zba/src/cpu.zig

220 lines
6.2 KiB
Zig

const std = @import("std");
const util = @import("util.zig");
const Bus = @import("bus.zig").Bus;
const Scheduler = @import("scheduler.zig").Scheduler;
const comptimeDataProcessing = @import("cpu/data_processing.zig").comptimeDataProcessing;
const comptimeSingleDataTransfer = @import("cpu/single_data_transfer.zig").comptimeSingleDataTransfer;
const comptimeHalfSignedDataTransfer = @import("cpu/half_signed_data_transfer.zig").comptimeHalfSignedDataTransfer;
pub const InstrFn = fn (*Arm7tdmi, *Bus, u32) void;
const arm_lut: [0x1000]InstrFn = populate();
pub const Arm7tdmi = struct {
r: [16]u32,
sch: *Scheduler,
bus: *Bus,
cpsr: CPSR,
pub fn new(scheduler: *Scheduler, bus: *Bus) @This() {
return .{
.r = [_]u32{0x00} ** 16,
.sch = scheduler,
.bus = bus,
.cpsr = .{ .inner = 0x0000_00DF },
};
}
pub inline fn step(self: *@This()) u64 {
const opcode = self.fetch();
std.debug.print("opcode: 0x{X:}\n", .{opcode}); // Debug
if (checkCond(&self.cpsr, opcode)) arm_lut[armIdx(opcode)](self, self.bus, opcode);
return 1;
}
fn fetch(self: *@This()) u32 {
const word = self.bus.readWord(self.r[15]);
self.r[15] += 4;
return word;
}
fn fakePC(self: *const @This()) u32 {
return self.r[15] + 4;
}
};
fn armIdx(opcode: u32) u12 {
return @truncate(u12, opcode >> 20 & 0xFF) << 4 | @truncate(u12, opcode >> 4 & 0xF);
}
fn checkCond(cpsr: *const CPSR, opcode: u32) bool {
// TODO: Should I implement an enum?
return switch (@truncate(u4, opcode >> 28)) {
0x0 => cpsr.z(), // EQ - Equal
0x1 => !cpsr.z(), // NEQ - Not equal
0x2 => cpsr.c(), // CS - Unsigned higher or same
0x3 => !cpsr.c(), // CC - Unsigned lower
0x4 => cpsr.n(), // MI - Negative
0x5 => !cpsr.n(), // PL - Positive or zero
0x6 => cpsr.v(), // VS - Overflow
0x7 => !cpsr.v(), // VC - No overflow
0x8 => cpsr.c() and !cpsr.z(), // HI - unsigned higher
0x9 => !cpsr.c() and cpsr.z(), // LS - unsigned lower or same
0xA => cpsr.n() == cpsr.v(), // GE - Greater or equal
0xB => cpsr.n() != cpsr.v(), // LT - Less than
0xC => !cpsr.z() and (cpsr.n() == cpsr.z()), // GT - Greater than
0xD => cpsr.z() or (cpsr.n() != cpsr.v()), // LE - Less than or equal
0xE => true, // AL - Always
0xF => std.debug.panic("0xF is a reserved condition field", .{}),
};
}
fn populate() [0x1000]InstrFn {
return comptime {
@setEvalBranchQuota(0x5000); // TODO: Figure out exact size
var lut = [_]InstrFn{undefinedInstruction} ** 0x1000;
var i: usize = 0;
while (i < lut.len) : (i += 1) {
if (i >> 10 & 0x3 == 0b00) {
const I = i >> 9 & 1 == 1;
const S = i >> 4 & 1 == 1;
const instrKind = i >> 5 & 0xF;
lut[i] = comptimeDataProcessing(I, S, instrKind);
}
if (i >> 9 & 0x7 == 0b000 and i >> 3 & 1 == 1 and i & 1 == 1) {
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const I = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
lut[i] = comptimeHalfSignedDataTransfer(P, U, I, W, L);
}
if (i >> 10 & 0x3 == 0b01) {
const I = i >> 9 & 1 == 1;
const P = i >> 8 & 1 == 1;
const U = i >> 7 & 1 == 1;
const B = i >> 6 & 1 == 1;
const W = i >> 5 & 1 == 1;
const L = i >> 4 & 1 == 1;
lut[i] = comptimeSingleDataTransfer(I, P, U, B, W, L);
}
if (i >> 9 & 0x7 == 0b101) {
const L = i >> 8 & 1 == 1;
lut[i] = comptimeBranch(L);
}
}
return lut;
};
}
const CPSR = struct {
inner: u32,
pub fn n(self: *const @This()) bool {
return self.inner >> 31 & 1 == 1;
}
pub fn setN(self: *@This(), set: bool) void {
self.setBit(31, set);
}
pub fn z(self: *const @This()) bool {
return self.inner >> 30 & 1 == 1;
}
pub fn setZ(self: *@This(), set: bool) void {
self.setBit(30, set);
}
pub fn c(self: *const @This()) bool {
return self.inner >> 29 & 1 == 1;
}
pub fn setC(self: *@This(), set: bool) void {
self.setBit(29, set);
}
pub fn v(self: *const @This()) bool {
return self.inner >> 28 & 1 == 1;
}
pub fn setV(self: *@This(), set: bool) void {
self.setBit(28, set);
}
pub fn i(self: *const @This()) bool {
return self.inner >> 7 & 1 == 1;
}
pub fn setI(self: *@This(), set: bool) void {
self.setBit(7, set);
}
pub fn f(self: *const @This()) bool {
return self.inner >> 6 & 1 == 1;
}
pub fn setF(self: *@This(), set: bool) void {
self.setBit(6, set);
}
pub fn t(self: *const @This()) bool {
return self.inner >> 5 & 1 == 1;
}
pub fn setT(self: *@This(), set: bool) void {
self.setBit(5, set);
}
pub fn mode(self: *const @This()) Mode {
return self.inner & 0x1F;
}
pub fn setMode(_: *@This(), _: Mode) void {
std.debug.panic("TODO: Implement set_mode for CPSR", .{});
}
fn setBit(self: *@This(), comptime bit: usize, set: bool) void {
const set_val = @as(u32, @boolToInt(set)) << bit;
const mask = ~(@as(u32, 1) << bit);
self.inner = (self.inner & mask) | set_val;
}
};
const Mode = enum(u5) {
User = 0b10000,
FIQ = 0b10001,
IRQ = 0b10010,
Supervisor = 0b10011,
Abort = 0b10111,
Undefined = 0b11011,
System = 0b11111,
};
fn undefinedInstruction(_: *Arm7tdmi, _: *Bus, opcode: u32) void {
const id = armIdx(opcode);
std.debug.panic("[0x{X:}] 0x{X:} is an illegal opcode", .{ id, opcode });
}
fn comptimeBranch(comptime L: bool) InstrFn {
return struct {
fn branch(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void {
if (L) {
cpu.r[14] = cpu.r[15] - 4;
}
cpu.r[15] = cpu.fakePC() +% util.u32SignExtend(24, opcode << 2);
}
}.branch;
}