gb/src/apu.rs

898 lines
26 KiB
Rust

use crate::bus::BusIo;
use crate::emu::SM83_CLOCK_SPEED;
use gen::SampleProducer;
use types::ch1::{Sweep, SweepDirection};
use types::ch3::Volume as Ch3Volume;
use types::ch4::{CounterWidth, Frequency as Ch4Frequency, PolynomialCounter};
use types::common::{EnvelopeDirection, FrequencyHigh, SoundDuty, VolumeEnvelope};
use types::{ChannelControl, FrameSequencerState, SoundOutput};
pub mod gen;
mod types;
const SAMPLE_INCREMENT: u64 = gen::SAMPLE_RATE as u64;
const WAVE_PATTERN_RAM_LEN: usize = 0x10;
#[derive(Default, Debug)]
pub struct Apu {
ctrl: SoundControl,
/// Tone & Sweep
ch1: Channel1,
/// Tone
ch2: Channel2,
/// Wave
ch3: Channel3,
/// Noise
ch4: Channel4,
// Frame Sequencer
frame_seq_state: FrameSequencerState,
div_prev: Option<u8>,
prod: Option<SampleProducer<f32>>,
sample_counter: u64,
}
impl BusIo for Apu {
fn read_byte(&self, addr: u16) -> u8 {
match addr & 0x00FF {
0x10 => self.ch1.sweep(),
0x11 => self.ch1.duty(),
0x12 => self.ch1.envelope(),
0x14 => self.ch1.freq_hi(),
0x16 => self.ch2.duty(),
0x17 => self.ch2.envelope(),
0x19 => self.ch2.freq_hi(),
0x1A => self.ch3.enabled(),
0x1B => self.ch3.len(),
0x1C => self.ch3.volume(),
0x1E => self.ch3.freq_hi(),
0x20 => self.ch4.len(),
0x21 => self.ch4.envelope(),
0x22 => self.ch4.poly(),
0x23 => self.ch4.frequency(),
0x24 => self.ctrl.channel(),
0x25 => self.ctrl.output(),
0x26 => self.ctrl.status(self),
0x30..=0x3F => self.ch3.read_byte(addr),
_ => {
eprintln!("Read 0xFF from unused IO register {:#06X} [APU]", addr);
0xFF
}
}
}
fn write_byte(&mut self, addr: u16, byte: u8) {
match addr & 0x00FF {
0x10 if self.ctrl.enabled => self.ch1.set_sweep(byte),
0x11 if self.ctrl.enabled => self.ch1.set_duty(byte),
0x12 if self.ctrl.enabled => self.ch1.set_envelope(byte),
0x13 if self.ctrl.enabled => self.ch1.set_freq_lo(byte),
0x14 if self.ctrl.enabled => self.ch1.set_freq_hi(byte),
0x16 if self.ctrl.enabled => self.ch2.set_duty(byte),
0x17 if self.ctrl.enabled => self.ch2.set_envelope(byte),
0x18 if self.ctrl.enabled => self.ch2.set_freq_lo(byte),
0x19 if self.ctrl.enabled => self.ch2.set_freq_hi(byte),
0x1A if self.ctrl.enabled => self.ch3.set_enabled(byte),
0x1B if self.ctrl.enabled => self.ch3.set_len(byte),
0x1C if self.ctrl.enabled => self.ch3.set_volume(byte),
0x1D if self.ctrl.enabled => self.ch3.set_freq_lo(byte),
0x1E if self.ctrl.enabled => self.ch3.set_freq_hi(byte),
0x20 if self.ctrl.enabled => self.ch4.set_len(byte),
0x21 if self.ctrl.enabled => self.ch4.set_envelope(byte),
0x22 if self.ctrl.enabled => self.ch4.set_poly(byte),
0x23 if self.ctrl.enabled => self.ch4.set_frequency(byte),
0x24 if self.ctrl.enabled => self.ctrl.set_channel(byte),
0x25 if self.ctrl.enabled => self.ctrl.set_output(byte),
0x26 => self.set_status(byte),
0x30..=0x3F => self.ch3.write_byte(addr, byte),
_ if !self.ctrl.enabled => {}
_ => eprintln!(
"Wrote {:#04X} to unused IO register {:#06X} [APU]",
byte, addr
),
}
}
}
impl Apu {
pub(crate) fn clock(&mut self, div: u16) {
