zba/src/bus/backup.zig

571 lines
18 KiB
Zig
Raw Normal View History

const std = @import("std");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Backup);
const escape = @import("../util.zig").escape;
const asString = @import("../util.zig").asString;
2022-04-25 21:08:56 +00:00
const intToBytes = @import("../util.zig").intToBytes;
const backup_kinds = [5]Needle{
.{ .str = "EEPROM_V", .kind = .Eeprom },
.{ .str = "SRAM_V", .kind = .Sram },
.{ .str = "FLASH_V", .kind = .Flash },
.{ .str = "FLASH512_V", .kind = .Flash },
.{ .str = "FLASH1M_V", .kind = .Flash1M },
};
pub const Backup = struct {
const Self = @This();
buf: []u8,
alloc: Allocator,
kind: BackupKind,
title: [12]u8,
save_path: ?[]const u8,
flash: Flash,
2022-04-25 21:08:56 +00:00
eeprom: Eeprom,
pub fn init(alloc: Allocator, kind: BackupKind, title: [12]u8, path: ?[]const u8) !Self {
2022-04-14 00:45:15 +00:00
log.info("Kind: {}", .{kind});
2022-04-14 00:39:35 +00:00
const buf_size: usize = switch (kind) {
.Sram => 0x8000, // 32K
.Flash => 0x10000, // 64K
.Flash1M => 0x20000, // 128K
2022-04-25 21:08:56 +00:00
.None, .Eeprom => 0, // EEPROM is handled upon first Read Request to it
};
2022-04-14 00:39:35 +00:00
const buf = try alloc.alloc(u8, buf_size);
std.mem.set(u8, buf, 0xFF);
var backup = Self{
.buf = buf,
.alloc = alloc,
.kind = kind,
.title = title,
.save_path = path,
.flash = Flash.init(),
2022-04-25 21:08:56 +00:00
.eeprom = Eeprom.init(alloc),
};
if (backup.save_path) |p| backup.loadSaveFromDisk(p) catch |e| log.err("Failed to load save: {}", .{e});
return backup;
}
pub fn guessKind(rom: []const u8) ?BackupKind {
for (backup_kinds) |needle| {
const needle_len = needle.str.len;
var i: usize = 0;
while ((i + needle_len) < rom.len) : (i += 1) {
if (std.mem.eql(u8, needle.str, rom[i..][0..needle_len])) return needle.kind;
}
}
return null;
}
pub fn deinit(self: Self) void {
if (self.save_path) |path| self.writeSaveToDisk(path) catch |e| log.err("Failed to write save: {}", .{e});
self.alloc.free(self.buf);
}
fn loadSaveFromDisk(self: *Self, path: []const u8) !void {
const file_path = try self.getSaveFilePath(path);
defer self.alloc.free(file_path);
// FIXME: Don't rely on this lol
if (std.mem.eql(u8, file_path[file_path.len - 12 .. file_path.len], "untitled.sav")) {
return log.err("ROM header lacks title, no save loaded", .{});
}
const file: std.fs.File = try std.fs.openFileAbsolute(file_path, .{});
2022-04-14 00:39:35 +00:00
const file_buf = try file.readToEndAlloc(self.alloc, try file.getEndPos());
defer self.alloc.free(file_buf);
switch (self.kind) {
.Sram, .Flash, .Flash1M => {
if (self.buf.len == file_buf.len) {
std.mem.copy(u8, self.buf, file_buf);
2022-04-14 00:39:35 +00:00
return log.info("Loaded Save from {s}", .{file_path});
}
2022-04-14 00:39:35 +00:00
2022-04-25 21:08:56 +00:00
log.err("{s} is {} bytes, but we expected {} bytes", .{ file_path, file_buf.len, self.buf.len });
},
2022-04-25 21:08:56 +00:00
.Eeprom => {
if (file_buf.len == 0x200 or file_buf.len == 0x2000) {
self.eeprom.kind = if (file_buf.len == 0x200) .Small else .Large;
self.buf = try self.alloc.alloc(u8, file_buf.len);
std.mem.copy(u8, self.buf, file_buf);
return log.info("Loaded Save from {s}", .{file_path});
}
log.err("EEPROM can either be 0x200 bytes or 0x2000 byes, but {s} was {X:} bytes", .{
file_path,
file_buf.len,
});
2022-04-25 21:08:56 +00:00
},
.None => return SaveError.UnsupportedBackupKind,
}
}
fn getSaveFilePath(self: *const Self, path: []const u8) ![]const u8 {
const filename = try self.getSaveFilename();
defer self.alloc.free(filename);
return try std.fs.path.join(self.alloc, &[_][]const u8{ path, filename });
}
fn getSaveFilename(self: *const Self) ![]const u8 {
const title = asString(escape(self.title));
const name = if (title.len != 0) title else "untitled";
return try std.mem.concat(self.alloc, u8, &[_][]const u8{ name, ".sav" });
}
fn writeSaveToDisk(self: Self, path: []const u8) !void {
const file_path = try self.getSaveFilePath(path);
defer self.alloc.free(file_path);
switch (self.kind) {
2022-04-25 21:08:56 +00:00
.Sram, .Flash, .Flash1M, .Eeprom => {
const file = try std.fs.createFileAbsolute(file_path, .{});
defer file.close();
try file.writeAll(self.buf);
log.info("Wrote Save to {s}", .{file_path});
},
else => return SaveError.UnsupportedBackupKind,
}
}
pub fn read(self: *const Self, address: usize) u8 {
const addr = address & 0xFFFF;
switch (self.kind) {
.Flash => {
switch (addr) {
0x0000 => if (self.flash.id_mode) return 0x32, // Panasonic manufacturer ID
0x0001 => if (self.flash.id_mode) return 0x1B, // Panasonic device ID
else => {},
}
return self.flash.read(self.buf, addr);
},
.Flash1M => {
switch (addr) {
0x0000 => if (self.flash.id_mode) return 0x62, // Sanyo manufacturer ID
0x0001 => if (self.flash.id_mode) return 0x13, // Sanyo device ID
else => {},
}
return self.flash.read(self.buf, addr);
},
.Sram => return self.buf[addr & 0x7FFF], // 32K SRAM chip is mirrored
2022-04-25 21:08:56 +00:00
.None, .Eeprom => return 0xFF,
}
}
pub fn write(self: *Self, address: usize, byte: u8) void {
const addr = address & 0xFFFF;
switch (self.kind) {
.Flash, .Flash1M => {
if (self.flash.prep_write) return self.flash.write(self.buf, addr, byte);
if (self.flash.shouldEraseSector(addr, byte)) return self.flash.eraseSector(self.buf, addr);
switch (addr) {
0x0000 => if (self.kind == .Flash1M and self.flash.set_bank) {
self.flash.bank = @truncate(u1, byte);
},
0x5555 => {
if (self.flash.state == .Command) {
self.flash.handleCommand(self.buf, byte);
} else if (byte == 0xAA and self.flash.state == .Ready) {
self.flash.state = .Set;
} else if (byte == 0xF0) {
self.flash.state = .Ready;
}
},
0x2AAA => if (byte == 0x55 and self.flash.state == .Set) {
self.flash.state = .Command;
},
else => {},
}
},
.Sram => self.buf[addr & 0x7FFF] = byte,
2022-04-25 21:08:56 +00:00
.None, .Eeprom => {},
}
}
};
const BackupKind = enum {
Eeprom,
Sram,
Flash,
Flash1M,
None,
};
const Needle = struct {
const Self = @This();
str: []const u8,
kind: BackupKind,
fn init(str: []const u8, kind: BackupKind) Self {
return .{
.str = str,
.kind = kind,
};
}
};
const SaveError = error{
UnsupportedBackupKind,
};
const Flash = struct {
const Self = @This();
state: FlashState,
id_mode: bool,
set_bank: bool,
prep_erase: bool,
prep_write: bool,
bank: u1,
fn init() Self {
return .{
.state = .Ready,
.id_mode = false,
.set_bank = false,
.prep_erase = false,
.prep_write = false,
.bank = 0,
};
}
fn handleCommand(self: *Self, buf: []u8, byte: u8) void {
switch (byte) {
0x90 => self.id_mode = true,
0xF0 => self.id_mode = false,
0xB0 => self.set_bank = true,
0x80 => self.prep_erase = true,
0x10 => {
std.mem.set(u8, buf, 0xFF);
