Compare commits
	
		
			7 Commits
		
	
	
		
			f715585867
			...
			bf351b39e2
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| bf351b39e2 | |||
| d1fe4d4da9 | |||
| 84a9622394 | |||
| d8e4bd4319 | |||
| 2c0e9b92bc | |||
| ce249bac65 | |||
| 2207341020 | 
@@ -266,7 +266,7 @@ fn DmaController(comptime id: u2) type {
 | 
			
		||||
    };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn pollDmaOnBlank(bus: *Bus, comptime kind: DmaKind) void {
 | 
			
		||||
pub fn onBlanking(bus: *Bus, comptime kind: DmaKind) void {
 | 
			
		||||
    bus.dma[0].poll(kind);
 | 
			
		||||
    bus.dma[1].poll(kind);
 | 
			
		||||
    bus.dma[2].poll(kind);
 | 
			
		||||
 
 | 
			
		||||
@@ -305,6 +305,14 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
 | 
			
		||||
            0x0400_0009 => bus.ppu.bg[0].cnt.raw = setHi(u16, bus.ppu.bg[0].cnt.raw, value),
 | 
			
		||||
            0x0400_000A => bus.ppu.bg[1].cnt.raw = setLo(u16, bus.ppu.bg[1].cnt.raw, value),
 | 
			
		||||
            0x0400_000B => bus.ppu.bg[1].cnt.raw = setHi(u16, bus.ppu.bg[1].cnt.raw, value),
 | 
			
		||||
            0x0400_0040 => bus.ppu.win.h[0].raw = setLo(u16, bus.ppu.win.h[0].raw, value),
 | 
			
		||||
            0x0400_0041 => bus.ppu.win.h[0].raw = setHi(u16, bus.ppu.win.h[0].raw, value),
 | 
			
		||||
            0x0400_0042 => bus.ppu.win.h[1].raw = setLo(u16, bus.ppu.win.h[1].raw, value),
 | 
			
		||||
            0x0400_0043 => bus.ppu.win.h[1].raw = setHi(u16, bus.ppu.win.h[1].raw, value),
 | 
			
		||||
            0x0400_0044 => bus.ppu.win.v[0].raw = setLo(u16, bus.ppu.win.v[0].raw, value),
 | 
			
		||||
            0x0400_0045 => bus.ppu.win.v[0].raw = setHi(u16, bus.ppu.win.v[0].raw, value),
 | 
			
		||||
            0x0400_0046 => bus.ppu.win.v[1].raw = setLo(u16, bus.ppu.win.v[1].raw, value),
 | 
			
		||||
            0x0400_0047 => bus.ppu.win.v[1].raw = setHi(u16, bus.ppu.win.v[1].raw, value),
 | 
			
		||||
            0x0400_0048 => bus.ppu.win.in.raw = setLo(u16, bus.ppu.win.in.raw, value),
 | 
			
		||||
            0x0400_0049 => bus.ppu.win.in.raw = setHi(u16, bus.ppu.win.in.raw, value),
 | 
			
		||||
            0x0400_004A => bus.ppu.win.out.raw = setLo(u16, bus.ppu.win.out.raw, value),
 | 
			
		||||
@@ -462,8 +470,12 @@ pub const BldY = extern union {
 | 
			
		||||
    raw: u16,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const u8WriteKind = enum { Hi, Lo };
 | 
			
		||||
 | 
			
		||||
/// Write-only
 | 
			
		||||
pub const WinH = extern union {
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
 | 
			
		||||
    x2: Bitfield(u16, 0, 8),
 | 
			
		||||
    x1: Bitfield(u16, 8, 8),
 | 
			
		||||
    raw: u16,
 | 
			
		||||
@@ -471,28 +483,37 @@ pub const WinH = extern union {
 | 
			
		||||
 | 
			
		||||
/// Write-only
 | 
			
		||||
pub const WinV = extern union {
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
 | 
			
		||||
    y2: Bitfield(u16, 0, 8),
 | 
			
		||||
    y1: Bitfield(u16, 8, 8),
 | 
			
		||||
    raw: u16,
 | 
			
		||||
 | 
			
		||||
    pub fn set(self: *Self, comptime K: u8WriteKind, value: u8) void {
 | 
			
		||||
        self.raw = switch (K) {
 | 
			
		||||
            .Hi => (@as(u16, value) << 8) | self.raw & 0xFF,
 | 
			
		||||
            .Lo => (self.raw & 0xFF00) | value,
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
pub const WinIn = extern union {
 | 
			
		||||
    w0_bg: Bitfield(u16, 0, 4),
 | 
			
		||||
    w0_obj: Bit(u16, 4),
 | 
			
		||||
    w0_colour: Bit(u16, 5),
 | 
			
		||||
    w0_bld: Bit(u16, 5),
 | 
			
		||||
    w1_bg: Bitfield(u16, 8, 4),
 | 
			
		||||
    w1_obj: Bit(u16, 12),
 | 
			
		||||
    w1_colour: Bit(u16, 13),
 | 
			
		||||
    w1_bld: Bit(u16, 13),
 | 
			
		||||
    raw: u16,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
pub const WinOut = extern union {
 | 
			
		||||
    out_bg: Bitfield(u16, 0, 4),
 | 
			
		||||
    out_obj: Bit(u16, 4),
 | 
			
		||||
    out_colour: Bit(u16, 5),
 | 
			
		||||
    out_bld: Bit(u16, 5),
 | 
			
		||||
    obj_bg: Bitfield(u16, 8, 4),
 | 
			
		||||
    obj_obj: Bit(u16, 12),
 | 
			
		||||
    obj_colour: Bit(u16, 13),
 | 
			
		||||
    obj_bld: Bit(u16, 13),
 | 
			
		||||
    raw: u16,
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										408
									
								
								src/core/ppu.zig
									
									
									