use FrameSequencerState::*;
self.sample_counter += SAMPLE_INCREMENT;
// the 5th bit of the high byte
let bit_5 = (div >> 13 & 0x01) as u8;
if let Some(0x01) = self.div_prev {
if bit_5 == 0x00 {
// Falling Edge, step the Frame Sequencer
self.frame_seq_state.step();
match self.frame_seq_state {
Step0Length => self.handle_length(),
Step2LengthAndSweep => {
self.handle_length();
self.handle_sweep();
}
Step4Length => self.handle_length(),
Step6LengthAndSweep => {
self.handle_length();
self.handle_sweep();
}
Step7VolumeEnvelope => self.handle_volume(),
Step1Nothing | Step3Nothing | Step5Nothing => {}
};
}
}
self.ch1.clock();
self.ch2.clock();
self.ch3.clock();
self.ch4.clock();
self.div_prev = Some(bit_5);
if self.sample_counter >= SM83_CLOCK_SPEED {
self.sample_counter %= SM83_CLOCK_SPEED;
if let Some(ref mut prod) = self.prod {
if prod.available_block() {
// Sample the APU
let ch1_amplitude = self.ch1.amplitude();
let ch1_left = self.ctrl.output.ch1_left() as u8 as f32 * ch1_amplitude;
let ch1_right = self.ctrl.output.ch1_right() as u8 as f32 * ch1_amplitude;
let ch2_amplitude = self.ch2.amplitude();
let ch2_left = self.ctrl.output.ch2_left() as u8 as f32 * ch2_amplitude;
let ch2_right = self.ctrl.output.ch2_right() as u8 as f32 * ch2_amplitude;
let ch3_amplitude = self.ch3.amplitude();
let ch3_left = self.ctrl.output.ch3_left() as u8 as f32 * ch3_amplitude;
let ch3_right = self.ctrl.output.ch3_right() as u8 as f32 * ch3_amplitude;
let ch4_amplitude = self.ch4.amplitude();
let ch4_left = self.ctrl.output.ch4_left() as u8 as f32 * ch4_amplitude;
let ch4_right = self.ctrl.output.ch4_right() as u8 as f32 * ch4_amplitude;
let left_mixed = (ch1_left + ch2_left + ch3_left + ch4_left) / 4.0;
let right_mixed = (ch1_right + ch2_right + ch3_right + ch4_right) / 4.0;
let left = (self.ctrl.channel.left_volume() + 1.0) * left_mixed;
let right = (self.ctrl.channel.right_volume() + 1.0) * right_mixed;
prod.push(left)
.and(prod.push(right))
.expect("Add samples to ring buffer");
}
}
}
}
pub fn set_producer(&mut self, prod: SampleProducer<f32>) {
self.prod = Some(prod);
}
/// 0xFF26 | NR52 - Sound On/Off
pub(crate) fn set_status(&mut self, byte: u8) {
self.ctrl.enabled = (byte >> 7) & 0x01 == 0x01;
if self.ctrl.enabled {
// Frame Sequencer reset to Step 0
self.frame_seq_state = Default::default();
// Square Duty units are reset to first step
self.ch1.duty_pos = 0;
self.ch2.duty_pos = 0;
// Wave Channel's sample buffer reset to 0
}
if !self.ctrl.enabled {
self.reset();
} else {
}
}
fn reset(&mut self) {
// TODO: Clear readable sound registers
self.ch1.sweep = Default::default();
self.ch1.duty = Default::default();
self.ch1.envelope = Default::default();
self.ch1.freq_lo = Default::default();
self.ch1.freq_hi = Default::default();
self.ch2.duty = Default::default();
self.ch2.envelope = Default::default();
self.ch2.freq_lo = Default::default();
self.ch2.freq_hi = Default::default();
self.ch3.enabled = Default::default();
self.ch3.len = Default::default();
