(value),
|
||||
0xC0 => dma.*[1].setDad(value),
|
||||
0xC4 => dma.*[1].setCnt(value),
|
||||
0xC8 => dma.*[2].setSad(value),
|
||||
0xCC => dma.*[2].setDad(value),
|
||||
0xD0 => dma.*[2].setCnt(value),
|
||||
0xD4 => dma.*[3].setSad(value),
|
||||
0xD8 => dma.*[3].setDad(value),
|
||||
0xDC => dma.*[3].setCnt(value),
|
||||
0xB0 => dma.*[0].setDmasad(value),
|
||||
0xB4 => dma.*[0].setDmadad(value),
|
||||
0xB8 => dma.*[0].setDmacnt(value),
|
||||
0xBC => dma.*[1].setDmasad(value),
|
||||
0xC0 => dma.*[1].setDmadad(value),
|
||||
0xC4 => dma.*[1].setDmacnt(value),
|
||||
0xC8 => dma.*[2].setDmasad(value),
|
||||
0xCC => dma.*[2].setDmadad(value),
|
||||
0xD0 => dma.*[2].setDmacnt(value),
|
||||
0xD4 => dma.*[3].setDmasad(value),
|
||||
0xD8 => dma.*[3].setDmadad(value),
|
||||
0xDC => dma.*[3].setDmacnt(value),
|
||||
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
|
||||
},
|
||||
u16 => switch (byte) {
|
||||
0xB0 => dma.*[0].setSad(setU32L(dma.*[0].sad, value)),
|
||||
0xB2 => dma.*[0].setSad(setU32H(dma.*[0].sad, value)),
|
||||
0xB4 => dma.*[0].setDad(setU32L(dma.*[0].dad, value)),
|
||||
0xB6 => dma.*[0].setDad(setU32H(dma.*[0].dad, value)),
|
||||
0xB8 => dma.*[0].setCntL(value),
|
||||
0xBA => dma.*[0].setCntH(value),
|
||||
0xB0 => dma.*[0].setDmasad(setU32L(dma.*[0].sad, value)),
|
||||
0xB2 => dma.*[0].setDmasad(setU32H(dma.*[0].sad, value)),
|
||||
0xB4 => dma.*[0].setDmadad(setU32L(dma.*[0].dad, value)),
|
||||
0xB6 => dma.*[0].setDmadad(setU32H(dma.*[0].dad, value)),
|
||||
0xB8 => dma.*[0].setDmacntL(value),
|
||||
0xBA => dma.*[0].setDmacntH(value),
|
||||
|
||||
0xBC => dma.*[1].setSad(setU32L(dma.*[1].sad, value)),
|
||||
0xBE => dma.*[1].setSad(setU32H(dma.*[1].sad, value)),
|
||||
0xC0 => dma.*[1].setDad(setU32L(dma.*[1].dad, value)),
|
||||
0xC2 => dma.*[1].setDad(setU32H(dma.*[1].dad, value)),
|
||||
0xC4 => dma.*[1].setCntL(value),
|
||||
0xC6 => dma.*[1].setCntH(value),
|
||||
0xBC => dma.*[1].setDmasad(setU32L(dma.*[1].sad, value)),
|
||||
0xBE => dma.*[1].setDmasad(setU32H(dma.*[1].sad, value)),
|
||||
0xC0 => dma.*[1].setDmadad(setU32L(dma.*[1].dad, value)),
|
||||
0xC2 => dma.*[1].setDmadad(setU32H(dma.*[1].dad, value)),
|
||||
0xC4 => dma.*[1].setDmacntL(value),
|
||||
0xC6 => dma.*[1].setDmacntH(value),
|
||||
|
||||
0xC8 => dma.*[2].setSad(setU32L(dma.*[2].sad, value)),
|
||||
0xCA => dma.*[2].setSad(setU32H(dma.*[2].sad, value)),
|
||||
0xCC => dma.*[2].setDad(setU32L(dma.*[2].dad, value)),
|
||||
0xCE => dma.*[2].setDad(setU32H(dma.*[2].dad, value)),
|
||||
0xD0 => dma.*[2].setCntL(value),
|
||||
0xD2 => dma.*[2].setCntH(value),
|
||||
0xC8 => dma.*[2].setDmasad(setU32L(dma.*[2].sad, value)),
|
||||
0xCA => dma.*[2].setDmasad(setU32H(dma.*[2].sad, value)),
|
||||
0xCC => dma.*[2].setDmadad(setU32L(dma.*[2].dad, value)),