									
									
								
							
							
						
						
									
										408
									
								
								src/core/ppu.zig
									
									
									
									
									
								
							@@ -1,16 +1,19 @@
 | 
			
		||||
const std = @import("std");
 | 
			
		||||
const io = @import("bus/io.zig");
 | 
			
		||||
const Bit = @import("bitfield").Bit;
 | 
			
		||||
const Bitfield = @import("bitfield").Bitfield;
 | 
			
		||||
const dma = @import("bus/dma.zig");
 | 
			
		||||
 | 
			
		||||
const Oam = @import("ppu/Oam.zig");
 | 
			
		||||
const Palette = @import("ppu/Palette.zig");
 | 
			
		||||
const Vram = @import("ppu/Vram.zig");
 | 
			
		||||
const EventKind = @import("scheduler.zig").EventKind;
 | 
			
		||||
const Scheduler = @import("scheduler.zig").Scheduler;
 | 
			
		||||
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
 | 
			
		||||
 | 
			
		||||
const Bit = @import("bitfield").Bit;
 | 
			
		||||
const Bitfield = @import("bitfield").Bitfield;
 | 
			
		||||
const FrameBuffer = @import("../util.zig").FrameBuffer;
 | 
			
		||||
 | 
			
		||||
const Allocator = std.mem.Allocator;
 | 
			
		||||
const log = std.log.scoped(.PPU);
 | 
			
		||||
const pollDmaOnBlank = @import("bus/dma.zig").pollDmaOnBlank;
 | 
			
		||||
const log = std.log.scoped(.Ppu);
 | 
			
		||||
 | 
			
		||||
pub const width = 240;
 | 
			
		||||
pub const height = 160;
 | 
			
		||||
@@ -48,14 +51,14 @@ pub const Ppu = struct {
 | 
			
		||||
        sched.push(.Draw, 240 * 4);
 | 
			
		||||
 | 
			
		||||
        const sprites = try allocator.create([128]?Sprite);
 | 
			
		||||
        sprites.* = [_]?Sprite{null} ** 128;
 | 
			
		||||
        std.mem.set(?Sprite, sprites, null);
 | 
			
		||||
 | 
			
		||||
        return Self{
 | 
			
		||||
            .vram = try Vram.init(allocator),
 | 
			
		||||
            .palette = try Palette.init(allocator),
 | 
			
		||||
            .oam = try Oam.init(allocator),
 | 
			
		||||
            .sched = sched,
 | 
			
		||||
            .framebuf = try FrameBuffer.init(allocator),
 | 
			
		||||
            .framebuf = try FrameBuffer.init(allocator, framebuf_pitch * height),
 | 
			
		||||
            .allocator = allocator,
 | 
			
		||||
 | 
			
		||||
            // Registers
 | 
			
		||||
@@ -274,16 +277,17 @@ pub const Ppu = struct {
 | 
			
		||||
            aff_x += self.aff_bg[n - 2].pa;
 | 
			
		||||
            aff_y += self.aff_bg[n - 2].pc;
 | 
			
		||||
 | 
			
		||||
            if (!shouldDrawBackground(n, self.bldcnt, &self.scanline, i)) continue;
 | 
			
		||||
            const x = @bitCast(u32, ix);
 | 
			
		||||
            const y = @bitCast(u32, iy);
 | 
			
		||||
 | 
			
		||||
            const win_bounds = self.windowBounds(@truncate(u9, x), @truncate(u8, y));
 | 
			
		||||
            if (!shouldDrawBackground(self, n, win_bounds, i)) continue;
 | 
			
		||||
 | 
			
		||||
            if (self.bg[n].cnt.display_overflow.read()) {
 | 
			
		||||
                ix = if (ix > px_width) @rem(ix, px_width) else if (ix < 0) px_width + @rem(ix, px_width) else ix;
 | 
			
		||||
                iy = if (iy > px_height) @rem(iy, px_height) else if (iy < 0) px_height + @rem(iy, px_height) else iy;
 | 
			
		||||
            } else if (ix > px_width or iy > px_height or ix < 0 or iy < 0) continue;
 | 
			
		||||
 | 
			
		||||
            const x = @bitCast(u32, ix);
 | 
			
		||||
            const y = @bitCast(u32, iy);
 | 
			
		||||
 | 
			
		||||
            const tile_id: u32 = self.vram.read(u8, screen_base + ((y / 8) * @bitCast(u32, tile_width) + (x / 8)));
 | 
			
		||||
            const row = y & 7;
 | 
			
		||||
            const col = x & 7;
 | 
			
		||||
@@ -293,7 +297,7 @@ pub const Ppu = struct {
 | 
			
		||||
 | 
			
		||||
            if (pal_id != 0) {
 | 
			
		||||
                const bgr555 = self.palette.read(u16, pal_id * 2);
 | 
			
		||||
                copyToBackgroundBuffer(n, self.bldcnt, &self.scanline, i, bgr555);
 | 
			
		||||
                self.copyToBackgroundBuffer(n, win_bounds, i, bgr555);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
@@ -302,7 +306,7 @@ pub const Ppu = struct {
 | 
			
		||||
        self.aff_bg[n - 2].y_latch.? += self.aff_bg[n - 2].pd; // PD is added to BGxY
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn drawBackround(self: *Self, comptime n: u2) void {
 | 
			
		||||
    fn drawBackground(self: *Self, comptime n: u2) void {
 | 
			
		||||
        // A Tile in a charblock is a byte, while a Screen Entry is a halfword
 | 
			
		||||
 | 
			
		||||
        const char_base = 0x4000 * @as(u32, self.bg[n].cnt.char_base.read());
 | 
			
