use crate::bus::BusIo; use crate::emu::SM83_CLOCK_SPEED; use gen::SampleProducer; use types::ch1::{Sweep, SweepDirection}; use types::ch3::Volume as Ch3Volume; use types::ch4::{CounterWidth, Frequency as Ch4Frequency, PolynomialCounter}; use types::common::{EnvelopeDirection, FrequencyHigh, SoundDuty, VolumeEnvelope}; use types::{ChannelControl, FrameSequencerState, SoundOutput}; pub mod gen; mod types; const SAMPLE_INCREMENT: u64 = gen::SAMPLE_RATE as u64; const WAVE_PATTERN_RAM_LEN: usize = 0x10; #[derive(Default, Debug)] pub struct Apu { ctrl: SoundControl, /// Tone & Sweep ch1: Channel1, /// Tone ch2: Channel2, /// Wave ch3: Channel3, /// Noise ch4: Channel4, // Frame Sequencer frame_seq_state: FrameSequencerState, div_prev: Option, prod: Option>, sample_counter: u64, } impl BusIo for Apu { fn read_byte(&self, addr: u16) -> u8 { match addr & 0x00FF { 0x10 => self.ch1.sweep(), 0x11 => self.ch1.duty(), 0x12 => self.ch1.envelope(), 0x14 => self.ch1.freq_hi(), 0x16 => self.ch2.duty(), 0x17 => self.ch2.envelope(), 0x19 => self.ch2.freq_hi(), 0x1A => self.ch3.enabled(), 0x1B => self.ch3.len(), 0x1C => self.ch3.volume(), 0x1E => self.ch3.freq_hi(), 0x20 => self.ch4.len(), 0x21 => self.ch4.envelope(), 0x22 => self.ch4.poly(), 0x23 => self.ch4.frequency(), 0x24 => self.ctrl.channel(), 0x25 => self.ctrl.output(), 0x26 => self.ctrl.status(self), 0x30..=0x3F => self.ch3.read_byte(addr), _ => { eprintln!("Read 0xFF from unused IO register {:#06X} [APU]", addr); 0xFF } } } fn write_byte(&mut self, addr: u16, byte: u8) { match addr & 0x00FF { 0x10 if self.ctrl.enabled => self.ch1.set_sweep(byte), 0x11 if self.ctrl.enabled => self.ch1.set_duty(byte), 0x12 if self.ctrl.enabled => self.ch1.set_envelope(byte), 0x13 if self.ctrl.enabled => self.ch1.set_freq_lo(byte), 0x14 if self.ctrl.enabled => self.ch1.set_freq_hi(byte), 0x16 if self.ctrl.enabled => self.ch2.set_duty(byte), 0x17 if self.ctrl.enabled => self.ch2.set_envelope(byte), 0x18 if self.ctrl.enabled => self.ch2.set_freq_lo(byte), 0x19 if self.ctrl.enabled => self.ch2.set_freq_hi(byte), 0x1A if self.ctrl.enabled => self.ch3.set_enabled(byte), 0x1B if self.ctrl.enabled => self.ch3.set_len(byte), 0x1C if self.ctrl.enabled => self.ch3.set_volume(byte), 0x1D if self.ctrl.enabled => self.ch3.set_freq_lo(byte), 0x1E if self.ctrl.enabled => self.ch3.set_freq_hi(byte), 0x20 if self.ctrl.enabled => self.ch4.set_len(byte), 0x21 if self.ctrl.enabled => self.ch4.set_envelope(byte), 0x22 if self.ctrl.enabled => self.ch4.set_poly(byte), 0x23 if self.ctrl.enabled => self.ch4.set_frequency(byte), 0x24 if self.ctrl.enabled => self.ctrl.set_channel(byte), 0x25 if self.ctrl.enabled => self.ctrl.set_output(byte), 0x26 => self.set_status(byte), 0x30..=0x3F => self.ch3.write_byte(addr, byte), _ if !self.ctrl.enabled => {} _ => eprintln!