self.ch3.volume = Default::default();
self.ch3.freq_lo = Default::default();
self.ch3.freq_hi = Default::default();
self.ch4.len = Default::default();
self.ch4.envelope = Default::default();
self.ch4.poly = Default::default();
self.ch4.freq = Default::default();
self.ctrl.channel = Default::default();
self.ctrl.output = Default::default();
// Disable the rest of the channels
self.ch1.enabled = Default::default();
self.ch2.enabled = Default::default();
self.ch4.enabled = Default::default();
}
fn clock_length(freq_hi: &FrequencyHigh, length_timer: &mut u16, enabled: &mut bool) {
if freq_hi.length_disable() && *length_timer > 0 {
*length_timer -= 1;
// Check in this scope ensures (only) the above subtraction
// made length_timer 0
if *length_timer == 0 {
*enabled = false;
}
}
}
fn clock_length_ch4(freq: &Ch4Frequency, length_timer: &mut u16, enabled: &mut bool) {
if freq.length_disable() && *length_timer > 0 {
*length_timer -= 1;
// Check in this scope ensures (only) the above subtraction
// made length_timer 0
if *length_timer == 0 {
*enabled = false;
}
}
}
fn handle_length(&mut self) {
Self::clock_length(
&self.ch1.freq_hi,
&mut self.ch1.length_timer,
&mut self.ch1.enabled,
);
Self::clock_length(
&self.ch2.freq_hi,
&mut self.ch2.length_timer,
&mut self.ch2.enabled,
);
Self::clock_length(
&self.ch3.freq_hi,
&mut self.ch3.length_timer,
&mut self.ch3.enabled,
);
Self::clock_length_ch4(
&self.ch4.freq,
&mut self.ch4.length_timer,
&mut self.ch4.enabled,
);
}
fn handle_sweep(&mut self) {
if self.ch1.sweep_timer != 0 {
self.ch1.sweep_timer -= 1;
}
if self.ch1.sweep_timer == 0 {
let period = self.ch1.sweep.period();
self.ch1.sweep_timer = if period == 0 { 8 } else { period };
if self.ch1.sweep_enabled && period != 0 {
let new_freq = self.ch1.calc_sweep_freq();
if new_freq <= 2047 && self.ch1.sweep.shift_count() != 0 {
self.ch1.set_frequency(new_freq);
self.ch1.shadow_freq = new_freq;
let _ = self.ch1.calc_sweep_freq();
}
}
}
}
fn clock_envelope(envelope: &VolumeEnvelope, period_timer: &mut u8, current_volume: &mut u8) {
use EnvelopeDirection::*;
if envelope.period() != 0 {
if *period_timer != 0 {
*period_timer -= 1;
}
if *period_timer == 0 {
*period_timer = envelope.period();
match envelope.direction() {
Decrease if *current_volume > 0x00 => *current_volume -= 1,
Increase if *current_volume < 0x0F => *current_volume += 1,
_ => {}
}
}
}
}
fn handle_volume(&mut self) {
// Channels 1, 2 and 4 have Volume Envelopes
Self::clock_envelope(
&self.ch1.envelope,
&mut self.ch1.period_timer,
&mut self.ch1.current_volume,
);
Self::clock_envelope(
&self.ch2.envelope,
&mut self.ch2.period_timer,
&mut self.ch2.current_volume,
);
Self::clock_envelope(
&self.ch4.envelope,
&mut self.ch4.period_timer,
&mut self.ch4.current_volume,
);
}
}
#[derive(Debug, Default)]
pub(crate) struct SoundControl {
/// 0xFF24 | NR50 - Channel Control
channel: ChannelControl,
/// 0xFF25 | NR51 - Selection of Sound output terminal
output: SoundOutput,
enabled: bool,
}
impl SoundControl {