		||||
@@ -322,10 +326,11 @@ pub const Ppu = struct {
 | 
			
		||||
 | 
			
		||||
        var i: u32 = 0;
 | 
			
		||||
        while (i < width) : (i += 1) {
 | 
			
		||||
            if (!shouldDrawBackground(n, self.bldcnt, &self.scanline, i)) continue;
 | 
			
		||||
 | 
			
		||||
            const x = hofs + i;
 | 
			
		||||
 | 
			
		||||
            const win_bounds = self.windowBounds(@truncate(u9, x), @truncate(u8, y));
 | 
			
		||||
            if (!shouldDrawBackground(self, n, win_bounds, i)) continue;
 | 
			
		||||
 | 
			
		||||
            // Grab the Screen Entry from VRAM
 | 
			
		||||
            const entry_addr = screen_base + tilemapOffset(size, x, y);
 | 
			
		||||
            const entry = @bitCast(ScreenEntry, self.vram.read(u16, entry_addr));
 | 
			
		||||
@@ -350,7 +355,7 @@ pub const Ppu = struct {
 | 
			
		||||
 | 
			
		||||
            if (pal_id != 0) {
 | 
			
		||||
                const bgr555 = self.palette.read(u16, pal_id * 2);
 | 
			
		||||
                copyToBackgroundBuffer(n, self.bldcnt, &self.scanline, i, bgr555);
 | 
			
		||||
                self.copyToBackgroundBuffer(n, win_bounds, i, bgr555);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
@@ -376,10 +381,10 @@ pub const Ppu = struct {
 | 
			
		||||
                var layer: usize = 0;
 | 
			
		||||
                while (layer < 4) : (layer += 1) {
 | 
			
		||||
                    self.drawSprites(@truncate(u2, layer));
 | 
			
		||||
                    if (layer == self.bg[0].cnt.priority.read() and bg_enable & 1 == 1) self.drawBackround(0);
 | 
			
		||||
                    if (layer == self.bg[1].cnt.priority.read() and bg_enable >> 1 & 1 == 1) self.drawBackround(1);
 | 
			
		||||
                    if (layer == self.bg[2].cnt.priority.read() and bg_enable >> 2 & 1 == 1) self.drawBackround(2);
 | 
			
		||||
                    if (layer == self.bg[3].cnt.priority.read() and bg_enable >> 3 & 1 == 1) self.drawBackround(3);
 | 
			
		||||
                    if (layer == self.bg[0].cnt.priority.read() and bg_enable & 1 == 1) self.drawBackground(0);
 | 
			
		||||
                    if (layer == self.bg[1].cnt.priority.read() and bg_enable >> 1 & 1 == 1) self.drawBackground(1);
 | 
			
		||||
                    if (layer == self.bg[2].cnt.priority.read() and bg_enable >> 2 & 1 == 1) self.drawBackground(2);
 | 
			
		||||
                    if (layer == self.bg[3].cnt.priority.read() and bg_enable >> 3 & 1 == 1) self.drawBackground(3);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                // Copy Drawn Scanline to Frame Buffer
 | 
			
		||||
@@ -404,8 +409,8 @@ pub const Ppu = struct {
 | 
			
		||||
                var layer: usize = 0;
 | 
			
		||||
                while (layer < 4) : (layer += 1) {
 | 
			
		||||
                    self.drawSprites(@truncate(u2, layer));
 | 
			
		||||
                    if (layer == self.bg[0].cnt.priority.read() and bg_enable & 1 == 1) self.drawBackround(0);
 | 
			
		||||
                    if (layer == self.bg[1].cnt.priority.read() and bg_enable >> 1 & 1 == 1) self.drawBackround(1);
 | 
			
		||||
                    if (layer == self.bg[0].cnt.priority.read() and bg_enable & 1 == 1) self.drawBackground(0);
 | 
			
		||||
                    if (layer == self.bg[1].cnt.priority.read() and bg_enable >> 1 & 1 == 1) self.drawBackground(1);
 | 
			
		||||
                    if (layer == self.bg[2].cnt.priority.read() and bg_enable >> 2 & 1 == 1) self.drawAffineBackground(2);
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
@@ -483,7 +488,7 @@ pub const Ppu = struct {
 | 
			
		||||
                while (i < width) : (i += 1) {
 | 
			
		||||
                    // If we're outside of the bounds of mode 5, draw the background colour
 | 
			
		||||
                    const bgr555 =
 | 
			
		||||
                        if (scanline < m5_height and i < m5_width) self.vram.read(u16, vram_base + i * @sizeOf(u16)) else self.palette.getBackdrop();
 | 
			
		||||
                        if (scanline < m5_height and i < m5_width) self.vram.read(u16, vram_base + i * @sizeOf(u16)) else self.palette.backdrop();
 | 
			
		||||
 | 
			
		||||
                    std.mem.writeIntNative(u32, self.framebuf.get(.Emulator)[fb_base + i * @sizeOf(u32) ..][0..@sizeOf(u32)], rgba888(bgr555));
 | 
			
		||||
                }
 | 
			
		||||
@@ -527,7 +532,94 @@ pub const Ppu = struct {
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (maybe_top) |top| return top;
 | 
			
		||||
        return self.palette.getBackdrop();
 | 
			
		||||
        return self.palette.backdrop();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn copyToBackgroundBuffer(self: *Self, comptime n: u2, bounds: ?WindowBounds, i: usize, bgr555: u16) void {
 | 
			
		||||
        if (self.bldcnt.mode.read() != 0b00) {
 | 
			
		||||
            // Standard Alpha Blending
 | 
			
		||||
            const a_layers = self.bldcnt.layer_a.read();
 | 
			
		||||
            const is_blend_enabled = (a_layers >> n) & 1 == 1;
 | 
			
		||||
 | 
			
		||||
            // If Alpha Blending is enabled and we've found an eligible layer for
 | 
			