( "Wrote {:#04X} to unused IO register {:#06X} [APU]", byte, addr ), } } } impl Apu { pub(crate) fn clock(&mut self, div: u16) { use FrameSequencerState::*; self.sample_counter += SAMPLE_INCREMENT; // the 5th bit of the high byte let bit_5 = (div >> 13 & 0x01) as u8; if let Some(0x01) = self.div_prev { if bit_5 == 0x00 { // Falling Edge, step the Frame Sequencer self.frame_seq_state.step(); match self.frame_seq_state { Step0Length => self.handle_length(), Step2LengthAndSweep => { self.handle_length(); self.handle_sweep(); } Step4Length => self.handle_length(), Step6LengthAndSweep => { self.handle_length(); self.handle_sweep(); } Step7VolumeEnvelope => self.handle_volume(), Step1Nothing | Step3Nothing | Step5Nothing => {} }; } } self.ch1.clock(); self.ch2.clock(); self.ch3.clock(); self.ch4.clock(); self.div_prev = Some(bit_5); if self.sample_counter >= SM83_CLOCK_SPEED { self.sample_counter %= SM83_CLOCK_SPEED; if let Some(ref mut prod) = self.prod { if prod.available_block() { // Sample the APU let ch1_amplitude = self.ch1.amplitude(); let ch1_left = self.ctrl.output.ch1_left() as u8 as f32 * ch1_amplitude; let ch1_right = self.ctrl.output.ch1_right() as u8 as f32 * ch1_amplitude; let ch2_amplitude = self.ch2.amplitude(); let ch2_left = self.ctrl.output.ch2_left() as u8 as f32 * ch2_amplitude; let ch2_right = self.ctrl.output.ch2_right() as u8 as f32 * ch2_amplitude; let ch3_amplitude = self.ch3.amplitude(); let ch3_left = self.ctrl.output.ch3_left() as u8 as f32 * ch3_amplitude; let ch3_right = self.ctrl.output.ch3_right() as u8 as f32 * ch3_amplitude; let ch4_amplitude = self.ch4.amplitude(); let ch4_left = self.ctrl.output.ch4_left() as u8 as f32 * ch4_amplitude; let ch4_right = self.ctrl.output.ch4_right() as u8 as f32 * ch4_amplitude; let left_mixed = (ch1_left + ch2_left + ch3_left + ch4_left) / 4.0; let right_mixed = (ch1_right + ch2_right + ch3_right + ch4_right) / 4.0; let left = (self.ctrl.channel.left_volume() + 1.0) * left_mixed; let right = (self.ctrl.channel.right_volume() + 1.0) * right_mixed; prod.push(left) .and(prod.push(right)) .expect("Add samples to ring buffer"); } } } } pub fn set_producer(&mut self, prod: SampleProducer) { self.prod = Some(prod); } /// 0xFF26 | NR52 - Sound On/Off pub(crate) fn set_status(&mut self, byte: u8) { self.ctrl.enabled = (byte >> 7) & 0x01 == 0x01; if self.ctrl.enabled { // Frame Sequencer reset to Step 0 self.frame_seq_state = Default::default(); // Square Duty units are reset to first step self.ch1.duty_pos = 0; self.ch2.duty_pos = 0; // Wave Channel's sample buffer reset to 0 } if !self.ctrl.enabled { self.reset(); } else { } } fn reset(&mut self) { // TODO: Clear readable sound registers self.ch1.sweep = Default::default(); self.ch1.duty = Default::default(); self.ch1.envelope = Default::default(); self.ch1.freq_lo = Default::default(); self.ch1.freq_hi = Default::default(); self.ch2.duty = Default::default(); self.ch2.envelope = Default::default(); self.ch2.freq_lo = Default::default(); self.ch2.freq_hi = Default::default(); self.ch3.enabled = Default::default(); self.ch3.len = Default::default(); self.ch3.volume = Default::default(); self.ch3.freq_lo = Default::default(); self.ch3.freq_hi = Default::default(); self.ch4.len = Default::default(); self.ch4.envelope = Default::default(); self.ch4.poly = Default::default(); self.ch4.freq = Default::default(); self.ctrl.channel = Default::default(); self.ctrl.output = Default::default(); // Disable the rest of the channels self.ch1.enabled = Default::default(); self.ch2.enabled = Default::default(); self.ch4.enabled = Default::default(); } fn clock_length(freq_hi: &FrequencyHigh, length_timer: &mut u16, enabled: &mut bool) { if freq_hi.length_disable() && *length_timer > 0 { *length_timer -= 1; // Check in this scope ensures (only) the above subtraction // made length_timer 0 if *length_timer == 0 { *enabled = false; } } } fn clock_length_ch4(freq: &Ch4Frequency, length_timer: &mut u16, enabled: &mut bool) { if freq.length_disable() && *length_timer > 0 { *length_timer -= 1; // Check in this scope ensures (only) the above subtraction // made length_timer 0 if *length_timer == 0 { *enabled = false; } } } fn handle_length(&mut self) { Self::clock_length( &self.ch1.freq_hi, &mut self.ch1.length_timer, &mut self.ch1.enabled, ); Self::clock_length( &self.ch2.freq_hi, &mut self.ch2.length_timer, &mut self.ch2.enabled, ); Self::clock_length( &self.ch3.freq_hi, &mut self.ch3.length_timer, &mut self.ch3.enabled, ); Self::clock_length_ch4( &self.ch4.freq, &mut self.ch4.length_timer, &mut self.ch4.enabled, ); } fn handle_sweep(&mut self) { if self.ch1.sweep_timer != 0 { self.ch1.sweep_timer -= 1; } if self.ch1.sweep_timer == 0 { let period = self.ch1.sweep.period(); self.ch1.sweep_timer = if period == 0 { 8 } else { period }; if self.ch1.sweep_enabled && period != 0 { let new_freq = self.ch1.calc_sweep_freq(); if new_freq <= 2047 && self.ch1.sweep.shift_count() != 0 { self.ch1.set_frequency(new_freq); self.ch1.shadow_freq = new_freq; let _ = self.ch1.calc_sweep_freq(); } } } } fn clock_envelope(envelope: &VolumeEnvelope, period_timer: &mut u8, current_volume: &mut u8) { use EnvelopeDirection::*; if envelope.period() != 0 { if *period_timer != 0 { *period_timer -= 1; } if *period_timer == 0 { *period_timer = envelope.period(); match envelope.direction() { Decrease if *current_volume > 0x00 => *current_volume -= 1, Increase if *current_volume < 0x0F => *current_volume += 1, _ => {} } } } } fn handle_volume(&mut self) { // Channels 1, 2 and 4 have Volume Envelopes Self::clock_envelope( &self.ch1.envelope, &mut self.ch1.period_timer, &mut self.ch1.current_volume, ); Self::clock_envelope( &self.ch2.envelope, &mut self.ch2.period_timer, &mut self.ch2.current_volume, ); Self::clock_envelope( &self.ch4.envelope, &mut self.ch4.period_timer, &mut self.ch4.current_volume, ); } } #[derive(Debug, Default)] pub(crate) struct SoundControl { /// 0xFF24 | NR50 - Channel Control channel: ChannelControl, /// 0xFF25 | NR51 - Selection of Sound output terminal output: SoundOutput, enabled: bool, } impl SoundControl { /// 0xFF24 | NR50 - Channel Control pub(crate) fn channel(&self) -> u8 { u8::from(self.channel) } /// 0xFF24 | NR50 - Channel Control pub(crate) fn set_channel(&mut self, byte: u8) { if self.enabled { self.channel = byte.into(); } } /// 0xFF25 | NR51 - Selection of Sound output terminal pub(crate) fn output(&self) -> u8 { u8::from(self.output) } /// 0xFF25 | NR51 - Selection of Sound output terminal pub(crate) fn set_output(&mut self, byte: u8) { if self.enabled { self.output = byte.into(); } } /// 0xFF26 | NR52 - Sound On/Off pub(crate) fn status(&self, apu: &Apu) -> u8 { (self.enabled as u8) << 7 | (apu.ch4.enabled as u8) << 3 | (apu.ch3.enabled as u8) << 2 | (apu.ch2.enabled as u8) << 1 | apu.ch1.enabled as u8 | 0x70 } } #[derive(Debug, Default)] pub(crate) struct Channel1 { /// 0xFF10 | NR10 - Channel 1 Sweep Register sweep: Sweep, /// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty duty: SoundDuty, /// 0xFF12 | NR12 - Channel 1 Volume Envelope envelope: VolumeEnvelope, /// 0xFF13 | NR13 - Channel 1 Frequency low (lower 8 bits only) freq_lo: u8, /// 0xFF14 | NR14 - Channel 1 Frequency high freq_hi: FrequencyHigh, // Envelope Functionality period_timer: u8, current_volume: u8, // Sweep Functionality sweep_timer: u8, shadow_freq: u16, sweep_enabled: bool, // Length Functionality length_timer: u16, freq_timer: u16, duty_pos: u8, enabled: bool, } impl Channel1 { fn amplitude(&self) -> f32 { let dac_input = self.duty.wave_pattern().amplitude(self.duty_pos) * self.current_volume; (dac_input as f32 / 7.5) - 1.0 } fn clock(&mut self) { if self.freq_timer != 0 { self.freq_timer -= 1; } if self.freq_timer == 0 { // TODO: Why is this 2048? self.freq_timer = (2048 - self.frequency()) * 4; self.duty_pos = (self.duty_pos + 1) % 8; } } /// 0xFF10 | NR10 - Channel 1 Sweep Register pub(crate) fn sweep(&self) -> u8 { u8::from(self.sweep) | 0x80 } /// 0xFF10 | NR10 - Channel 1 Sweep Register pub(crate) fn set_sweep(&mut self, byte: u8) { self.sweep = byte.into() } /// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty pub(crate) fn duty(&self) -> u8 { u8::from(self.duty) | 0x3F } /// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty pub(crate) fn set_duty(&mut self, byte: u8) { self.duty = byte.into(); self.length_timer = 64 - self.duty.sound_length() as u16; } /// 0xFF12 | NR12 - Channel 1 Volume Envelope pub fn envelope(&self) -> u8 { u8::from(self.envelope) } /// 0xFF12 | NR12 - Channel 1 Volume Envelope pub(crate) fn set_envelope(&mut self, byte: u8) { self.envelope = byte.into() } /// 0xFF13 | NR13 - Channel 1 Frequency low (lower 8 bits only) pub(crate) fn set_freq_lo(&mut self, byte: u8) { self.freq_lo = byte; } /// 0xFF14 | NR14 - Channel 1 Frequency high pub(crate) fn freq_hi(&self) -> u8 { u8::from(self.freq_hi) | 0xBF } /// 0xFF14 | NR14 - Channel 1 Frequency high pub(crate) fn set_freq_hi(&mut self, byte: u8) { self.freq_hi = byte.into(); // If this bit is set, a trigger event occurs if self.freq_hi.initial() { // Envelope Behaviour during trigger event self.period_timer = self.envelope.period(); self.current_volume = self.envelope.init_vol(); // Sweep behaviour during trigger event let sweep_period = self.sweep.period(); let sweep_shift = self.sweep.shift_count(); self.shadow_freq = self.frequency(); self.sweep_timer = if sweep_period == 0 { 8 } else { sweep_period }; if sweep_period != 0 || sweep_shift != 0 { self.sweep_enabled = true; } if sweep_shift != 0 { let _ = self.calc_sweep_freq(); } // Length behaviour during trigger event if self.length_timer == 0 { self.length_timer = 64; } self.enabled = true; } } fn calc_sweep_freq(&mut self) -> u16 { use SweepDirection::*; let shadow_freq_shifted = self.shadow_freq >> self.sweep.shift_count(); let new_freq = match self.sweep.direction() { Increase => self.shadow_freq + shadow_freq_shifted, Decrease => self.shadow_freq - shadow_freq_shifted, }; // Overflow check if new_freq > 2047 { self.enabled = false; } new_freq } fn set_frequency(&mut self, word: u16) { let freq_bits = word & 0x07FF; self.freq_lo = (freq_bits & 0x00FF) as u8; self.freq_hi .set_freq_bits(((freq_bits & 0x0700) >> 8) as u8); } fn frequency(&self) -> u16 { (self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16 } } #[derive(Debug, Default)] pub(crate) struct Channel2 { /// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty duty: SoundDuty, /// 0xFF17 | NR22 - Channel 2 Volume ENvelope envelope: VolumeEnvelope, /// 0xFF18 | NR23 - Channel 2 Frequency low (lower 8 bits only) freq_lo: u8, /// 0xFF19 | NR24 - Channel 2 Frequency high freq_hi: FrequencyHigh, // Envelope Functionality period_timer: u8, current_volume: u8, // Length Functionality length_timer: u16, freq_timer: u16, duty_pos: u8, enabled: bool, } impl Channel2 { fn amplitude(&self) -> f32 { let dac_input = self.duty.wave_pattern().amplitude(self.duty_pos) * self.current_volume; (dac_input as f32 / 7.5) - 1.0 } fn clock(&mut self) { if self.freq_timer != 0 { self.freq_timer -= 1; } if self.freq_timer == 0 { // TODO: Why is this 2048? self.freq_timer = (2048 - self.frequency()) * 4; self.duty_pos = (self.duty_pos + 1) % 8; } } /// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty pub(crate) fn duty(&self) -> u8 { u8::from(self.duty) | 0x3F } /// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty pub(crate) fn set_duty(&mut self, byte: u8) { self.duty = byte.into(); self.length_timer = 64 - self.duty.sound_length() as u16; } /// 0xFF17 | NR22 - Channel 2 Volume ENvelope pub(crate) fn envelope(&self) -> u8 { u8::from(self.envelope) } /// 0xFF17 | NR22 - Channel 2 Volume ENvelope pub(crate) fn set_envelope(&mut self, byte: u8) { self.envelope = byte.into() } /// 0xFF18 | NR23 - Channel 2 Frequency low (lower 8 bits only) pub(crate) fn set_freq_lo(&mut self, byte: u8) { self.freq_lo = byte; } /// 0xFF19 | NR24 - Channel 2 Frequency high pub(crate) fn freq_hi(&self) -> u8 { u8::from(self.freq_hi) | 0xBF } /// 0xFF19 | NR24 - Channel 2 Frequency high pub(crate) fn set_freq_hi(&mut self, byte: u8) { self.freq_hi = byte.into(); if self.freq_hi.initial() { // Envelope behaviour during trigger event self.period_timer = self.envelope.period(); self.current_volume = self.envelope.init_vol(); // Length behaviour during trigger event if self.length_timer == 0 { self.length_timer = 64; } self.enabled = true; } } fn frequency(&self) -> u16 { (self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16 } } #[derive(Debug, Default)] pub(crate) struct Channel3 { /// 0xFF1A | NR30 - Channel 3 Sound on/off enabled: bool, /// 0xFF1B | NR31 - Sound Length len: u8, /// 0xFF1C | NR32 - Channel 3 Volume volume: Ch3Volume, /// 0xFF1D | NR33 - Channel 3 Frequency low (lower 8 bits) freq_lo: u8, /// 0xFF1E | NR34 - Channel 3 Frequency high freq_hi: FrequencyHigh, wave_ram: [u8; WAVE_PATTERN_RAM_LEN], // Length Functionality length_timer: u16, freq_timer: u16, offset: u8, } impl BusIo for Channel3 { fn read_byte(&self, addr: u16) -> u8 { if self.enabled { self.wave_ram[self.offset as usize] } else { self.wave_ram[(addr - Self::WAVE_RAM_START_ADDR) as usize] } } fn write_byte(&mut self, addr: u16, byte: u8) { if self.enabled { self.wave_ram[self.offset as usize] = byte; } else { self.wave_ram[(addr - Self::WAVE_RAM_START_ADDR) as usize] = byte; } } } impl Channel3 { const WAVE_RAM_START_ADDR: u16 = 0xFF30; /// 0xFF1A | NR30 - Channel 3 Sound on/off pub(crate) fn enabled(&self) -> u8 { ((self.enabled as u8) << 7) | 0x7F } /// 0xFF1A | NR30 - Channel 3 Sound on/off pub(crate) fn set_enabled(&mut self, byte: u8) { self.enabled = (byte >> 7) & 0x01 == 0x01; } /// 0xFF1B | NR31 - Sound Length pub(crate) fn len(&self) -> u8 { self.len | 0xFF } /// 0xFF1B | NR31 - Sound Length pub(crate) fn set_len(&mut self, byte: u8) { self.len = byte; self.length_timer = 256 - self.len as u16; } /// 0xFF1C | NR32 - Channel 3 Volume pub(crate) fn volume(&self) -> u8 { ((self.volume as u8) << 5) | 0x9F } /// 0xFF1C | NR32 - Channel 3 Volume pub(crate) fn set_volume(&mut self, byte: u8) { use Ch3Volume::*; self.volume = match (byte >> 5) & 0x03 { 0b00 => Mute, 0b01 => Full, 0b10 => Half, 0b11 => Quarter, _ => unreachable!("{:#04X} is not a valid value for Channel3Volume", byte), }; } /// 0xFF1D | NR33 - Channel 3 Frequency low (lower 8 bits) pub(crate) fn set_freq_lo(&mut self, byte: u8) { self.freq_lo = byte; } /// 0xFF1E | NR34 - Channel 3 Frequency high pub(crate) fn freq_hi(&self) -> u8 { u8::from(self.freq_hi) | 0xBF } /// 0xFF1E | NR34 - Channel 3 Frequency high pub(crate) fn set_freq_hi(&mut self, byte: u8) { self.freq_hi = byte.into(); if self.freq_hi.initial() { // Length behaviour during trigger event if self.length_timer == 0 { self.length_timer = 256; } self.enabled = true; } } fn amplitude(&self) -> f32 { let dac_input = (self.read_sample(self.offset) >> self.volume.shift_count()) * self.enabled as u8; (dac_input as f32 / 7.5) - 1.0 } fn clock(&mut self) { if self.freq_timer != 0 { self.freq_timer -= 1; } if self.freq_timer == 0 { self.freq_timer = (2048 - self.frequency()) * 2; self.offset = (self.offset + 1) % (WAVE_PATTERN_RAM_LEN * 2) as u8; } } fn read_sample(&self, index: u8) -> u8 { let i = (index / 2) as usize; if index % 2 == 0 { // We grab the high nibble on even indexes self.wave_ram[i] >> 4 } else { // We grab the low nibble on odd indexes self.wave_ram[i] & 0x0F } } fn frequency(&self) -> u16 { (self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16 } } #[derive(Debug, Default)] pub(crate) struct Channel4 { /// 0xFF20 | NR41 - Channel 4 Sound Length len: u8, /// 0xFF21 | NR42 - