zba/src/bus/dma.zig

221 lines
7.8 KiB
Zig

const std = @import("std");
const DmaControl = @import("io.zig").DmaControl;
const Bus = @import("../Bus.zig");
const Arm7tdmi = @import("../cpu.zig").Arm7tdmi;
pub const DmaTuple = std.meta.Tuple(&[_]type{ DmaController(0), DmaController(1), DmaController(2), DmaController(3) });
const log = std.log.scoped(.DmaTransfer);
pub fn create() DmaTuple {
return .{ DmaController(0).init(), DmaController(1).init(), DmaController(2).init(), DmaController(3).init() };
}
/// Function that creates a DMAController. Determines unique DMA Controller behaiour at compile-time
fn DmaController(comptime id: u2) type {
return struct {
const Self = @This();
const sad_mask: u32 = if (id == 0) 0x07FF_FFFF else 0x0FFF_FFFF;
const dad_mask: u32 = if (id != 3) 0x07FF_FFFF else 0x0FFF_FFFF;
/// Determines whether DMAController is for DMA0, DMA1, DMA2 or DMA3
/// Note: Determined at comptime
id: u2,
/// Write-only. The first address in a DMA transfer. (DMASAD)
/// Note: use writeSrc instead of manipulating src_addr directly
sad: u32,
/// Write-only. The final address in a DMA transffer. (DMADAD)
/// Note: Use writeDst instead of manipulatig dst_addr directly
dad: u32,
/// Write-only. The Word Count for the DMA Transfer (DMACNT_L)
word_count: if (id == 3) u16 else u14,
/// Read / Write. DMACNT_H
/// Note: Use writeControl instead of manipulating cnt directly.
cnt: DmaControl,
/// Internal. Currrent Source Address
_sad: u32,
/// Internal. Current Destination Address
_dad: u32,
/// Internal. Word Count
_word_count: if (id == 3) u16 else u14,
// Internal. FIFO Word Count
_fifo_word_count: u8,
/// Some DMA Transfers are enabled during Hblank / VBlank and / or
/// have delays. Thefore bit 15 of DMACNT isn't actually something
/// we can use to control when we do or do not execute a step in a DMA Transfer
active: bool,
pub fn init() Self {
return .{
.id = id,
.sad = 0,
.dad = 0,
.word_count = 0,
.cnt = .{ .raw = 0x000 },
// Internals
._sad = 0,
._dad = 0,
._word_count = 0,
._fifo_word_count = 4,
.active = false,
};
}
pub fn writeSad(self: *Self, addr: u32) void {
self.sad = addr & sad_mask;
}
pub fn writeDad(self: *Self, addr: u32) void {
self.dad = addr & dad_mask;
}
pub fn writeWordCount(self: *Self, halfword: u16) void {
self.word_count = @truncate(@TypeOf(self.word_count), halfword);
}
pub fn writeCntHigh(self: *Self, halfword: u16) void {
const new = DmaControl{ .raw = halfword };
if (!self.cnt.enabled.read() and new.enabled.read()) {
// Reload Internals on Rising Edge.
self._sad = self.sad;
self._dad = self.dad;
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
// Only a Start Timing of 00 has a DMA Transfer immediately begin
self.active = new.start_timing.read() == 0b00;
}
self.cnt.raw = halfword;
}
pub fn writeCnt(self: *Self, word: u32) void {
self.word_count = @truncate(@TypeOf(self.word_count), word);
self.writeCntHigh(@truncate(u16, word >> 16));
}
pub fn step(self: *Self, cpu: *Arm7tdmi) bool {
if (!self.active) return false;
const is_fifo = (self.id == 1 or self.id == 2) and self.cnt.start_timing.read() == 0b11;
const sad_adj = Self.adjustment(self.cnt.sad_adj.read());
const dad_adj = if (is_fifo) .Fixed else Self.adjustment(self.cnt.dad_adj.read());
const transfer_type = is_fifo or self.cnt.transfer_type.read();
const offset: u32 = if (transfer_type) @sizeOf(u32) else @sizeOf(u16);
if (transfer_type) {
cpu.bus.write(u32, self._dad, cpu.bus.read(u32, self._sad));
} else {
cpu.bus.write(u16, self._dad, cpu.bus.read(u16, self._sad));
}
switch (sad_adj) {
.Increment => self._sad +%= offset,
.Decrement => self._sad -%= offset,
// TODO: Is just ignoring this ok?
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
.Fixed => {},
}
switch (dad_adj) {
.Increment, .IncrementReload => self._dad +%= offset,
.Decrement => self._dad -%= offset,
.Fixed => {},
}
self._word_count -= 1;
if (self._word_count == 0) {
if (!self.cnt.repeat.read()) {
// If we're not repeating, Fire the IRQs and disable the DMA
if (self.cnt.irq.read()) {
switch (id) {
0 => cpu.bus.io.irq.dma0.set(),
1 => cpu.bus.io.irq.dma0.set(),
2 => cpu.bus.io.irq.dma0.set(),
3 => cpu.bus.io.irq.dma0.set(),
}
cpu.handleInterrupt();
}
self.cnt.enabled.unset();
}
// We want to disable our internal enabled flag regardless of repeat
// because we only want to step A DMA that repeats during it's specific
// timing window
self.active = false;
}
return true;
}
pub fn isBlocking(self: *const Self) bool {
// A DMA Transfer is Blocking if it is Immediate
return self.cnt.start_timing.read() == 0b00;
}
pub fn pollBlankingDma(self: *Self, comptime kind: DmaKind) void {
if (self.active) return;
switch (kind) {
.HBlank => self.active = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b10,
.VBlank => self.active = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b01,
.Immediate, .Special => {},
}
if (self.cnt.repeat.read() and self.active) {
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
if (Self.adjustment(self.cnt.dad_adj.read()) == .IncrementReload) self._dad = self.dad;
}
}
pub fn requestSoundDma(self: *Self, fifo_addr: u32) void {
comptime std.debug.assert(id == 1 or id == 2);
const is_enabled = self.cnt.enabled.read();
const is_special = self.cnt.start_timing.read() == 0b11;
const is_repeating = self.cnt.repeat.read();
const is_fifo = self.dad == fifo_addr;
if (is_enabled and is_special and is_repeating and is_fifo) {
self._word_count = 4;
self.cnt.transfer_type.set();
self.active = true;
}
}
fn adjustment(idx: u2) Adjustment {
return std.meta.intToEnum(Adjustment, idx) catch unreachable;
}
};
}
pub fn pollBlankingDma(bus: *Bus, comptime kind: DmaKind) void {
bus.dma[0].pollBlankingDma(kind);
bus.dma[1].pollBlankingDma(kind);
bus.dma[2].pollBlankingDma(kind);
bus.dma[3].pollBlankingDma(kind);
}
const Adjustment = enum(u2) {
Increment = 0,
Decrement = 1,
Fixed = 2,
IncrementReload = 3,
};
const DmaKind = enum(u2) {
Immediate = 0,
HBlank,
VBlank,
Special,
};