		||||
            // Pixel A, store the pixel in the bottom pixel buffer
 | 
			
		||||
 | 
			
		||||
            const win_part = if (bounds) |win| blk: {
 | 
			
		||||
                // Window Enabled
 | 
			
		||||
                break :blk switch (win) {
 | 
			
		||||
                    .win0 => self.win.in.w0_bld.read(),
 | 
			
		||||
                    .win1 => self.win.in.w1_bld.read(),
 | 
			
		||||
                    .out => self.win.out.out_bld.read(),
 | 
			
		||||
                };
 | 
			
		||||
            } else true;
 | 
			
		||||
 | 
			
		||||
            if (win_part and is_blend_enabled) {
 | 
			
		||||
                self.scanline.btm()[i] = bgr555;
 | 
			
		||||
                return;
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        self.scanline.top()[i] = bgr555;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const WindowBounds = enum { win0, win1, out };
 | 
			
		||||
 | 
			
		||||
    fn windowBounds(self: *Self, x: u9, y: u8) ?WindowBounds {
 | 
			
		||||
        const win0 = self.dispcnt.win_enable.read() & 1 == 1;
 | 
			
		||||
        const win1 = (self.dispcnt.win_enable.read() >> 1) & 1 == 1;
 | 
			
		||||
        const winObj = self.dispcnt.obj_win_enable.read();
 | 
			
		||||
 | 
			
		||||
        if (!(win0 or win1 or winObj)) return null;
 | 
			
		||||
 | 
			
		||||
        if (win0 and self.win.inRange(0, x, y)) return .win0;
 | 
			
		||||
        if (win1 and self.win.inRange(1, x, y)) return .win1;
 | 
			
		||||
 | 
			
		||||
        return .out;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn shouldDrawBackground(self: *Self, comptime n: u2, bounds: ?WindowBounds, i: usize) bool {
 | 
			
		||||
        // If a pixel has been drawn on the top layer, it's because:
 | 
			
		||||
        // 1. The pixel is to be blended with a pixel on the bottom layer
 | 
			
		||||
        // 2. The pixel is not to be blended at all
 | 
			
		||||
        // Also, if we find a pixel on the top layer we don't need to bother with this I think?
 | 
			
		||||
        if (self.scanline.top()[i] != null) return false;
 | 
			
		||||
 | 
			
		||||
        if (bounds) |win| {
 | 
			
		||||
            switch (win) {
 | 
			
		||||
                .win0 => if ((self.win.in.w0_bg.read() >> n) & 1 == 0) return false,
 | 
			
		||||
                .win1 => if ((self.win.in.w1_bg.read() >> n) & 1 == 0) return false,
 | 
			
		||||
                .out => if ((self.win.out.out_bg.read() >> n) & 1 == 0) return false,
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (self.scanline.btm()[i] != null) {
 | 
			
		||||
            // The pixel found in the bottom layer is:
 | 
			
		||||
            // 1. From a higher priority background
 | 
			
		||||
            // 2. From a background that is marked for blending (Pixel A)
 | 
			
		||||
 | 
			
		||||
            // If Alpha Blending isn't enabled, then we've already found a higher prio
 | 
			
		||||
            // pixel, we can return early
 | 
			
		||||
            if (self.bldcnt.mode.read() != 0b01) return false;
 | 
			
		||||
 | 
			
		||||
            const b_layers = self.bldcnt.layer_b.read();
 | 
			
		||||
 | 
			
		||||
            const win_part = if (bounds) |win| blk: {
 | 
			
		||||
                // Window Enabled
 | 
			
		||||
                break :blk switch (win) {
 | 
			
		||||
                    .win0 => self.win.in.w0_bld.read(),
 | 
			
		||||
                    .win1 => self.win.in.w1_bld.read(),
 | 
			
		||||
                    .out => self.win.out.out_bld.read(),
 | 
			
		||||
                };
 | 
			
		||||
            } else true;
 | 
			
		||||
 | 
			
		||||
            // If the Background is not marked for blending, we've already found
 | 
			
		||||
            // a higher priority pixel, move on.
 | 
			
		||||
 | 
			
		||||
            const is_blend_enabled = win_part and ((b_layers >> n) & 1 == 1);
 | 
			
		||||
            if (!is_blend_enabled) return false;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        return true;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // TODO: Comment this + get a better understanding
 | 
			
		||||
@@ -569,7 +661,7 @@ pub const Ppu = struct {
 | 
			
		||||
        // See if HBlank DMA is present and not enabled
 | 
			
		||||
 | 
			
		||||
        if (!self.dispstat.vblank.read())
 | 
			
		||||
            pollDmaOnBlank(cpu.bus, .HBlank);
 | 
			
		||||
            dma.onBlanking(cpu.bus, .HBlank);
 | 
			
		||||
 | 
			
		||||
        self.dispstat.hblank.set();
 | 
			
		||||
        self.sched.push(.HBlank, 68 * 4 -| late);
 | 
			
		||||
@@ -611,7 +703,7 @@ pub const Ppu = struct {
 | 
			
		||||
                self.aff_bg[1].latchRefPoints();
 | 
			
		||||
 | 
			
		||||
                // See if Vblank DMA is present and not enabled
 | 
			
		||||
                pollDmaOnBlank(cpu.bus, .VBlank);
 | 
			
		||||
                dma.onBlanking(cpu.bus, .VBlank);
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            if (scanline == 227) self.dispstat.vblank.unset();
 | 
			
		||||
@@ -620,158 +712,6 @@ pub const Ppu = struct {
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const Palette = struct {
 | 
			
		||||
    const palram_size = 0x400;
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
 | 
			
