zba/src/bus/backup.zig

99 lines
2.5 KiB
Zig
Raw Normal View History

const std = @import("std");
const Allocator = std.mem.Allocator;
const log = std.log.scoped(.Backup);
const backup_kinds = [5]Needle{
.{ .str = "EEPROM_V", .kind = .Eeprom },
.{ .str = "SRAM_V", .kind = .Sram },
.{ .str = "FLASH_V", .kind = .Flash },
.{ .str = "FLASH512_V", .kind = .Flash },
.{ .str = "FLASH1M_V", .kind = .Flash1M },
};
pub const Backup = struct {
const Self = @This();
buf: []u8,
alloc: Allocator,
kind: BackupKind,
pub fn init(alloc: Allocator, kind: BackupKind) !Self {
const buf_len: usize = switch (kind) {
.Sram => 0x8000, // 32K
.Flash => 0x10000, // 64K
.Flash1M => 0x20000, // 128K
.Eeprom => 0x2000, // FIXME: We assume 8K here
};
const buf = try alloc.alloc(u8, buf_len);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.alloc = alloc,
.kind = kind,
};
}
pub fn guessKind(rom: []const u8) ?BackupKind {
@setRuntimeSafety(false);
for (backup_kinds) |needle| {
const needle_len = needle.str.len;
var i: usize = 0;
while ((i + needle_len) < rom.len) : (i += 1) {
if (std.mem.eql(u8, needle.str, rom[i..][0..needle_len])) return needle.kind;
}
}
return null;
}
pub fn deinit(self: Self) void {
self.alloc.free(self.buf);
}
pub fn get8(self: *const Self, idx: usize) u8 {
// TODO: Implement Flash and EEPROM
switch (self.kind) {
.Flash => return switch (idx) {
0x0000 => 0x32, // Panasonic manufacturer ID
0x0001 => 0x1B, // Panasonic device ID
else => self.buf[idx],
},
.Flash1M => return switch (idx) {
0x0000 => 0x62, // Sanyo manufacturer ID
0x0001 => 0x13, // Sanyo device ID
else => self.buf[idx],
},
.Eeprom => return self.buf[idx],
.Sram => return self.buf[idx & 0x7FFF], // 32K SRAM chips are repeated
}
}
pub fn set8(self: *Self, idx: usize, byte: u8) void {
self.buf[idx] = byte;
}
};
const BackupKind = enum {
Eeprom,
Sram,
Flash,
Flash1M,
};
const Needle = struct {
str: []const u8,
kind: BackupKind,
fn init(str: []const u8, kind: BackupKind) @This() {
return .{
.str = str,
.kind = kind,
};
}
};