zba/src/cpu/arm/data_processing.zig

97 lines
3.6 KiB
Zig

const std = @import("std");
const BarrelShifter = @import("barrel_shifter.zig");
const Bus = @import("../../Bus.zig");
const Arm7tdmi = @import("../../cpu.zig").Arm7tdmi;
const InstrFn = @import("../../cpu.zig").InstrFn;
pub fn dataProcessing(comptime I: bool, comptime S: bool, comptime instrKind: u4) InstrFn {
return struct {
fn inner(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
const rd = opcode >> 12 & 0xF;
const rn = opcode >> 16 & 0xF;
if (S and rd == 0xF) std.debug.panic("[CPU] Data Processing Instruction w/ S set and Rd == 15", .{});
var op1: u32 = undefined;
if (rn == 0xF) {
op1 = cpu.fakePC();
} else {
op1 = cpu.r[rn];
}
var op2: u32 = undefined;
if (I) {
op2 = std.math.rotr(u32, opcode & 0xFF, (opcode >> 8 & 0xF) << 1);
} else {
op2 = BarrelShifter.exec(S, cpu, opcode);
}
switch (instrKind) {
0x4 => {
// ADD
var result: u32 = undefined;
const didOverflow = @addWithOverflow(u32, op1, op2, &result);
cpu.r[rd] = result;
if (S and rd != 0xF) {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(didOverflow);
cpu.cpsr.v.write(((op1 ^ result) & (op2 ^ result)) >> 31 & 1 == 1);
}
},
0x8 => {
// TST
const result = op1 & op2;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// Barrel Shifter should always calc CPSR C in TST
if (!S) _ = BarrelShifter.exec(true, cpu, opcode);
},
0x9 => {
// TEQ
const result = op1 ^ op2;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// Barrel Shifter should always calc CPSR C in TEQ
if (!S) _ = BarrelShifter.exec(true, cpu, opcode);
},
0xD => {
// MOV
cpu.r[rd] = op2;
if (S and rd != 0xF) {
cpu.cpsr.n.write(op2 >> 31 & 1 == 1);
cpu.cpsr.z.write(op2 == 0);
// C set by Barr0x15el Shifter, V is unnafected
}
},
0xA => {
// CMP
const result = op1 -% op2;
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
cpu.cpsr.c.write(op2 <= op1);
cpu.cpsr.v.write(((op1 ^ result) & (~op2 ^ result)) >> 31 & 1 == 1);
},
0xC => {
// ORR
const result = op1 | op2;
cpu.r[rd] = result;
if (S and rd != 0xF) {
cpu.cpsr.n.write(result >> 31 & 1 == 1);
cpu.cpsr.z.write(result == 0);
// C set by Barr0x15el Shifter, V is unnafected
}
},
else => std.debug.panic("[CPU] TODO: implement data processing type {}", .{instrKind}),
}
}
}.inner;
}