|
||||
0xCE => dma.*[2].setDmadad(setU32H(dma.*[2].dad, value)),
|
||||
0xD0 => dma.*[2].setDmacntL(value),
|
||||
0xD2 => dma.*[2].setDmacntH(value),
|
||||
|
||||
0xD4 => dma.*[3].setSad(setU32L(dma.*[3].sad, value)),
|
||||
0xD6 => dma.*[3].setSad(setU32H(dma.*[3].sad, value)),
|
||||
0xD8 => dma.*[3].setDad(setU32L(dma.*[3].dad, value)),
|
||||
0xDA => dma.*[3].setDad(setU32H(dma.*[3].dad, value)),
|
||||
0xDC => dma.*[3].setCntL(value),
|
||||
0xDE => dma.*[3].setCntH(value),
|
||||
0xD4 => dma.*[3].setDmasad(setU32L(dma.*[3].sad, value)),
|
||||
0xD6 => dma.*[3].setDmasad(setU32H(dma.*[3].sad, value)),
|
||||
0xD8 => dma.*[3].setDmadad(setU32L(dma.*[3].dad, value)),
|
||||
0xDA => dma.*[3].setDmadad(setU32H(dma.*[3].dad, value)),
|
||||
0xDC => dma.*[3].setDmacntL(value),
|
||||
0xDE => dma.*[3].setDmacntH(value),
|
||||
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
|
||||
},
|
||||
u8 => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
|
||||
|
@ -110,15 +110,12 @@ fn DmaController(comptime id: u2) type {
|
|||
cnt: DmaControl,
|
||||
|
||||
/// Internal. Currrent Source Address
|
||||
_sad: u32,
|
||||
sad_latch: u32,
|
||||
/// Internal. Current Destination Address
|
||||
_dad: u32,
|
||||
dad_latch: u32,
|
||||
/// Internal. Word Count
|
||||
_word_count: if (id == 3) u16 else u14,
|
||||
|
||||
// Internal. FIFO Word Count
|
||||
_fifo_word_count: u8,
|
||||
|
||||
/// Some DMA Transfers are enabled during Hblank / VBlank and / or
|
||||
/// have delays. Thefore bit 15 of DMACNT isn't actually something
|
||||
/// we can use to control when we do or do not execute a step in a DMA Transfer
|
||||
|
@ -132,33 +129,32 @@ fn DmaController(comptime id: u2) type {
|
|||
.cnt = .{ .raw = 0x000 },
|
||||
|
||||
// Internals
|
||||
._sad = 0,
|
||||
._dad = 0,
|
||||
.sad_latch = 0,
|
||||
.dad_latch = 0,
|
||||
._word_count = 0,
|
||||
._fifo_word_count = 4,
|
||||
.in_progress = false,
|
||||
};
|
||||
}
|
||||
|
||||
pub fn setSad(self: *Self, addr: u32) void {
|
||||
pub fn setDmasad(self: *Self, addr: u32) void {
|
||||
self.sad = addr & sad_mask;
|
||||
}
|
||||
|
||||
pub fn setDad(self: *Self, addr: u32) void {
|
||||
pub fn setDmadad(self: *Self, addr: u32) void {
|
||||
self.dad = addr & dad_mask;
|
||||
}
|
||||
|
||||
pub fn setCntL(self: *Self, halfword: u16) void {
|
||||
pub fn setDmacntL(self: *Self, halfword: u16) void {
|
||||
self.word_count = @truncate(@TypeOf(self.word_count), halfword);
|
||||
}
|
||||
|
||||
pub fn setCntH(self: *Self, halfword: u16) void {
|
||||
pub fn setDmacntH(self: *Self, halfword: u16) void {
|
||||
const new = DmaControl{ .raw = halfword };
|
||||
|
||||
if (!self.cnt.enabled.read() and new.enabled.read()) {
|
||||
// Reload Internals on Rising Edge.
