zba/src/core/bus/GamePak.zig

584 lines
19 KiB
Zig
Raw Normal View History

2022-01-07 23:33:49 +00:00
const std = @import("std");
2022-08-18 22:25:30 +00:00
const Bit = @import("bitfield").Bit;
const Bitfield = @import("bitfield").Bitfield;
const Backup = @import("backup.zig").Backup;
2022-01-07 23:33:49 +00:00
const Allocator = std.mem.Allocator;
2022-02-22 23:10:52 +00:00
const log = std.log.scoped(.GamePak);
2022-01-07 23:33:49 +00:00
const Self = @This();
2022-02-04 09:54:06 +00:00
title: [12]u8,
2022-01-07 23:33:49 +00:00
buf: []u8,
2022-09-03 21:30:48 +00:00
allocator: Allocator,
backup: Backup,
2022-08-18 22:25:30 +00:00
gpio: Gpio,
2022-02-04 09:54:06 +00:00
2022-09-03 21:30:48 +00:00
pub fn init(allocator: Allocator, rom_path: []const u8, save_path: ?[]const u8) !Self {
const file = try std.fs.cwd().openFile(rom_path, .{});
2022-01-07 23:33:49 +00:00
defer file.close();
2022-09-03 21:30:48 +00:00
const file_buf = try file.readToEndAlloc(allocator, try file.getEndPos());
const title = parseTitle(file_buf);
const kind = Backup.guessKind(file_buf) orelse .None;
2022-08-18 22:25:30 +00:00
var pak = Self{
.buf = file_buf,
2022-09-03 21:30:48 +00:00
.allocator = allocator,
2022-02-22 23:10:52 +00:00
.title = title,
2022-09-03 21:30:48 +00:00
.backup = try Backup.init(allocator, kind, title, save_path),
2022-08-18 22:25:30 +00:00
.gpio = Gpio.init(allocator, .Rtc),
2022-02-22 23:10:52 +00:00
};
2022-02-04 09:54:06 +00:00
pak.parseHeader();
return pak;
}
2022-08-18 22:25:30 +00:00
/// Configures any GPIO Device that may be enabled
///
/// Fundamentally, this just passes a pointer to the initialized GPIO struct to whatever heap allocated GPIO Device struct
/// we happen to be using
///
/// WARNIG: As far as I know, this method must be called in main() or else we'll have a dangling pointer issue
/// Despite using the General Purpose Allocator, Zig doesn't prevent me from doing this :sadface:
pub fn setupGpio(self: *Self) void {
switch (self.gpio.device.kind) {
.Rtc => {
const ptr = self.gpio.device.ptr orelse @panic("RTC ptr is missing despite GPIO Device Kind");
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), ptr));
Clock.init(clock, &self.gpio);
},
.None => {},
}
}
2022-02-04 09:54:06 +00:00
fn parseHeader(self: *const Self) void {
const title = parseTitle(self.buf);
const code = self.buf[0xAC..0xB0];
const maker = self.buf[0xB0..0xB2];
const version = self.buf[0xBC];
log.info("Title: {s}", .{title});
if (version != 0) log.info("Version: {}", .{version});
log.info("Game Code: {s}", .{code});
if (lookupMaker(maker)) |c| log.info("Maker: {s}", .{c}) else log.info("Maker Code: {s}", .{maker});
2022-02-04 09:54:06 +00:00
}
fn parseTitle(buf: []u8) [12]u8 {
return buf[0xA0..0xAC].*;
}
fn lookupMaker(slice: *const [2]u8) ?[]const u8 {
const id = @as(u16, slice[1]) << 8 | @as(u16, slice[0]);
return switch (id) {
2022-02-04 09:54:06 +00:00
0x3130 => "Nintendo",
else => null,
2022-01-07 23:33:49 +00:00
};
}
2022-04-25 21:08:56 +00:00
inline fn isLarge(self: *const Self) bool {
return self.buf.len > 0x100_0000;
}
2022-08-29 05:32:41 +00:00
pub fn deinit(self: *Self) void {
self.backup.deinit();
2022-08-18 22:25:30 +00:00
self.gpio.deinit(self.allocator);
2022-09-03 21:30:48 +00:00
self.allocator.free(self.buf);
2022-08-29 05:32:41 +00:00
self.* = undefined;
2022-01-07 23:33:49 +00:00
}
pub fn read(self: *Self, comptime T: type, address: u32) T {
const addr = address & 0x1FF_FFFF;
2022-01-07 23:33:49 +00:00
2022-04-25 21:08:56 +00:00
if (self.backup.kind == .Eeprom) {
if (self.isLarge()) {
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
if (addr > 0x1FF_FEFF)
return self.backup.eeprom.read();
} else {
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
return self.backup.eeprom.read();
}
}
2022-08-18 22:25:30 +00:00
if (self.gpio.cnt == 1) {
// GPIO Can be read from
// We assume that this will only be true when a ROM actually does want something from GPIO
switch (T) {
u32 => switch (address) {
// TODO: Do I even need to implement these?
