zba/src/bus/Ewram.zig

52 lines
1.5 KiB
Zig

const std = @import("std");
const Allocator = std.mem.Allocator;
const Self = @This();
buf: []u8,
alloc: Allocator,
pub fn init(alloc: Allocator) !Self {
const buf = try alloc.alloc(u8, 0x40000);
std.mem.set(u8, buf, 0);
return Self{
.buf = buf,
.alloc = alloc,
};
}
pub fn deinit(self: Self) void {
self.alloc.free(self.buf);
}
pub fn read(self: *const Self, comptime T: type, address: usize) T {
const addr = address & 0x3FFFF;
return switch (T) {
u32 => (@as(u32, self.buf[addr + 3]) << 24) | (@as(u32, self.buf[addr + 2]) << 16) | (@as(u32, self.buf[addr + 1]) << 8) | (@as(u32, self.buf[addr])),
u16 => (@as(u16, self.buf[addr + 1]) << 8) | @as(u16, self.buf[addr]),
u8 => self.buf[addr],
else => @compileError("EWRAM: Unsupported read width"),
};
}
pub fn write(self: *const Self, comptime T: type, address: usize, value: T) void {
const addr = address & 0x3FFFF;
return switch (T) {
u32 => {
self.buf[addr + 3] = @truncate(u8, value >> 24);
self.buf[addr + 2] = @truncate(u8, value >> 16);
self.buf[addr + 1] = @truncate(u8, value >> 8);
self.buf[addr + 0] = @truncate(u8, value >> 0);
},
u16 => {
self.buf[addr + 1] = @truncate(u8, value >> 8);
self.buf[addr + 0] = @truncate(u8, value >> 0);
},
u8 => self.buf[addr] = value,
else => @compileError("EWRAM: Unsupported write width"),
};
}