|
||||
self._sad = self.sad;
|
||||
self._dad = self.dad;
|
||||
self.sad_latch = self.sad;
|
||||
self.dad_latch = self.dad;
|
||||
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
|
||||
|
||||
// Only a Start Timing of 00 has a DMA Transfer immediately begin
|
||||
|
@ -168,15 +164,15 @@ fn DmaController(comptime id: u2) type {
|
|||
self.cnt.raw = halfword;
|
||||
}
|
||||
|
||||
pub fn setCnt(self: *Self, word: u32) void {
|
||||
self.setCntL(@truncate(u16, word));
|
||||
self.setCntH(@truncate(u16, word >> 16));
|
||||
pub fn setDmacnt(self: *Self, word: u32) void {
|
||||
self.setDmacntL(@truncate(u16, word));
|
||||
self.setDmacntH(@truncate(u16, word >> 16));
|
||||
}
|
||||
|
||||
pub fn step(self: *Self, cpu: *Arm7tdmi) void {
|
||||
const is_fifo = (id == 1 or id == 2) and self.cnt.start_timing.read() == 0b11;
|
||||
const sad_adj = Self.adjustment(self.cnt.sad_adj.read());
|
||||
const dad_adj = if (is_fifo) .Fixed else Self.adjustment(self.cnt.dad_adj.read());
|
||||
const sad_adj = @intToEnum(Adjustment, self.cnt.sad_adj.read());
|
||||
const dad_adj = if (is_fifo) .Fixed else @intToEnum(Adjustment, self.cnt.dad_adj.read());
|
||||
|
||||
const transfer_type = is_fifo or self.cnt.transfer_type.read();
|
||||
const offset: u32 = if (transfer_type) @sizeOf(u32) else @sizeOf(u16);
|
||||
|
@ -184,22 +180,22 @@ fn DmaController(comptime id: u2) type {
|
|||
const mask = if (transfer_type) ~@as(u32, 3) else ~@as(u32, 1);
|
||||
|
||||
if (transfer_type) {
|
||||
cpu.bus.write(u32, self._dad & mask, cpu.bus.read(u32, self._sad & mask));
|
||||
cpu.bus.write(u32, self.dad_latch & mask, cpu.bus.read(u32, self.sad_latch & mask));
|
||||
} else {
|
||||
cpu.bus.write(u16, self._dad & mask, cpu.bus.read(u16, self._sad & mask));
|
||||
cpu.bus.write(u16, self.dad_latch & mask, cpu.bus.read(u16, self.sad_latch & mask));
|
||||
}
|
||||
|
||||
switch (sad_adj) {
|
||||
.Increment => self._sad +%= offset,
|
||||
.Decrement => self._sad -%= offset,
|
||||
// TODO: Is just ignoring this ok?
|
||||
.Increment => self.sad_latch +%= offset,
|
||||
.Decrement => self.sad_latch -%= offset,
|
||||
// FIXME: Is just ignoring this ok?
|
||||
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
|
||||
.Fixed => {},
|
||||
}
|
||||
|
||||
switch (dad_adj) {
|
||||
.Increment, .IncrementReload => self._dad +%= offset,
|
||||
.Decrement => self._dad -%= offset,
|
||||
.Increment, .IncrementReload => self.dad_latch +%= offset,
|
||||
.Decrement => self.dad_latch -%= offset,
|
||||
.Fixed => {},
|
||||
}
|
||||
|
||||
|
@ -227,7 +223,7 @@ fn DmaController(comptime id: u2) type {
|
|||
}
|
||||
}
|
||||
|
||||
pub fn pollBlankingDma(self: *Self, comptime kind: DmaKind) void {
|
||||
fn poll(self: *Self, comptime kind: DmaKind) void {
|
||||
if (self.in_progress) return; // If there's an ongoing DMA Transfer, exit early
|
||||
|
||||
// No ongoing DMA Transfer, We want to check if we should repeat an existing one
|
||||
|
@ -243,11 +239,11 @@ fn DmaController(comptime id: u2) type {
|
|||
// Reload internal DAD latch if we are in IncrementRelaod
|
||||
if (self.in_progress) {
|
||||
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
|
||||
if (Self.adjustment(self.cnt.dad_adj.read()) == .IncrementReload) self._dad = self.dad;
|
||||
if (@intToEnum(Adjustment, self.cnt.dad_adj.read()) == .IncrementReload) self.dad_latch = self.dad;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn requestSoundDma(self: *Self, _: u32) void {
|
||||
pub fn requestAudio(self: *Self, _: u32) void {
|
||||
comptime std.debug.assert(id == 1 or id == 2);
|
||||
if (self.in_progress) return; // APU must wait their turn
|
||||
|
||||
|
@ -259,23 +255,19 @@ fn DmaController(comptime id: u2) type {
|
|||
// We Assume DMACNT_L is set to 4
|
||||
|
||||
// FIXME: Safe to just assume whatever DAD is set to is the FIFO Address?