self.prep_erase = false;
},
0xA0 => self.prep_write = true,
else => std.debug.panic("Unhandled Flash Command: 0x{X:0>2}", .{byte}),
}
self.state = .Ready;
}
fn shouldEraseSector(self: *const Self, addr: usize, byte: u8) bool {
return self.state == .Command and self.prep_erase and byte == 0x30 and addr & 0xFFF == 0x000;
}
fn write(self: *Self, buf: []u8, idx: usize, byte: u8) void {
buf[self.baseAddress() + idx] = byte;
self.prep_write = false;
}
fn read(self: *const Self, buf: []u8, idx: usize) u8 {
return buf[self.baseAddress() + idx];
}
fn eraseSector(self: *Self, buf: []u8, idx: usize) void {
const start = self.baseAddress() + (idx & 0xF000);
std.mem.set(u8, buf[start..][0..0x1000], 0xFF);
self.prep_erase = false;
self.state = .Ready;
}
inline fn baseAddress(self: *const Self) usize {
return if (self.bank == 1) 0x10000 else @as(usize, 0);
}
};
const FlashState = enum {
Ready,
Set,
Command,
};
2022-04-25 21:08:56 +00:00
const Eeprom = struct {
const Self = @This();
addr: u14,
kind: Kind,
state: State,
writer: Writer,
reader: Reader,
alloc: Allocator,
const Kind = enum {
Unknown,
Small, // 512B
Large, // 8KB
};
const State = enum {
Ready,
Read,
Write,
WriteTransfer,
RequestEnd,
};
fn init(alloc: Allocator) Self {
return .{
.kind = .Unknown,
.state = .Ready,
.writer = Writer.init(),
.reader = Reader.init(),
.addr = 0,
.alloc = alloc,
};
}
pub fn read(self: *Self) u1 {
return self.reader.read();
2022-04-25 21:08:56 +00:00
}
pub fn write(self: *Self, word_count: u16, buf: *[]u8, bit: u1) void {
if (self.guessKind(word_count)) |found| {
log.info("EEPROM Kind: {}", .{found});
self.kind = found;
// buf.len will not equal zero when a save file was found and loaded.
// Right now, we assume that the save file is of the correct size which
// isn't necessarily true, since we can't trust anything a user can influence
// TODO: use ?[]u8 instead of a 0-sized slice?
if (buf.len == 0) {
const len: usize = switch (found) {
.Small => 0x200,
.Large => 0x2000,
else => unreachable,
};
buf.* = self.alloc.alloc(u8, len) catch |e| {
log.err("Failed to resize EEPROM buf to {} bytes", .{len});
std.debug.panic("EEPROM entered irrecoverable state {}", .{e});
};
std.mem.set(u8, buf.*, 0xFF);
}
}
if (self.state == .RequestEnd) {
2022-04-29 17:41:05 +00:00
if (bit != 0) log.debug("EEPROM Request did not end in 0u1. TODO: is this ok?", .{});
2022-04-25 21:08:56 +00:00
self.state = .Ready;
return;
}
switch (self.state) {
.Ready => self.writer.requestWrite(bit),
.Read, .Write => self.writer.addressWrite(self.kind, bit),
.WriteTransfer => self.writer.dataWrite(bit),
.RequestEnd => unreachable, // We return early just above this block
}
self.tick(buf.*);
}
fn guessKind(self: *const Self, word_count: u16) ?Kind {
if (self.kind != .Unknown or self.state != .Read) return null;
return switch (word_count) {
17 => .Large,
9 => .Small,
else => blk: {
log.err("Unexpected length of DMA3 Transfer upon initial EEPROM read: {}", .{word_count});
break :blk null;
},
};
}
fn tick(self: *Self, buf: []u8) void {
switch (self.state) {
.Ready => {
if (self.writer.len() == 2) {
const req = @intCast(u2, self.writer.finish());
switch (req) {
0b11 => self.state = .Read,
0b10 => self.state = .Write,
else => log.err("Unknown EEPROM Request 0b{b:0>2}", .{req}),
}
}
},
.Read => {
switch (self.kind) {
.Large => {
