Implement RTC #1

Merged
paoda merged 14 commits from rtc into main 2022-09-17 23:36:34 +00:00
1 changed files with 209 additions and 65 deletions
Showing only changes of commit 089c5fa025 - Show all commits

View File

@ -231,22 +231,18 @@ const Gpio = struct {
const Device = struct { const Device = struct {
ptr: ?*anyopaque, ptr: ?*anyopaque,
// TODO: Maybe make this comptime known? Removes some if statements kind: Kind, // TODO: Make comptime known?
kind: Kind,
const Kind = enum { const Kind = enum { Rtc, None };
Rtc,
None,
};
fn step(self: *Device, value: u4) void { fn step(self: *Device, value: u4) u4 {
switch (self.kind) { return switch (self.kind) {
.Rtc => { .Rtc => blk: {
const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?)); const clock = @ptrCast(*Clock, @alignCast(@alignOf(*Clock), self.ptr.?));
clock.step(Clock.Data{ .raw = value }); break :blk clock.step(Clock.Data{ .raw = value });
}, },
.None => {}, .None => value,
} };
} }
fn init(kind: Kind, ptr: ?*anyopaque) Device { fn init(kind: Kind, ptr: ?*anyopaque) Device {
@ -294,17 +290,13 @@ const Gpio = struct {
} }
fn write(self: *This, comptime reg: Register, value: if (reg == .Control) u1 else u4) void { fn write(self: *This, comptime reg: Register, value: if (reg == .Control) u1 else u4) void {
log.debug("RTC: Wrote 0b{b:0>4} to {}", .{ value, reg });
// if (reg == .Data)
// log.err("original: 0b{b:0>4} masked: 0b{b:0>4} result: 0b{b:0>4}", .{ self.data, value & self.direction, self.data | (value & self.direction) });
switch (reg) { switch (reg) {
.Data => { .Data => {
const masked_value = value & self.direction; const masked_value = value & self.direction;
self.device.step(masked_value); // The value which is actually stored in the GPIO register
self.data = masked_value; // might be modified by the device implementing the GPIO interface e.g. RTC reads
self.data = self.device.step(masked_value);
}, },
.Direction => self.direction = value, .Direction => self.direction = value,
.Control => self.cnt = value, .Control => self.cnt = value,
@ -328,6 +320,7 @@ const Clock = struct {
cmd: Command, cmd: Command,
writer: Writer, writer: Writer,
reader: Reader,
state: State, state: State,
cnt: Control, cnt: Control,
@ -355,49 +348,162 @@ const Clock = struct {
Read: Register, Read: Register,
}; };
const Reader = struct {
i: u4,
count: u8,
/// Reads a bit from RTC registers. Which bit it reads is dependent on
///
/// 1. The RTC State Machine, whitch tells us which register we're accessing
/// 2. A `count`, which keeps track of which byte is currently being read
/// 3. An index, which keeps track of which bit of the byte determined by `count` is being read
fn read(self: *Reader, clock: *const Clock, register: Register) u1 {
const idx = @intCast(u3, self.i);
defer self.i += 1;
// FIXME: What do I do about the unused bits?
return switch (register) {
.Control => @truncate(u1, switch (self.count) {
0 => clock.cnt.raw >> idx,
else => {
log.err("RTC: {} is only 1 byte wide", .{register});
@panic("Out-of-bounds RTC read");
},
}),
.DateTime => @truncate(u1, switch (self.count) {
// Date
0 => clock.year >> idx,
1 => @as(u8, clock.month) >> idx,
2 => @as(u8, clock.day) >> idx,
3 => @as(u8, clock.day_of_week) >> idx,
// Time
4 => @as(u8, clock.hour) >> idx,
5 => @as(u8, clock.minute) >> idx,
6 => @as(u8, clock.second) >> idx,
else => {
log.err("RTC: {} is only 7 bytes wide", .{register});
@panic("Out-of-bounds RTC read");
},
}),
.Time => @truncate(u1, switch (self.count) {
0 => @as(u8, clock.hour) >> idx,
1 => @as(u8, clock.minute) >> idx,
2 => @as(u8, clock.second) >> idx,
else => {
log.err("RTC: {} is only 3 bytes wide", .{register});
@panic("Out-of-bounds RTC read");
},
}),
};
}
/// Is true when a Reader has read a u8's worth of bits
fn finished(self: *const Reader) bool {
return self.i >= 8;
}
/// Resets the index used to shift bits out of RTC registers
/// and `count`, which is used to keep track of which byte we're reading
/// is incremeneted
fn lap(self: *Reader) void {
self.i = 0;
self.count += 1;
}
/// Resets the state of a `Reader` in preparation for a future
/// read command
fn reset(self: *Reader) void {
self.i = 0;
self.count = 0;
}
};
const Writer = struct { const Writer = struct {
buf: u8, buf: u8,
i: u4, i: u4,
/// The Number of bytes written to since last reset /// The Number of bytes written since last reset
count: u8, count: u8,
/// Append a bit to the internal bit buffer (aka an integer)
fn push(self: *Writer, value: u1) void { fn push(self: *Writer, value: u1) void {
const idx = @intCast(u3, self.i); const idx = @intCast(u3, self.i);
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx; self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
self.i += 1; self.i += 1;
} }
/// Takes the contents of the internal buffer and writes it to an RTC register
/// Where it writes to is dependent on:
///
/// 1. The RTC State Machine, whitch tells us which register we're accessing
/// 2. A `count`, which keeps track of which byte is currently being read
fn write(self: *const Writer, clock: *Clock, register: Register) void {
// FIXME: What do do about unused bits?