|
||||
// self._dad = fifo_addr;
|
||||
// self.dad_latch = fifo_addr;
|
||||
self.cnt.repeat.set();
|
||||
self._word_count = 4;
|
||||
self.in_progress = true;
|
||||
}
|
||||
|
||||
fn adjustment(idx: u2) Adjustment {
|
||||
return std.meta.intToEnum(Adjustment, idx) catch unreachable;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
pub fn pollBlankingDma(bus: *Bus, comptime kind: DmaKind) void {
|
||||
bus.dma[0].pollBlankingDma(kind);
|
||||
bus.dma[1].pollBlankingDma(kind);
|
||||
bus.dma[2].pollBlankingDma(kind);
|
||||
bus.dma[3].pollBlankingDma(kind);
|
||||
pub fn pollDmaOnBlank(bus: *Bus, comptime kind: DmaKind) void {
|
||||
bus.dma[0].poll(kind);
|
||||
bus.dma[1].poll(kind);
|
||||
bus.dma[2].poll(kind);
|
||||
bus.dma[3].poll(kind);
|
||||
}
|
||||
|
||||
const Adjustment = enum(u2) {
|
||||
|
|
|
@ -19,20 +19,20 @@ pub fn read(comptime T: type, tim: *const TimerTuple, addr: u32) ?T {
|
|||
|
||||
return switch (T) {
|
||||
u32 => switch (nybble) {
|
||||
0x0 => @as(T, tim.*[0].cnt.raw) << 16 | tim.*[0].getCntL(),
|
||||
0x4 => @as(T, tim.*[1].cnt.raw) << 16 | tim.*[1].getCntL(),
|
||||
0x8 => @as(T, tim.*[2].cnt.raw) << 16 | tim.*[2].getCntL(),
|
||||
0xC => @as(T, tim.*[3].cnt.raw) << 16 | tim.*[3].getCntL(),
|
||||
0x0 => @as(T, tim.*[0].cnt.raw) << 16 | tim.*[0].timcntL(),
|
||||
0x4 => @as(T, tim.*[1].cnt.raw) << 16 | tim.*[1].timcntL(),
|
||||
0x8 => @as(T, tim.*[2].cnt.raw) << 16 | tim.*[2].timcntL(),
|
||||
0xC => @as(T, tim.*[3].cnt.raw) << 16 | tim.*[3].timcntL(),
|
||||
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
|
||||
},
|
||||
u16 => switch (nybble) {
|
||||
0x0 => tim.*[0].getCntL(),
|
||||
0x0 => tim.*[0].timcntL(),
|
||||
0x2 => tim.*[0].cnt.raw,
|
||||
0x4 => tim.*[1].getCntL(),
|
||||
0x4 => tim.*[1].timcntL(),
|
||||
0x6 => tim.*[1].cnt.raw,
|
||||
0x8 => tim.*[2].getCntL(),
|
||||
0x8 => tim.*[2].timcntL(),
|
||||
0xA => tim.*[2].cnt.raw,
|
||||
0xC => tim.*[3].getCntL(),
|
||||
0xC => tim.*[3].timcntL(),
|
||||
0xE => tim.*[3].cnt.raw,
|
||||
else => util.io.read.undef(T, log, "Tried to perform a {} read to 0x{X:0>8}", .{ T, addr }),
|
||||
},
|
||||
|
@ -46,21 +46,21 @@ pub fn write(comptime T: type, tim: *TimerTuple, addr: u32, value: T) void {
|
|||
|
||||
return switch (T) {
|
||||
u32 => switch (nybble) {
|
||||
0x0 => tim.*[0].setCnt(value),
|
||||
0x4 => tim.*[1].setCnt(value),
|
||||
0x8 => tim.*[2].setCnt(value),
|
||||
0xC => tim.*[3].setCnt(value),
|
||||
0x0 => tim.*[0].setTimcnt(value),
|
||||
0x4 => tim.*[1].setTimcnt(value),
|
||||
0x8 => tim.*[2].setTimcnt(value),
|
||||
0xC => tim.*[3].setTimcnt(value),
|
||||
else => util.io.write.undef(log, "Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
|
||||
},
|
||||
u16 => switch (nybble) {
|
||||
0x0 => tim.*[0].setCntL(value),
|
||||
0x2 => tim.*[0].setCntH(value),
|
||||
0x4 => tim.*[1].setCntL(value),
|
||||
0x6 => tim.*[1].setCntH(value),
|
||||
0x8 => tim.*[2].setCntL(value),
|
||||
0xA => tim.*[2].setCntH(value),
|
||||
0xC => tim.*[3].setCntL(value),
|
||||
0xE => tim.*[3].setCntH(value),
|
||||
0x0 => tim.*[0].setTimcntL(value),
|
||||