0x0800_00C4 => std.debug.panic("Handle 32-bit GPIO Data/Direction Reads", .{}),
0x0800_00C6 => std.debug.panic("Handle 32-bit GPIO Direction/Control Reads", .{}),
0x0800_00C8 => std.debug.panic("Handle 32-bit GPIO Control Reads", .{}),
else => {},
},
u16 => switch (address) {
// FIXME: What do 16-bit GPIO Reads look like?
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
else => {},
},
u8 => switch (address) {
0x0800_00C4 => return self.gpio.read(.Data),
0x0800_00C6 => return self.gpio.read(.Direction),
0x0800_00C8 => return self.gpio.read(.Control),
else => {},
},
else => @compileError("GamePak[GPIO]: Unsupported read width"),
}
}
return switch (T) {
u32 => (@as(T, self.get(addr + 3)) << 24) | (@as(T, self.get(addr + 2)) << 16) | (@as(T, self.get(addr + 1)) << 8) | (@as(T, self.get(addr))),
u16 => (@as(T, self.get(addr + 1)) << 8) | @as(T, self.get(addr)),
u8 => self.get(addr),
else => @compileError("GamePak: Unsupported read width"),
};
2022-01-07 23:33:49 +00:00
}
pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T {
const addr = address & 0x1FF_FFFF;
if (self.backup.kind == .Eeprom) {
if (self.isLarge()) {
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
if (addr > 0x1FF_FEFF)
return self.backup.eeprom.dbgRead();
} else {
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
return self.backup.eeprom.dbgRead();
}
}
return switch (T) {
u32 => (@as(T, self.get(addr + 3)) << 24) | (@as(T, self.get(addr + 2)) << 16) | (@as(T, self.get(addr + 1)) << 8) | (@as(T, self.get(addr))),
u16 => (@as(T, self.get(addr + 1)) << 8) | @as(T, self.get(addr)),
u8 => self.get(addr),
else => @compileError("GamePak: Unsupported read width"),
};
}
2022-04-25 21:08:56 +00:00
pub fn write(self: *Self, comptime T: type, word_count: u16, address: u32, value: T) void {
const addr = address & 0x1FF_FFFF;
if (self.backup.kind == .Eeprom) {
const bit = @truncate(u1, value);
if (self.isLarge()) {
// Addresses 0x1FF_FF00 to 0x1FF_FFFF are reserved from EEPROM accesses if
// * Backup type is EEPROM
// * Large ROM (Size is greater than 16MB)
if (addr > 0x1FF_FEFF)
return self.backup.eeprom.write(word_count, &self.backup.buf, bit);
} else {
// Addresses 0x0D00_0000 to 0x0DFF_FFFF are reserved for EEPROM accesses if
// * Backup type is EEPROM
// * Small ROM (less than 16MB)
if (@truncate(u8, address >> 24) == 0x0D)
return self.backup.eeprom.write(word_count, &self.backup.buf, bit);
}
}
switch (T) {
u32 => switch (address) {
2022-08-18 22:25:30 +00:00
0x0800_00C4 => {
self.gpio.write(.Data, @truncate(u4, value));
self.gpio.write(.Direction, @truncate(u4, value >> 16));
},
0x0800_00C6 => {
self.gpio.write(.Direction, @truncate(u4, value));
self.gpio.write(.Control, @truncate(u1, value >> 16));
},
else => log.err("Wrote {} 0x{X:0>8} to 0x{X:0>8}, Unhandled", .{ T, value, address }),
},
u16 => switch (address) {
2022-08-18 22:25:30 +00:00
0x0800_00C4 => self.gpio.write(.Data, @truncate(u4, value)),
0x0800_00C6 => self.gpio.write(.Direction, @truncate(u4, value)),
0x0800_00C8 => self.gpio.write(.Control, @truncate(u1, value)),
else => log.err("Wrote {} 0x{X:0>4} to 0x{X:0>8}, Unhandled", .{ T, value, address }),
},
2022-08-18 22:25:30 +00:00
u8 => log.debug("Wrote {} 0x{X:0>2} to 0x{X:0>8}, Ignored.", .{ T, value, address }),
else => @compileError("GamePak: Unsupported write width"),
}
2022-04-25 21:08:56 +00:00
}
fn get(self: *const Self, i: u32) u8 {
@setRuntimeSafety(false);
if (i < self.buf.len) return self.buf[i];
const lhs = i >> 1 & 0xFFFF;
return @truncate(u8, lhs >> 8 * @truncate(u5, i & 1));
}
test "OOB Access" {
const title = .{ 'H', 'E', 'L', 'L', 'O', ' ', 'W', 'O', 'R', 'L', 'D', '!' };
const alloc = std.testing.allocator;
const pak = Self{
.buf = &.{},
.alloc = alloc,
.title = title,
.backup = try Backup.init(alloc, .None, title, null),
};