/// 0xFF24 | NR50 - Channel Control
pub(crate) fn channel(&self) -> u8 {
u8::from(self.channel)
}
/// 0xFF24 | NR50 - Channel Control
pub(crate) fn set_channel(&mut self, byte: u8) {
if self.enabled {
self.channel = byte.into();
}
}
/// 0xFF25 | NR51 - Selection of Sound output terminal
pub(crate) fn output(&self) -> u8 {
u8::from(self.output)
}
/// 0xFF25 | NR51 - Selection of Sound output terminal
pub(crate) fn set_output(&mut self, byte: u8) {
if self.enabled {
self.output = byte.into();
}
}
/// 0xFF26 | NR52 - Sound On/Off
pub(crate) fn status(&self, apu: &Apu) -> u8 {
(self.enabled as u8) << 7
| (apu.ch4.enabled as u8) << 3
| (apu.ch3.enabled as u8) << 2
| (apu.ch2.enabled as u8) << 1
| apu.ch1.enabled as u8
| 0x70
}
}
#[derive(Debug, Default)]
pub(crate) struct Channel1 {
/// 0xFF10 | NR10 - Channel 1 Sweep Register
sweep: Sweep,
/// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty
duty: SoundDuty,
/// 0xFF12 | NR12 - Channel 1 Volume Envelope
envelope: VolumeEnvelope,
/// 0xFF13 | NR13 - Channel 1 Frequency low (lower 8 bits only)
freq_lo: u8,
/// 0xFF14 | NR14 - Channel 1 Frequency high
freq_hi: FrequencyHigh,
// Envelope Functionality
period_timer: u8,
current_volume: u8,
// Sweep Functionality
sweep_timer: u8,
shadow_freq: u16,
sweep_enabled: bool,
// Length Functionality
length_timer: u16,
freq_timer: u16,
duty_pos: u8,
enabled: bool,
}
impl Channel1 {
fn amplitude(&self) -> f32 {
let dac_input = self.duty.wave_pattern().amplitude(self.duty_pos) * self.current_volume;
(dac_input as f32 / 7.5) - 1.0
}
fn clock(&mut self) {
if self.freq_timer != 0 {
self.freq_timer -= 1;
}
if self.freq_timer == 0 {
// TODO: Why is this 2048?
self.freq_timer = (2048 - self.frequency()) * 4;
self.duty_pos = (self.duty_pos + 1) % 8;
}
}
/// 0xFF10 | NR10 - Channel 1 Sweep Register
pub(crate) fn sweep(&self) -> u8 {
u8::from(self.sweep) | 0x80
}
/// 0xFF10 | NR10 - Channel 1 Sweep Register
pub(crate) fn set_sweep(&mut self, byte: u8) {
self.sweep = byte.into()
}
/// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty
pub(crate) fn duty(&self) -> u8 {
u8::from(self.duty) | 0x3F
}
/// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty
pub(crate) fn set_duty(&mut self, byte: u8) {
self.duty = byte.into();
self.length_timer = 64 - self.duty.sound_length() as u16;
}
/// 0xFF12 | NR12 - Channel 1 Volume Envelope
pub fn envelope(&self) -> u8 {
u8::from(self.envelope)
}
/// 0xFF12 | NR12 - Channel 1 Volume Envelope
pub(crate) fn set_envelope(&mut self, byte: u8) {
self.envelope = byte.into()
}
/// 0xFF13 | NR13 - Channel 1 Frequency low (lower 8 bits only)
pub(crate) fn set_freq_lo(&mut self, byte: u8) {
self.freq_lo = byte;
}
/// 0xFF14 | NR14 - Channel 1 Frequency high
pub(crate) fn freq_hi(&self) -> u8 {
u8::from(self.freq_hi) | 0xBF
}
/// 0xFF14 | NR14 - Channel 1 Frequency high
pub(crate) fn set_freq_hi(&mut self, byte: u8) {
self.freq_hi = byte.into();
// If this bit is set, a trigger event occurs
if self.freq_hi.initial() {