0x2 => tim.*[0].setTimcntH(value),
|
||||
0x4 => tim.*[1].setTimcntL(value),
|
||||
0x6 => tim.*[1].setTimcntH(value),
|
||||
0x8 => tim.*[2].setTimcntL(value),
|
||||
0xA => tim.*[2].setTimcntH(value),
|
||||
0xC => tim.*[3].setTimcntL(value),
|
||||
0xE => tim.*[3].setTimcntH(value),
|
||||
else => util.io.write.undef(log, "Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
|
||||
},
|
||||
u8 => util.io.write.undef(log, "Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
|
||||
|
@ -72,13 +72,13 @@ fn Timer(comptime id: u2) type {
|
|||
return struct {
|
||||
const Self = @This();
|
||||
|
||||
/// Read Only, Internal. Please use self.getCntL()
|
||||
/// Read Only, Internal. Please use self.timcntL()
|
||||
_counter: u16,
|
||||
|
||||
/// Write Only, Internal. Please use self.setCntL()
|
||||
/// Write Only, Internal. Please use self.setTimcntL()
|
||||
_reload: u16,
|
||||
|
||||
/// Write Only, Internal. Please use self.setCntH()
|
||||
/// Write Only, Internal. Please use self.setTimcntH()
|
||||
cnt: TimerControl,
|
||||
|
||||
/// Internal.
|
||||
|
@ -97,26 +97,26 @@ fn Timer(comptime id: u2) type {
|
|||
};
|
||||
}
|
||||
|
||||
/// TIMCNT_L
|
||||
pub fn getCntL(self: *const Self) u16 {
|
||||
/// TIMCNT_L Getter
|
||||
pub fn timcntL(self: *const Self) u16 {
|
||||
if (self.cnt.cascade.read() or !self.cnt.enabled.read()) return self._counter;
|
||||
|
||||
return self._counter +% @truncate(u16, (self.sched.now() - self._start_timestamp) / self.frequency());
|
||||
}
|
||||
|
||||
/// TIMCNT_L
|
||||
pub fn setCntL(self: *Self, halfword: u16) void {
|
||||
/// TIMCNT_L Setter
|
||||
pub fn setTimcntL(self: *Self, halfword: u16) void {
|
||||
self._reload = halfword;
|
||||
}
|
||||
|
||||
/// TIMCNT_L & TIMCNT_H
|
||||
pub fn setCnt(self: *Self, word: u32) void {
|
||||
self.setCntL(@truncate(u16, word));
|
||||
self.setCntH(@truncate(u16, word >> 16));
|
||||
pub fn setTimcnt(self: *Self, word: u32) void {
|
||||
self.setTimcntL(@truncate(u16, word));
|
||||
self.setTimcntH(@truncate(u16, word >> 16));
|
||||
}
|
||||
|
||||
/// TIMCNT_H
|
||||
pub fn setCntH(self: *Self, halfword: u16) void {
|
||||
pub fn setTimcntH(self: *Self, halfword: u16) void {
|
||||
const new = TimerControl{ .raw = halfword };
|
||||
|
||||
// If Timer happens to be enabled, It will either be resheduled or disabled
|
||||
|
@ -132,12 +132,12 @@ fn Timer(comptime id: u2) type {
|
|||
if (!self.cnt.enabled.read() and new.enabled.read()) self._counter = self._reload;
|
||||
|
||||
// If Timer is enabled and we're not cascading, we need to schedule an overflow event
|
||||
if (new.enabled.read() and !new.cascade.read()) self.scheduleOverflow(0);
|
||||
if (new.enabled.read() and !new.cascade.read()) self.rescheduleTimerExpire(0);
|
||||
|
||||
self.cnt.raw = halfword;
|
||||
}
|
||||
|
||||
pub fn handleOverflow(self: *Self, cpu: *Arm7tdmi, late: u64) void {
|
||||
pub fn onTimerExpire(self: *Self, cpu: *Arm7tdmi, late: u64) void {
|
||||
// Fire IRQ if enabled
|
||||
const io = &cpu.bus.io;
|
||||
|
||||
|
@ -161,15 +161,15 @@ fn Timer(comptime id: u2) type {
|
|||
switch (id) {
|
||||