switch (register) {
.Control => switch (self.count) {
0 => clock.cnt.raw = self.buf,
else => {
log.err("RTC :{} is only 1 byte wide", .{register});
@panic("Out-of-bounds RTC write");
},
},
.DateTime => switch (self.count) {
// Date
0 => clock.year = @truncate(@TypeOf(clock.year), self.buf),
1 => clock.month = @truncate(@TypeOf(clock.month), self.buf),
2 => clock.day = @truncate(@TypeOf(clock.day), self.buf),
3 => clock.day_of_week = @truncate(@TypeOf(clock.day_of_week), self.buf),
// Time
4 => clock.hour = @truncate(@TypeOf(clock.hour), self.buf),
5 => clock.minute = @truncate(@TypeOf(clock.minute), self.buf),
6 => clock.second = @truncate(@TypeOf(clock.second), self.buf),
else => {
log.err("RTC :{} is only 1 byte wide", .{register});
@panic("Out-of-bounds RTC write");
},
},
.Time => switch (self.count) {
// Time
0 => clock.hour = @truncate(@TypeOf(clock.hour), self.buf),
1 => clock.minute = @truncate(@TypeOf(clock.minute), self.buf),
2 => clock.second = @truncate(@TypeOf(clock.second), self.buf),
else => {
log.err("RTC :{} is only 1 byte wide", .{register});
@panic("Out-of-bounds RTC write");
},
},
}
}
/// Is true when 8 bits have been shifted into the internal buffer
fn finished(self: *const Writer) bool {
return self.i >= 8;
}
/// Resets the internal buffer
/// resets the index used to shift bits into the internal buffer
/// increments `count` (which keeps track of byte offsets) by one
fn lap(self: *Writer) void { fn lap(self: *Writer) void {
self.buf = 0; self.buf = 0;
self.i = 0; self.i = 0;
self.count += 1; self.count += 1;
} }
/// Resets `Writer` to a clean state in preparation for a future write command
fn reset(self: *Writer) void { fn reset(self: *Writer) void {
self.buf = 0; self.buf = 0;
self.i = 0; self.i = 0;
self.count = 0; self.count = 0;
} }
fn isFinished(self: *const Writer) bool {
return self.i >= 8;
}
fn getCount(self: *const Writer) u8 {
return self.count;
}
fn getValue(self: *const Writer) u8 {
return self.buf;
}
}; };
const Command = struct { const Command = struct {
buf: u8, buf: u8,
i: u4, i: u4,
fn push(self: *Command, value: u1) void { fn write(self: *Command, value: u1) void {
const idx = @intCast(u3, self.i); const idx = @intCast(u3, self.i);
self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx; self.buf = (self.buf & ~(@as(u8, 1) << idx)) | @as(u8, value) << idx;
self.i += 1; self.i += 1;
@ -413,17 +519,25 @@ const Clock = struct {
} }
fn getCommand(self: *const Command) u8 { fn getCommand(self: *const Command) u8 {
// If high Nybble does not contain 0x6, reverse the order of the nybbles. // If High Nybble is 0x6, no need to switch the endianness
// For some reason RTC commands can be LSB or MSB which is funny if (self.buf >> 4 & 0xF == 0x6) return self.buf;
return if (self.buf >> 4 & 0xF == 0x6) self.buf else (self.buf & 0xF) << 4 | (self.buf >> 4 & 0xF);
// Turns out reversing the order of bits isn't trivial at all
// https://stackoverflow.com/questions/2602823/in-c-c-whats-the-simplest-way-to-reverse-the-order-of-bits-in-a-byte
var ret = self.buf;
ret = (ret & 0xF0) >> 4 | (ret & 0x0F) << 4;
ret = (ret & 0xCC) >> 2 | (ret & 0x33) << 2;
ret = (ret & 0xAA) >> 1 | (ret & 0x55) << 1;
return ret;
} }
fn handleCommand(self: *const Command, rtc: *Clock) State { fn handleCommand(self: *const Command, rtc: *Clock) State {
const command = self.getCommand(); const command = self.getCommand();
log.info("RTC: Failed to handle Command 0b{b:0>8} aka 0x{X:0>2}", .{ command, command }); log.debug("RTC: Handling Command 0x{X:0>2} [0b{b:0>8}]", .{ command, command });
const is_write = command & 1 == 0; const is_write = command & 1 == 0;
const rtc_register = @intCast(u3, command >> 1 & 0x7); // TODO: Make Truncate const rtc_register = @truncate(u3, command >> 1 & 0x7);
if (is_write) { if (is_write) {
return switch (rtc_register) { return switch (rtc_register) {
@ -478,6 +592,7 @@ const Clock = struct {
ptr.* = .{ ptr.* = .{
.cmd = .{ .buf = 0, .i = 0 }, .cmd = .{ .buf = 0, .i = 0 },
.writer = .{ .buf = 0, .i = 0, .count = 0 }, .writer = .{ .buf = 0, .i = 0, .count = 0 },
.reader = .{ .i = 0, .count = 0 },
.state = .Idle, .state = .Idle,
.cnt = .{ .raw = 0 }, .cnt = .{ .raw = 0 },
.year = 0, .year = 0,
@ -492,74 +607,103 @@ const Clock = struct {
}; };
} }
fn step(self: *This, value: Data) void { fn step(self: *This, value: Data) u4 {
const cache: Data = .{ .raw = self.gpio.data }; const cache: Data = .{ .raw = self.gpio.data };
switch (self.state) { return switch (self.state) {
.Idle => { .Idle => blk: {
// If SCK is high and CS rises, then prepare for Command
// FIXME: Maybe check incoming value to see if SCK is also high? // FIXME: Maybe check incoming value to see if SCK is also high?