// Envelope Behaviour during trigger event
self.period_timer = self.envelope.period();
self.current_volume = self.envelope.init_vol();
// Sweep behaviour during trigger event
let sweep_period = self.sweep.period();
let sweep_shift = self.sweep.shift_count();
self.shadow_freq = self.frequency();
self.sweep_timer = if sweep_period == 0 { 8 } else { sweep_period };
if sweep_period != 0 || sweep_shift != 0 {
self.sweep_enabled = true;
}
if sweep_shift != 0 {
let _ = self.calc_sweep_freq();
}
// Length behaviour during trigger event
if self.length_timer == 0 {
self.length_timer = 64;
}
self.enabled = true;
}
}
fn calc_sweep_freq(&mut self) -> u16 {
use SweepDirection::*;
let shadow_freq_shifted = self.shadow_freq >> self.sweep.shift_count();
let new_freq = match self.sweep.direction() {
Increase => self.shadow_freq + shadow_freq_shifted,
Decrease => self.shadow_freq - shadow_freq_shifted,
};
// Overflow check
if new_freq > 2047 {
self.enabled = false;
}
new_freq
}
fn set_frequency(&mut self, word: u16) {
let freq_bits = word & 0x07FF;
self.freq_lo = (freq_bits & 0x00FF) as u8;
self.freq_hi
.set_freq_bits(((freq_bits & 0x0700) >> 8) as u8);
}
fn frequency(&self) -> u16 {
(self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16
}
}
#[derive(Debug, Default)]
pub(crate) struct Channel2 {
/// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty
duty: SoundDuty,
/// 0xFF17 | NR22 - Channel 2 Volume ENvelope
envelope: VolumeEnvelope,
/// 0xFF18 | NR23 - Channel 2 Frequency low (lower 8 bits only)
freq_lo: u8,
/// 0xFF19 | NR24 - Channel 2 Frequency high
freq_hi: FrequencyHigh,
// Envelope Functionality
period_timer: u8,
current_volume: u8,
// Length Functionality
length_timer: u16,
freq_timer: u16,
duty_pos: u8,
enabled: bool,
}
impl Channel2 {
fn amplitude(&self) -> f32 {
let dac_input = self.duty.wave_pattern().amplitude(self.duty_pos) * self.current_volume;
(dac_input as f32 / 7.5) - 1.0
}
fn clock(&mut self) {
if self.freq_timer != 0 {
self.freq_timer -= 1;
}
if self.freq_timer == 0 {
// TODO: Why is this 2048?
self.freq_timer = (2048 - self.frequency()) * 4;
self.duty_pos = (self.duty_pos + 1) % 8;
}
}
/// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty
pub(crate) fn duty(&self) -> u8 {
u8::from(self.duty) | 0x3F
}
/// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty
pub(crate) fn set_duty(&mut self, byte: u8) {
self.duty = byte.into();
self.length_timer = 64 - self.duty.sound_length() as u16;
}
/// 0xFF17 | NR22 - Channel 2 Volume ENvelope
pub(crate) fn envelope(&self) -> u8 {
u8::from(self.envelope)
}
/// 0xFF17 | NR22 - Channel 2 Volume ENvelope
pub(crate) fn set_envelope(&mut self, byte: u8) {
self.envelope = byte.into()
}
/// 0xFF18 | NR23 - Channel 2 Frequency low (lower 8 bits only)
pub(crate) fn set_freq_lo(&mut self, byte: u8) {
self.freq_lo = byte;
}
/// 0xFF19 | NR24 - Channel 2 Frequency high
pub(crate) fn freq_hi(&self) -> u8 {
u8::from(self.freq_hi) | 0xBF
}
/// 0xFF19 | NR24 - Channel 2 Frequency high