0 => if (cpu.bus.tim[1].cnt.cascade.read()) {
|
||||
cpu.bus.tim[1]._counter +%= 1;
|
||||
if (cpu.bus.tim[1]._counter == 0) cpu.bus.tim[1].handleOverflow(cpu, late);
|
||||
if (cpu.bus.tim[1]._counter == 0) cpu.bus.tim[1].onTimerExpire(cpu, late);
|
||||
},
|
||||
1 => if (cpu.bus.tim[2].cnt.cascade.read()) {
|
||||
cpu.bus.tim[2]._counter +%= 1;
|
||||
if (cpu.bus.tim[2]._counter == 0) cpu.bus.tim[2].handleOverflow(cpu, late);
|
||||
if (cpu.bus.tim[2]._counter == 0) cpu.bus.tim[2].onTimerExpire(cpu, late);
|
||||
},
|
||||
2 => if (cpu.bus.tim[3].cnt.cascade.read()) {
|
||||
cpu.bus.tim[3]._counter +%= 1;
|
||||
if (cpu.bus.tim[3]._counter == 0) cpu.bus.tim[3].handleOverflow(cpu, late);
|
||||
if (cpu.bus.tim[3]._counter == 0) cpu.bus.tim[3].onTimerExpire(cpu, late);
|
||||
},
|
||||
3 => {}, // There is no Timer for TIM3 to "cascade" to,
|
||||
}
|
||||
|
@ -177,11 +177,11 @@ fn Timer(comptime id: u2) type {
|
|||
// Reschedule Timer if we're not cascading
|
||||
if (!self.cnt.cascade.read()) {
|
||||
self._counter = self._reload;
|
||||
self.scheduleOverflow(late);
|
||||
self.rescheduleTimerExpire(late);
|
||||
}
|
||||
}
|
||||
|
||||
fn scheduleOverflow(self: *Self, late: u64) void {
|
||||
fn rescheduleTimerExpire(self: *Self, late: u64) void {
|
||||
const when = (@as(u64, 0x10000) - self._counter) * self.frequency();
|
||||
|
||||
self._start_timestamp = self.sched.now();
|
||||
|
|
|
@ -10,7 +10,7 @@ const Bitfield = @import("bitfield").Bitfield;
|
|||
|
||||
const Allocator = std.mem.Allocator;
|
||||
const log = std.log.scoped(.PPU);
|
||||
const pollBlankingDma = @import("bus/dma.zig").pollBlankingDma;
|
||||
const pollDmaOnBlank = @import("bus/dma.zig").pollDmaOnBlank;
|
||||
|
||||
/// This is used to generate byuu / Talurabi's Color Correction algorithm
|
||||
const COLOUR_LUT = genColourLut();
|
||||
|
@ -572,7 +572,7 @@ pub const Ppu = struct {
|
|||
// See if HBlank DMA is present and not enabled
|
||||
|
||||
if (!self.dispstat.vblank.read())
|
||||
pollBlankingDma(cpu.bus, .HBlank);
|
||||
pollDmaOnBlank(cpu.bus, .HBlank);
|
||||
|
||||
self.dispstat.hblank.set();
|
||||
self.sched.push(.HBlank, 68 * 4 -| late);
|
||||
|
@ -614,7 +614,7 @@ pub const Ppu = struct {
|
|||
self.aff_bg[1].latchRefPoints();
|
||||
|
||||
// See if Vblank DMA is present and not enabled
|
||||
pollBlankingDma(cpu.bus, .VBlank);
|
||||
pollDmaOnBlank(cpu.bus, .VBlank);
|
||||
}
|
||||
|
||||
if (scanline == 227) self.dispstat.vblank.unset();
|
||||
|
|
|
@ -47,10 +47,10 @@ pub const Scheduler = struct {
|
|||
},
|
||||
.TimerOverflow => |id| {
|
||||
switch (id) {
|
||||
0 => cpu.bus.tim[0].handleOverflow(cpu, late),
|
||||
1 => cpu.bus.tim[1].handleOverflow(cpu, late),
|
||||
2 => cpu.bus.tim[2].handleOverflow(cpu, late),
|
||||
3 => cpu.bus.tim[3].handleOverflow(cpu, late),
|
||||
0 => cpu.bus.tim[0].onTimerExpire(cpu, late),
|
||||
1 => cpu.bus.tim[1].onTimerExpire(cpu, late),
|
||||
2 => cpu.bus.tim[2].onTimerExpire(cpu, late),
|
||||
3 => cpu.bus.tim[3].onTimerExpire(cpu, late),
|
||||
}
|
||||
},
|
||||
.ApuChannel => |id| {
|
||||
|
|
Loading…
Reference in New Issue