if (cache.sck.read()) { if (cache.sck.read()) {
if (!cache.cs.read() and value.cs.read()) { if (!cache.cs.read() and value.cs.read()) {
log.err("RTC: Entering Command Mode", .{}); log.debug("RTC: Entering Command Mode", .{});
self.state = .CommandInput; self.state = .CommandInput;
self.cmd.reset(); self.cmd.reset();
} }
} }
break :blk @truncate(u4, value.raw);
}, },
.CommandInput => { .CommandInput => blk: {
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state}); if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) { if (!cache.sck.read() and value.sck.read()) {
// If SCK rises, sample SIO self.cmd.write(@boolToInt(value.sio.read()));
log.debug("RTC: Sampled 0b{b:0>1} from SIO", .{@boolToInt(value.sio.read())});
self.cmd.push(@boolToInt(value.sio.read()));
if (self.cmd.isFinished()) { if (self.cmd.isFinished()) {
self.state = self.cmd.handleCommand(self); self.state = self.cmd.handleCommand(self);
log.debug("RTC: Switching to {}", .{self.state});
} }
} }
break :blk @truncate(u4, value.raw);
}, },
State{ .Write = .Control } => { .Write => |register| blk: {
if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state}); if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
// If SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) { if (!cache.sck.read() and value.sck.read()) {
// If SCK rises, sample SIO
log.debug("RTC: Sampled 0b{b:0>1} from SIO", .{@boolToInt(value.sio.read())});
self.writer.push(@boolToInt(value.sio.read())); self.writer.push(@boolToInt(value.sio.read()));
if (self.writer.isFinished()) { const register_width: u32 = switch (register) {
self.writer.lap(); .Control => 1,
self.cnt.raw = self.writer.getValue(); .DateTime => 7,
.Time => 3,
};
// FIXME: Move this to a constant or something if (self.writer.finished()) {
if (self.writer.getCount() == 1) { self.writer.write(self, register); // write inner buffer to RTC register
self.writer.lap();
if (self.writer.count == register_width) {
self.writer.reset(); self.writer.reset();
self.state = .Idle; self.state = .Idle;
} }
} }
} }
break :blk @truncate(u4, value.raw);
}, },
else => { .Read => |register| blk: {
// TODO: Implement Read/Writes for Date/Time and Time and Control if (!value.cs.read()) log.err("RTC: Expected CS to be set during {}, however CS was cleared", .{self.state});
log.err("RTC: Ignored request to handle {} command", .{self.state}); var ret = value;
self.state = .Idle;
// if SCK rises, sample SIO
if (!cache.sck.read() and value.sck.read()) {
ret.sio.write(self.reader.read(self, register) == 0b1);
const register_width: u32 = switch (register) {
.Control => 1,
.DateTime => 7,
.Time => 3,
};
if (self.reader.finished()) {
self.reader.lap();
if (self.reader.count == register_width) {
self.reader.reset();
self.state = .Idle;
}
}
}
break :blk @truncate(u4, ret.raw);
}, },
} };
} }
fn reset(self: *This) void { fn reset(self: *This) void {
// mGBA and NBA only zero the control register // mGBA and NBA only zero the control register. We will do the same
// we'll do the same log.debug("RTC: Reset (control register was zeroed)", .{});
self.cnt.raw = 0; self.cnt.raw = 0;
log.info("RTC: Reset executed (control register was zeroed)", .{});
} }
fn irq(self: *This) void { fn irq(self: *This) void {
// TODO: Confirm that this is the right behaviour // TODO: Confirm that this is the right behaviour
log.debug("RTC: Force GamePak IRQ", .{}); log.debug("RTC: Force GamePak IRQ", .{});
self.cpu.bus.io.irq.game_pak.set(); self.cpu.bus.io.irq.game_pak.set();
self.cpu.handleInterrupt(); self.cpu.handleInterrupt();
} }