pub(crate) fn set_freq_hi(&mut self, byte: u8) {
self.freq_hi = byte.into();
if self.freq_hi.initial() {
// Envelope behaviour during trigger event
self.period_timer = self.envelope.period();
self.current_volume = self.envelope.init_vol();
// Length behaviour during trigger event
if self.length_timer == 0 {
self.length_timer = 64;
}
self.enabled = true;
}
}
fn frequency(&self) -> u16 {
(self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16
}
}
#[derive(Debug, Default)]
pub(crate) struct Channel3 {
/// 0xFF1A | NR30 - Channel 3 Sound on/off
enabled: bool,
/// 0xFF1B | NR31 - Sound Length
len: u8,
/// 0xFF1C | NR32 - Channel 3 Volume
volume: Ch3Volume,
/// 0xFF1D | NR33 - Channel 3 Frequency low (lower 8 bits)
freq_lo: u8,
/// 0xFF1E | NR34 - Channel 3 Frequency high
freq_hi: FrequencyHigh,
wave_ram: [u8; WAVE_PATTERN_RAM_LEN],
// Length Functionality
length_timer: u16,
freq_timer: u16,
offset: u8,
}
impl BusIo for Channel3 {
fn read_byte(&self, addr: u16) -> u8 {
if self.enabled {
self.wave_ram[self.offset as usize]
} else {
self.wave_ram[(addr - Self::WAVE_RAM_START_ADDR) as usize]
}
}
fn write_byte(&mut self, addr: u16, byte: u8) {
if self.enabled {
self.wave_ram[self.offset as usize] = byte;
} else {
self.wave_ram[(addr - Self::WAVE_RAM_START_ADDR) as usize] = byte;
}
}
}
impl Channel3 {
const WAVE_RAM_START_ADDR: u16 = 0xFF30;
/// 0xFF1A | NR30 - Channel 3 Sound on/off
pub(crate) fn enabled(&self) -> u8 {
((self.enabled as u8) << 7) | 0x7F
}
/// 0xFF1A | NR30 - Channel 3 Sound on/off
pub(crate) fn set_enabled(&mut self, byte: u8) {
self.enabled = (byte >> 7) & 0x01 == 0x01;
}
/// 0xFF1B | NR31 - Sound Length
pub(crate) fn len(&self) -> u8 {
self.len | 0xFF
}
/// 0xFF1B | NR31 - Sound Length
pub(crate) fn set_len(&mut self, byte: u8) {
self.len = byte;
self.length_timer = 256 - self.len as u16;
}
/// 0xFF1C | NR32 - Channel 3 Volume
pub(crate) fn volume(&self) -> u8 {
((self.volume as u8) << 5) | 0x9F
}
/// 0xFF1C | NR32 - Channel 3 Volume
pub(crate) fn set_volume(&mut self, byte: u8) {
use Ch3Volume::*;
self.volume = match (byte >> 5) & 0x03 {
0b00 => Mute,
0b01 => Full,
0b10 => Half,
0b11 => Quarter,
_ => unreachable!("{:#04X} is not a valid value for Channel3Volume", byte),
};
}
/// 0xFF1D | NR33 - Channel 3 Frequency low (lower 8 bits)
pub(crate) fn set_freq_lo(&mut self, byte: u8) {
self.freq_lo = byte;
}
/// 0xFF1E | NR34 - Channel 3 Frequency high
pub(crate) fn freq_hi(&self) -> u8 {
u8::from(self.freq_hi) | 0xBF
}
/// 0xFF1E | NR34 - Channel 3 Frequency high
pub(crate) fn set_freq_hi(&mut self, byte: u8) {
self.freq_hi = byte.into();
if self.freq_hi.initial() {
// Length behaviour during trigger event
if self.length_timer == 0 {
self.length_timer = 256;
}
self.enabled = true;
}
}
fn amplitude(&self) -> f32 {
let dac_input =
(self.read_sample(self.offset) >> self.volume.shift_count()) * self.enabled as u8;
(dac_input as f32 / 7.5) - 1.0
}
fn clock(&mut self) {
if self.freq_timer != 0 {
self.freq_timer -= 1;
}
if self.freq_timer == 0 {