		||||
    buf: []u8,
 | 
			
		||||
    allocator: Allocator,
 | 
			
		||||
 | 
			
		||||
    fn init(allocator: Allocator) !Self {
 | 
			
		||||
        const buf = try allocator.alloc(u8, palram_size);
 | 
			
		||||
        std.mem.set(u8, buf, 0);
 | 
			
		||||
 | 
			
		||||
        return Self{
 | 
			
		||||
            .buf = buf,
 | 
			
		||||
            .allocator = allocator,
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn deinit(self: *Self) void {
 | 
			
		||||
        self.allocator.free(self.buf);
 | 
			
		||||
        self.* = undefined;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn read(self: *const Self, comptime T: type, address: usize) T {
 | 
			
		||||
        const addr = address & 0x3FF;
 | 
			
		||||
 | 
			
		||||
        return switch (T) {
 | 
			
		||||
            u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
 | 
			
		||||
            else => @compileError("PALRAM: Unsupported read width"),
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
 | 
			
		||||
        const addr = address & 0x3FF;
 | 
			
		||||
 | 
			
		||||
        switch (T) {
 | 
			
		||||
            u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
 | 
			
		||||
            u8 => {
 | 
			
		||||
                const align_addr = addr & ~@as(u32, 1); // Aligned to Halfword boundary
 | 
			
		||||
                std.mem.writeIntSliceLittle(u16, self.buf[align_addr..][0..@sizeOf(u16)], @as(u16, value) * 0x101);
 | 
			
		||||
            },
 | 
			
		||||
            else => @compileError("PALRAM: Unsupported write width"),
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn getBackdrop(self: *const Self) u16 {
 | 
			
		||||
        return self.read(u16, 0);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const Vram = struct {
 | 
			
		||||
    const vram_size = 0x18000;
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
 | 
			
		||||
    buf: []u8,
 | 
			
		||||
    allocator: Allocator,
 | 
			
		||||
 | 
			
		||||
    fn init(allocator: Allocator) !Self {
 | 
			
		||||
        const buf = try allocator.alloc(u8, vram_size);
 | 
			
		||||
        std.mem.set(u8, buf, 0);
 | 
			
		||||
 | 
			
		||||
        return Self{
 | 
			
		||||
            .buf = buf,
 | 
			
		||||
            .allocator = allocator,
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn deinit(self: *Self) void {
 | 
			
		||||
        self.allocator.free(self.buf);
 | 
			
		||||
        self.* = undefined;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn read(self: *const Self, comptime T: type, address: usize) T {
 | 
			
		||||
        const addr = Self.mirror(address);
 | 
			
		||||
 | 
			
		||||
        return switch (T) {
 | 
			
		||||
            u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
 | 
			
		||||
            else => @compileError("VRAM: Unsupported read width"),
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn write(self: *Self, comptime T: type, dispcnt: io.DisplayControl, address: usize, value: T) void {
 | 
			
		||||
        const mode: u3 = dispcnt.bg_mode.read();
 | 
			
		||||
        const idx = Self.mirror(address);
 | 
			
		||||
 | 
			
		||||
        switch (T) {
 | 
			
		||||
            u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[idx..][0..@sizeOf(T)], value),
 | 
			
		||||
            u8 => {
 | 
			
		||||
                // Ignore write if it falls within the boundaries of OBJ VRAM
 | 
			
		||||
                switch (mode) {
 | 
			
		||||
                    0, 1, 2 => if (0x0001_0000 <= idx) return,
 | 
			
		||||
                    else => if (0x0001_4000 <= idx) return,
 | 
			
		||||
                }
 | 
			
		||||
 | 
			
		||||
                const align_idx = idx & ~@as(u32, 1); // Aligned to a halfword boundary
 | 
			
		||||
                std.mem.writeIntSliceLittle(u16, self.buf[align_idx..][0..@sizeOf(u16)], @as(u16, value) * 0x101);
 | 
			
		||||
            },
 | 
			
		||||
            else => @compileError("VRAM: Unsupported write width"),
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn mirror(address: usize) usize {
 | 
			
		||||
        // Mirrored in steps of 128K (64K + 32K + 32K) (abcc)
 | 
			
		||||
        const addr = address & 0x1FFFF;
 | 
			
		||||
 | 
			
		||||
        // If the address is within 96K we don't do anything,
 | 
			
		||||
        // otherwise we want to mirror the last 32K (addresses between 64K and 96K)
 | 
			
		||||
        return if (addr < vram_size) addr else 0x10000 + (addr & 0x7FFF);
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const Oam = struct {
 | 
			
		||||
    const oam_size = 0x400;
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
 | 
			
		||||
    buf: []u8,
 | 
			
		||||
    allocator: Allocator,
 | 
			
		||||
 | 
			
		||||
    fn init(allocator: Allocator) !Self {
 | 
			
		||||
        const buf = try allocator.alloc(u8, oam_size);
 | 
			
		||||
        std.mem.set(u8, buf, 0);
 | 
			
		||||
 | 
			
		||||
        return Self{
 | 
			
		||||
            .buf = buf,
 | 
			
		||||
            .allocator = allocator,
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn deinit(self: *Self) void {
 | 
			
		||||
        self.allocator.free(self.buf);
 | 
			
		||||
        self.* = undefined;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn read(self: *const Self, comptime T: type, address: usize) T {
 | 
			
		||||
        const addr = address & 0x3FF;
 | 
			
		||||
 | 
			
		||||
        return switch (T) {
 | 
			
		||||
            u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
 | 
			
		||||
            else => @compileError("OAM: Unsupported read width"),
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
 | 
			
		||||
        const addr = address & 0x3FF;
 | 
			
		||||
 | 
			
		||||
        switch (T) {
 | 
			
		||||
            u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
 | 
			
		||||
            u8 => return, // 8-bit writes are explicitly ignored
 | 
			
		||||
            else => @compileError("OAM: Unsupported write width"),
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const Window = struct {
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
 | 
			
		||||
@@ -791,6 +731,25 @@ const Window = struct {
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn inRange(self: *const Self, comptime id: u1, x: u9, y: u8) bool {
 | 
			
		||||
        const h = self.h[id];
 | 
			
		||||
        const v = self.v[id];
 | 
			
		||||
 | 
			
		||||
        const y1 = v.y1.read();
 | 
			
		||||
        const y2 = if (y1 > v.y2.read()) 160 else std.math.min(160, v.y2.read());
 | 
			
		||||
 | 
			
		||||
        if (y1 <= y and y < y2) {
 | 
			
		||||
            // Within Y bounds
 | 
			
		||||
            const x1 = h.x1.read();
 | 
			
		||||
            const x2 = if (x1 > h.x2.read()) 240 else std.math.min(240, h.x2.read());
 | 
			
		||||
 | 
			
		||||
            // Within X Bounds
 | 
			
		||||
            return x1 <= x and x < x2;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn setH(self: *Self, value: u32) void {
 | 
			
		||||
        self.h[0].raw = @truncate(u16, value);
 | 
			
		||||
        self.h[1].raw = @truncate(u16, value >> 16);
 | 
			
		||||
@@ -1087,37 +1046,6 @@ fn alphaBlend(top: u16, btm: u16, bldalpha: io.BldAlpha) u16 {
 | 
			
		||||
    return (bld_b << 10) | (bld_g << 5) | bld_r;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn shouldDrawBackground(comptime n: u2, bldcnt: io.BldCnt, scanline: *Scanline, i: usize) bool {
 | 
			
		||||
    // If a pixel has been drawn on the top layer, it's because
 | 
			
		||||
    // Either the pixel is to be blended with a pixel on the bottom layer
 | 
			
		||||
    // or the pixel is not to be blended at all
 | 
			
		||||
    // Consequentially, if we find a pixel on the top layer, there's no need
 | 
			
		||||
    // to render anything I think?
 | 
			
		||||
    if (scanline.top()[i] != null) return false;
 | 
			
		||||
 | 
			
		||||
    if (scanline.btm()[i] != null) {
 | 
			
		||||
        // The Pixel found in the Bottom layer is
 | 
			
		||||
        // 1. From a higher priority
 | 
			
		||||
        // 2. From a Backround that is marked for Blending (Pixel A)
 | 
			
		||||
        //
 | 
			
		||||
        // We now have to confirm whether this current Background can be used
 | 
			
		||||
        // as Pixel B or not.
 | 
			
		||||
 | 
			
		||||
        // If Alpha Blending isn't enabled, we've aready found a higher
 | 
			
		||||
        // priority pixel to render. Move on
 | 
			
		||||
        if (bldcnt.mode.read() != 0b01) return false;
 | 
			
		||||
 | 
			
		||||
        const b_layers = bldcnt.layer_b.read();
 | 
			
		||||
        const is_blend_enabled = (b_layers >> n) & 1 == 1;
 | 
			
		||||
 | 
			
		||||
        // If the Background is not marked for blending, we've already found
 | 
			
		||||
        // a higher priority pixel, move on.
 | 
			
		||||
        if (!is_blend_enabled) return false;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn shouldDrawSprite(bldcnt: io.BldCnt, scanline: *Scanline, x: u9) bool {
 | 
			
		||||
    if (scanline.top()[x] != null) return false;
 | 
			
		||||
 | 
			
		||||
@@ -1132,23 +1060,6 @@ fn shouldDrawSprite(bldcnt: io.BldCnt, scanline: *Scanline, x: u9) bool {
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn copyToBackgroundBuffer(comptime n: u2, bldcnt: io.BldCnt, scanline: *Scanline, i: usize, bgr555: u16) void {
 | 
			
		||||
    if (bldcnt.mode.read() != 0b00) {
 | 
			
		||||
        // Standard Alpha Blending
 | 
			
		||||
        const a_layers = bldcnt.layer_a.read();
 | 
			
		||||
        const is_blend_enabled = (a_layers >> n) & 1 == 1;
 | 
			
		||||
 | 
			
		||||
        // If Alpha Blending is enabled and we've found an eligible layer for
 | 
			
		||||
        // Pixel A, store the pixel in the bottom pixel buffer
 | 
			
		||||
        if (is_blend_enabled) {
 | 
			
		||||
            scanline.btm()[i] = bgr555;
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    scanline.top()[i] = bgr555;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn copyToSpriteBuffer(bldcnt: io.BldCnt, scanline: *Scanline, x: u9, bgr555: u16) void {
 | 
			
		||||
    if (bldcnt.mode.read() != 0b00) {
 | 
			
		||||
        // Alpha Blending
 | 
			
		||||
@@ -1201,48 +1112,3 @@ const Scanline = struct {
 | 
			
		||||
        return self.layers[1];
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// Double Buffering Implementation
 | 
			
		||||
const FrameBuffer = struct {
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
 | 
			
		||||
    layers: [2][]u8,
 | 
			
		||||
    buf: []u8,
 | 
			
		||||
    current: u1,
 | 
			
		||||
 | 
			
		||||
    allocator: Allocator,
 | 
			
		||||
 | 
			
		||||
    // TODO: Rename
 | 
			
		||||
    const Device = enum {
 | 
			
		||||
        Emulator,
 | 
			
		||||
        Renderer,
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    pub fn init(allocator: Allocator) !Self {
 | 
			