std.debug.assert(pak.get(0) == 0x00); // 0x0000
std.debug.assert(pak.get(1) == 0x00);
std.debug.assert(pak.get(2) == 0x01); // 0x0001
std.debug.assert(pak.get(3) == 0x00);
std.debug.assert(pak.get(4) == 0x02); // 0x0002
std.debug.assert(pak.get(5) == 0x00);
}
2022-08-18 22:25:30 +00:00
/// GPIO Register Implementation
const Gpio = struct {
const This = @This();
data: u4,
direction: u4,
cnt: u1,
device: Device,
const Device = struct {
ptr: ?*anyopaque,
// TODO: Maybe make this comptime known? Removes some if statements
kind: Kind,
const Kind = enum {
Rtc,
None,
};
fn step(self: *Device, value: u4) void {
switch (self.kind) {
.Rtc => {
const ptr = self.ptr orelse @panic("Device.ptr should != null when Device.kind == .Rtc");
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), ptr));
clock.step(Clock.GpioData{ .raw = value });
},
.None => {},
}
}
fn init(kind: Kind, ptr: ?*anyopaque) Device {
return .{ .kind = kind, .ptr = ptr };
}
};
const Register = enum {
Data,
Direction,
Control,
};
fn init(allocator: Allocator, kind: Device.Kind) This {
return .{
.data = 0b0000,
.direction = 0b1111, // TODO: What is GPIO Direction set to by default?
.cnt = 0b0,
.device = switch (kind) {
.Rtc => blk: {
const ptr = allocator.create(Clock) catch @panic("Failed to allocate RTC struct on heap");
break :blk Device{ .kind = kind, .ptr = ptr };
},
.None => Device{ .kind = kind, .ptr = null },
},
};
}
fn deinit(self: This, allocator: Allocator) void {
switch (self.device.kind) {
.Rtc => {
const ptr = self.device.ptr orelse @panic("Device.ptr should != null when Device.kind == .Rtc");
allocator.destroy(@ptrCast(*Clock, @alignCast(@alignOf(*Clock), ptr)));
},
.None => {},
}
}
fn write(self: *This, comptime reg: Register, value: if (reg == .Control) u1 else u4) void {
log.debug("RTC: Wrote 0b{b:0>4} to {}", .{ value, reg });
// if (reg == .Data)
// log.err("original: 0b{b:0>4} masked: 0b{b:0>4} result: 0b{b:0>4}", .{ self.data, value & self.direction, self.data | (value & self.direction) });
switch (reg) {
.Data => {
const masked_value = value & self.direction;
self.device.step(masked_value);
self.data = masked_value;
},
.Direction => self.direction = value,
.Control => self.cnt = value,
}
}
fn read(self: *const This, comptime reg: Register) if (reg == .Control) u1 else u4 {
if (self.cnt == 0) return 0;
return switch (reg) {
.Data => self.data & ~self.direction,
.Direction => self.direction,
.Control => self.cnt,
};
}
};
/// GBA Real Time Clock
const Clock = struct {
const This = @This();
cmd: Command,
writer: Writer,
state: State,
cnt: Control,
year: u8,
month: u5,
day: u6,
day_of_week: u3,
hour: u6,
minute: u7,
second: u7,
gpio: *const Gpio,
const Register = enum {
Control,
DateTime,
Time,
};
const State = union(enum) {
Idle,
CommandInput,
Write: Register,
Read: Register,
};
const Writer = struct {
buf: u8,
i: u4,
/// The Number of bytes written to since last reset
count: u8,
fn push(self: *Writer, value: u1) void {
const idx = @intCast(u3, self.i);
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
self.i += 1;
}
fn lap(self: *Writer) void {
self.buf = 0;
self.i = 0;
self.count += 1;
}
fn reset(self: *Writer) void {
self.buf = 0;
self.i = 0;
self.count = 0;
}
fn isFinished(self: *const Writer) bool {
return self.i >= 8;
}
fn getCount(self: *const Writer) u8 {
return self.count;
}
fn getValue(self: *const Writer) u8 {
return self.buf;
}
};
const Command = struct {
buf: u8,
i: u4,
fn push(self: *Command, value: u1) void {
const idx = @intCast(u3, self.i);
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
self.i += 1;
}
fn reset(self: *Command) void {
self.buf = 0;
self.i = 0;
}
fn isFinished(self: *const Command) bool {
return self.i >= 8;
}
fn getCommand(self: *const Command) u8 {
// If high Nybble does not contain 0x6, reverse the order of the nybbles.