self.freq_timer = (2048 - self.frequency()) * 2;
self.offset = (self.offset + 1) % (WAVE_PATTERN_RAM_LEN * 2) as u8;
}
}
fn read_sample(&self, index: u8) -> u8 {
let i = (index / 2) as usize;
if index % 2 == 0 {
// We grab the high nibble on even indexes
self.wave_ram[i] >> 4
} else {
// We grab the low nibble on odd indexes
self.wave_ram[i] & 0x0F
}
}
fn frequency(&self) -> u16 {
(self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16
}
}
#[derive(Debug, Default)]
pub(crate) struct Channel4 {
/// 0xFF20 | NR41 - Channel 4 Sound Length
len: u8,
/// 0xFF21 | NR42 - Channel 4 Volume Envelope
envelope: VolumeEnvelope,
/// 0xFF22 | NR43 - Chanel 4 Polynomial Counter
poly: PolynomialCounter,
/// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart
freq: Ch4Frequency,
// Envelope Functionality
period_timer: u8,
current_volume: u8,
// Length Functionality
length_timer: u16,
/// Linear Feedback Shift Register (15-bit)
lf_shift: u16,
freq_timer: u16,
enabled: bool,
}
impl Channel4 {
/// 0xFF20 | NR41 - Channel 4 Sound Length
pub(crate) fn len(&self) -> u8 {
self.len | 0xFF
}
/// 0xFF20 | NR41 - Channel 4 Sound Length
pub(crate) fn set_len(&mut self, byte: u8) {
self.len = byte & 0x3F;
self.length_timer = 256 - self.len as u16;
}
/// 0xFF21 | NR42 - Channel 4 Volume Envelope
pub(crate) fn envelope(&self) -> u8 {
u8::from(self.envelope)
}
/// 0xFF21 | NR42 - Channel 4 Volume Envelope
pub(crate) fn set_envelope(&mut self, byte: u8) {
self.envelope = byte.into()
}
/// 0xFF22 | NR43 - Chanel 4 Polynomial Counter
pub(crate) fn poly(&self) -> u8 {
u8::from(self.poly)
}
/// 0xFF22 | NR43 - Chanel 4 Polynomial Counter
pub(crate) fn set_poly(&mut self, byte: u8) {
self.poly = byte.into();
}
/// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart
pub(crate) fn frequency(&self) -> u8 {
u8::from(self.freq) | 0xBF
}
/// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart
pub(crate) fn set_frequency(&mut self, byte: u8) {
self.freq = byte.into();
if self.freq.initial() {
// Envelope behaviour during trigger event
self.period_timer = self.envelope.period();
self.current_volume = self.envelope.init_vol();
// Length behaviour during trigger event
if self.length_timer == 0 {
self.length_timer = 64;
}
// LFSR behaviour during trigger event
self.lf_shift = 0x7FFF;
self.enabled = true;
}
}
fn amplitude(&self) -> f32 {
let dac_input = (!self.lf_shift & 0x01) as u8 * self.current_volume;
(dac_input as f32 / 7.5) - 1.0
}
fn clock(&mut self) {
if self.freq_timer != 0 {
self.freq_timer -= 1;
}
if self.freq_timer == 0 {
let divisor = Self::divisor(self.poly.divisor_code()) as u16;
self.freq_timer = divisor << self.poly.shift_count();
let xor_result = (self.lf_shift & 0x01) ^ ((self.lf_shift & 0x02) >> 1);
self.lf_shift = (self.lf_shift >> 1) | xor_result << 14;
if let CounterWidth::Long = self.poly.counter_width() {
self.lf_shift = (self.lf_shift & !(0x01 << 6)) | xor_result << 6;
}
}
}
fn divisor(code: u8) -> u8 {
if code == 0 {
return 8;
}
code << 4
}
}