		||||
        const framebuf_len = framebuf_pitch * height;
 | 
			
		||||
        const buf = try allocator.alloc(u8, framebuf_len * 2);
 | 
			
		||||
        std.mem.set(u8, buf, 0);
 | 
			
		||||
 | 
			
		||||
        return .{
 | 
			
		||||
            // Front and Back Framebuffers
 | 
			
		||||
            .layers = [_][]u8{ buf[0..][0..framebuf_len], buf[framebuf_len..][0..framebuf_len] },
 | 
			
		||||
            .buf = buf,
 | 
			
		||||
            .current = 0,
 | 
			
		||||
 | 
			
		||||
            .allocator = allocator,
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    fn deinit(self: *Self) void {
 | 
			
		||||
        self.allocator.free(self.buf);
 | 
			
		||||
        self.* = undefined;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn swap(self: *Self) void {
 | 
			
		||||
        self.current = ~self.current;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn get(self: *Self, comptime dev: Device) []u8 {
 | 
			
		||||
        return self.layers[if (dev == .Emulator) self.current else ~self.current];
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										40
									
								
								src/core/ppu/Oam.zig
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								src/core/ppu/Oam.zig
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,40 @@
 | 
			
		||||
const std = @import("std");
 | 
			
		||||
 | 
			
		||||
const Allocator = std.mem.Allocator;
 | 
			
		||||
 | 
			
		||||
const buf_len = 0x400;
 | 
			
		||||
const Self = @This();
 | 
			
		||||
 | 
			
		||||
buf: []u8,
 | 
			
		||||
allocator: Allocator,
 | 
			
		||||
 | 
			
		||||
pub fn read(self: *const Self, comptime T: type, address: usize) T {
 | 
			
		||||
    const addr = address & 0x3FF;
 | 
			
		||||
 | 
			
		||||
    return switch (T) {
 | 
			
		||||
        u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
 | 
			
		||||
        else => @compileError("OAM: Unsupported read width"),
 | 
			
		||||
    };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
 | 
			
		||||
    const addr = address & 0x3FF;
 | 
			
		||||
 | 
			
		||||
    switch (T) {
 | 
			
		||||
        u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
 | 
			
		||||
        u8 => return, // 8-bit writes are explicitly ignored
 | 
			
		||||
        else => @compileError("OAM: Unsupported write width"),
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn init(allocator: Allocator) !Self {
 | 
			
		||||
    const buf = try allocator.alloc(u8, buf_len);
 | 
			
		||||
    std.mem.set(u8, buf, 0);
 | 
			
		||||
 | 
			
		||||
    return Self{ .buf = buf, .allocator = allocator };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn deinit(self: *Self) void {
 | 
			
		||||
    self.allocator.free(self.buf);
 | 
			
		||||
    self.* = undefined;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										47
									
								
								src/core/ppu/Palette.zig
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										47
									
								
								src/core/ppu/Palette.zig
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,47 @@
 | 
			
		||||
const std = @import("std");
 | 
			
		||||
 | 
			
		||||
const Allocator = std.mem.Allocator;
 | 
			
		||||
 | 
			
		||||
const buf_len = 0x400;
 | 
			
		||||
const Self = @This();
 | 
			
		||||
 | 
			
		||||
buf: []u8,
 | 
			
		||||
allocator: Allocator,
 | 
			
		||||
 | 
			
		||||
pub fn read(self: *const Self, comptime T: type, address: usize) T {
 | 
			
		||||
    const addr = address & 0x3FF;
 | 
			
		||||
 | 
			
		||||
    return switch (T) {
 | 
			
		||||
        u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
 | 
			
		||||
        else => @compileError("PALRAM: Unsupported read width"),
 | 
			
		||||
    };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn write(self: *Self, comptime T: type, address: usize, value: T) void {
 | 
			
		||||
    const addr = address & 0x3FF;
 | 
			
		||||
 | 
			
		||||
    switch (T) {
 | 
			
		||||
        u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)], value),
 | 
			
		||||
        u8 => {
 | 
			
		||||
            const align_addr = addr & ~@as(u32, 1); // Aligned to Halfword boundary
 | 
			
		||||
            std.mem.writeIntSliceLittle(u16, self.buf[align_addr..][0..@sizeOf(u16)], @as(u16, value) * 0x101);
 | 
			
		||||
        },
 | 
			
		||||
        else => @compileError("PALRAM: Unsupported write width"),
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn init(allocator: Allocator) !Self {
 | 
			
		||||
    const buf = try allocator.alloc(u8, buf_len);
 | 
			
		||||
    std.mem.set(u8, buf, 0);
 | 
			
		||||
 | 
			
		||||
    return Self{ .buf = buf, .allocator = allocator };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn deinit(self: *Self) void {
 | 
			
		||||
    self.allocator.free(self.buf);
 | 
			
		||||
    self.* = undefined;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn backdrop(self: *const Self) u16 {
 | 
			
		||||
    return self.read(u16, 0);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										60
									
								
								src/core/ppu/Vram.zig
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										60
									
								
								src/core/ppu/Vram.zig
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,60 @@
 | 
			
		||||
const std = @import("std");
 | 
			
		||||
const io = @import("../bus/io.zig");
 | 
			
		||||
 | 
			
		||||
const Allocator = std.mem.Allocator;
 | 
			
		||||
 | 
			
		||||
const buf_len = 0x18000;
 | 
			
		||||
const Self = @This();
 | 
			
		||||
 | 
			
		||||
buf: []u8,
 | 
			
		||||
allocator: Allocator,
 | 
			
		||||
 | 
			
		||||
pub fn read(self: *const Self, comptime T: type, address: usize) T {
 | 
			
		||||
    const addr = Self.mirror(address);
 | 
			
		||||
 | 
			
		||||
    return switch (T) {
 | 
			
		||||
        u32, u16, u8 => std.mem.readIntSliceLittle(T, self.buf[addr..][0..@sizeOf(T)]),
 | 
			