// For some reason RTC commands can be LSB or MSB which is funny
return if (self.buf >> 4 & 0xF == 0x6) self.buf else (self.buf & 0xF) << 4 | (self.buf >> 4 & 0xF);
}
fn handleCommand(self: *const Command, rtc: *Clock) State {
log.info("RTC: Failed to handle Command 0b{b:0>8} aka 0x{X:0>2}", .{ self.buf, self.buf });
const command = self.getCommand();
const is_write = command & 1 == 0;
const rtc_register = @intCast(u3, command >> 1 & 0x7); // TODO: Make Truncate
if (is_write) {
return switch (rtc_register) {
0 => blk: {
rtc.reset();
break :blk .Idle;
},
1 => .{ .Write = .Control },
2 => .{ .Write = .DateTime },
3 => .{ .Write = .Time },
6 => blk: {
rtc.irq();
break :blk .Idle;
},
4, 5, 7 => .Idle,
};
} else {
return switch (rtc_register) {
1 => .{ .Read = .Control },
2 => .{ .Read = .DateTime },
3 => .{ .Read = .Time },
0, 4, 5, 6, 7 => .Idle, // Do Nothing
};
}
}
};
const GpioData = extern union {
sck: Bit(u4, 0),
sio: Bit(u4, 1),
cs: Bit(u4, 2),
raw: u4,
};
const Control = extern union {
/// Unknown, value should be preserved though
unk: Bit(u8, 1),
/// Per-minute IRQ
/// If set, fire a Gamepak IRQ every 30s,
irq: Bit(u8, 3),
/// 12/24 Hour Bit
/// If set, 12h mode
/// If cleared, 24h mode
mode: Bit(u8, 6),
/// Read-Only, bit cleared on read
/// If is set, means that there has been a failure / time has been lost
off: Bit(u8, 7),
raw: u8,
};
fn init(ptr: *This, gpio: *const Gpio) void {
ptr.* = .{
.cmd = .{ .buf = 0, .i = 0 },
.writer = .{ .buf = 0, .i = 0, .count = 0 },
.state = .Idle,
.cnt = .{ .raw = 0 },
.year = 0,
.month = 0,
.day = 0,
.day_of_week = 0,
.hour = 0,
.minute = 0,
.second = 0,
.gpio = gpio,
};
}
fn attachGpio(self: *This, gpio: *const Gpio) void {
self.gpio = gpio;
}
fn step(self: *This, value: GpioData) void {
const cache: GpioData = .{ .raw = self.gpio.data };
switch (self.state) {
.Idle => {
// If SCK is high and CS rises, then prepare for Command
// FIXME: Maybe check incoming value to see if SCK is also high?
if (cache.sck.read()) {
if (!cache.cs.read() and value.cs.read()) {
log.err("RTC: Entering Command Mode", .{});
self.state = .CommandInput;
self.cmd.reset();
}
}
},
.CommandInput => {
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
if (!cache.sck.read() and value.sck.read()) {
// If SCK rises, sample SIO
log.debug("RTC: Sampled 0b{b:0>1} from SIO", .{@boolToInt(value.sio.read())});
self.cmd.push(@boolToInt(value.sio.read()));
if (self.cmd.isFinished()) {
self.state = self.cmd.handleCommand(self);
}
}
},
State{ .Write = .Control } => {
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
if (!cache.sck.read() and value.sck.read()) {
// If SCK rises, sample SIO
log.debug("RTC: Sampled 0b{b:0>1} from SIO", .{@boolToInt(value.sio.read())});
self.writer.push(@boolToInt(value.sio.read()));
if (self.writer.isFinished()) {
self.writer.lap();
self.cnt.raw = self.writer.getValue();
// FIXME: Move this to a constant or something
if (self.writer.getCount() == 1) {
self.writer.reset();
self.state = .Idle;
}
}
}
},
else => {
// TODO: Implement Read/Writes for Date/Time and Time and Control
log.err("RTC: Ignored request to handle {} command", .{self.state});
self.state = .Idle;
},
}
}
fn reset(self: *This) void {
// mGBA and NBA only zero the control register
// we'll do the same
self.cnt.raw = 0;
log.info("RTC: Reset executed (control register was zeroed)", .{});
}
fn irq(_: *const This) void {
// TODO: Force GamePak IRQ
log.err("RTC: TODO: Force GamePak IRQ", .{});
}
};