if (self.writer.len() == 14) {
const addr = @intCast(u10, self.writer.finish());
const value_buf = buf[@as(u13, addr) * 8 ..][0..8];
2022-05-28 01:09:15 +00:00
// zig fmt: off
const value = @as(u64, value_buf[7]) << 56
| @as(u64, value_buf[6]) << 48
| @as(u64, value_buf[5]) << 40
| @as(u64, value_buf[4]) << 32
| @as(u64, value_buf[3]) << 24
| @as(u64, value_buf[2]) << 16
| @as(u64, value_buf[1]) << 8
| @as(u64, value_buf[0]) << 0;
// zig fmt: on
2022-04-25 21:08:56 +00:00
self.reader.configure(value);
self.state = .RequestEnd;
}
},
.Small => {
if (self.writer.len() == 6) {
2022-05-28 01:09:15 +00:00
// FIXME: Duplicated code from above
2022-04-25 21:08:56 +00:00
const addr = @intCast(u6, self.writer.finish());
const value_buf = buf[@as(u13, addr) * 8 ..][0..8];
2022-05-28 01:09:15 +00:00
// zig fmt: off
const value = @as(u64, value_buf[7]) << 56
| @as(u64, value_buf[6]) << 48
| @as(u64, value_buf[5]) << 40
| @as(u64, value_buf[4]) << 32
| @as(u64, value_buf[3]) << 24
| @as(u64, value_buf[2]) << 16
| @as(u64, value_buf[1]) << 8
| @as(u64, value_buf[0]) << 0;
// zig fmt: on
2022-04-25 21:08:56 +00:00
self.reader.configure(value);
self.state = .RequestEnd;
}
},
else => log.err("Unable to calculate EEPROM read address. EEPROM size UNKNOWN", .{}),
}
},
.Write => {
switch (self.kind) {
.Large => {
if (self.writer.len() == 14) {
self.addr = @intCast(u10, self.writer.finish());
self.state = .WriteTransfer;
}
},
.Small => {
if (self.writer.len() == 6) {
self.addr = @intCast(u6, self.writer.finish());
self.state = .WriteTransfer;
}
},
else => log.err("Unable to calculate EEPROM write address. EEPROM size UNKNOWN", .{}),
}
},
.WriteTransfer => {
if (self.writer.len() == 64) {
std.mem.copy(u8, buf[self.addr * 8 ..][0..8], &intToBytes(u64, self.writer.finish()));
2022-04-25 21:08:56 +00:00
self.state = .RequestEnd;
}
},
.RequestEnd => unreachable, // We return early in write() if state is .RequestEnd
}
}
const Reader = struct {
const This = @This();
data: u64,
i: u8,
enabled: bool,
fn init() This {
return .{
.data = 0,
.i = 0,
.enabled = false,
};
}
fn configure(self: *This, value: u64) void {
self.data = value;
self.i = 0;
self.enabled = true;
}
fn read(self: *This) u1 {
if (!self.enabled) return 1;
const bit = if (self.i < 4) blk: {
break :blk 0;
} else blk: {
const idx = @intCast(u6, 63 - (self.i - 4));
break :blk @truncate(u1, self.data >> idx);
};
self.i = (self.i + 1) % (64 + 4);
if (self.i == 0) self.enabled = false;
return bit;
}
};
const Writer = struct {
const This = @This();
data: u64,
i: u8,
fn init() This {
return .{ .data = 0, .i = 0 };
}
fn requestWrite(self: *This, bit: u1) void {
const idx = @intCast(u1, 1 - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}
fn addressWrite(self: *This, kind: Eeprom.Kind, bit: u1) void {
if (kind == .Unknown) return;
const size: u4 = switch (kind) {
.Large => 13,
.Small => 5,
.Unknown => unreachable,
};
const idx = @intCast(u4, size - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}
fn dataWrite(self: *This, bit: u1) void {
const idx = @intCast(u6, 63 - self.i);
self.data = (self.data & ~(@as(u64, 1) << idx)) | (@as(u64, bit) << idx);
self.i += 1;
}
fn len(self: *const This) u8 {
return self.i;
}
fn finish(self: *This) u64 {
defer self.reset();
return self.data;
}
fn reset(self: *This) void {
self.i = 0;
self.data = 0;
}
};
};