		||||
        else => @compileError("VRAM: Unsupported read width"),
 | 
			
		||||
    };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn write(self: *Self, comptime T: type, dispcnt: io.DisplayControl, address: usize, value: T) void {
 | 
			
		||||
    const mode: u3 = dispcnt.bg_mode.read();
 | 
			
		||||
    const idx = Self.mirror(address);
 | 
			
		||||
 | 
			
		||||
    switch (T) {
 | 
			
		||||
        u32, u16 => std.mem.writeIntSliceLittle(T, self.buf[idx..][0..@sizeOf(T)], value),
 | 
			
		||||
        u8 => {
 | 
			
		||||
            // Ignore write if it falls within the boundaries of OBJ VRAM
 | 
			
		||||
            switch (mode) {
 | 
			
		||||
                0, 1, 2 => if (0x0001_0000 <= idx) return,
 | 
			
		||||
                else => if (0x0001_4000 <= idx) return,
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            const align_idx = idx & ~@as(u32, 1); // Aligned to a halfword boundary
 | 
			
		||||
            std.mem.writeIntSliceLittle(u16, self.buf[align_idx..][0..@sizeOf(u16)], @as(u16, value) * 0x101);
 | 
			
		||||
        },
 | 
			
		||||
        else => @compileError("VRAM: Unsupported write width"),
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn init(allocator: Allocator) !Self {
 | 
			
		||||
    const buf = try allocator.alloc(u8, buf_len);
 | 
			
		||||
    std.mem.set(u8, buf, 0);
 | 
			
		||||
 | 
			
		||||
    return Self{ .buf = buf, .allocator = allocator };
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
pub fn deinit(self: *Self) void {
 | 
			
		||||
    self.allocator.free(self.buf);
 | 
			
		||||
    self.* = undefined;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
fn mirror(address: usize) usize {
 | 
			
		||||
    // Mirrored in steps of 128K (64K + 32K + 32K) (abcc)
 | 
			
		||||
    const addr = address & 0x1FFFF;
 | 
			
		||||
 | 
			
		||||
    // If the address is within 96K we don't do anything,
 | 
			
		||||
    // otherwise we want to mirror the last 32K (addresses between 64K and 96K)
 | 
			
		||||
    return if (addr < buf_len) addr else 0x10000 + (addr & 0x7FFF);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										46
									
								
								src/util.zig
									
									
									
									
									
								
							
							
						
						
									
										46
									
								
								src/util.zig
									
									
									
									
									
								
							@@ -5,6 +5,8 @@ const config = @import("config.zig");
 | 
			
		||||
const Log2Int = std.math.Log2Int;
 | 
			
		||||
const Arm7tdmi = @import("core/cpu.zig").Arm7tdmi;
 | 
			
		||||
 | 
			
		||||
const Allocator = std.mem.Allocator;
 | 
			
		||||
 | 
			
		||||
// Sign-Extend value of type `T` to type `U`
 | 
			
		||||
pub fn sext(comptime T: type, comptime U: type, value: T) T {
 | 
			
		||||
    // U must have less bits than T
 | 
			
		||||
@@ -165,6 +167,7 @@ pub const io = struct {
 | 
			
		||||
 | 
			
		||||
pub const Logger = struct {
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
    const FmtArgTuple = std.meta.Tuple(&.{ u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32 });
 | 
			
		||||
 | 
			
		||||
    buf: std.io.BufferedWriter(4096 << 2, std.fs.File.Writer),
 | 
			
		||||
 | 
			
		||||
@@ -223,8 +226,6 @@ pub const Logger = struct {
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
const FmtArgTuple = std.meta.Tuple(&.{ u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32, u32 });
 | 
			
		||||
 | 
			
		||||
pub const audio = struct {
 | 
			
		||||
    const _io = @import("core/bus/io.zig");
 | 
			
		||||
 | 
			
		||||
@@ -302,3 +303,44 @@ fn HalfInt(comptime T: type) type {
 | 
			
		||||
 | 
			
		||||
    return std.meta.Int(type_info.Int.signedness, type_info.Int.bits >> 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/// Double Buffering Implementation
 | 
			
		||||
pub const FrameBuffer = struct {
 | 
			
		||||
    const Self = @This();
 | 
			
		||||
 | 
			
		||||
    layers: [2][]u8,
 | 
			
		||||
    buf: []u8,
 | 
			
		||||
    current: u1,
 | 
			
		||||
 | 
			
		||||
    allocator: Allocator,
 | 
			
		||||
 | 
			
		||||
    // TODO: Rename
 | 
			
		||||
    const Device = enum { Emulator, Renderer };
 | 
			
		||||
 | 
			
		||||
    pub fn init(allocator: Allocator, comptime len: comptime_int) !Self {
 | 
			
		||||
        const buf = try allocator.alloc(u8, len * 2);
 | 
			
		||||
        std.mem.set(u8, buf, 0);
 | 
			
		||||
 | 
			
		||||
        return .{
 | 
			
		||||
            // Front and Back Framebuffers
 | 
			
		||||
            .layers = [_][]u8{ buf[0..][0..len], buf[len..][0..len] },
 | 
			
		||||
            .buf = buf,
 | 
			
		||||
            .current = 0,
 | 
			
		||||
 | 
			
		||||
            .allocator = allocator,
 | 
			
		||||
        };
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn deinit(self: *Self) void {
 | 
			
		||||
        self.allocator.free(self.buf);
 | 
			
		||||
        self.* = undefined;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn swap(self: *Self) void {
 | 
			
		||||
        self.current = ~self.current;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    pub fn get(self: *Self, comptime dev: Device) []u8 {
 | 
			
		||||
        return self.layers[if (dev == .Emulator) self.current else ~self.current];
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user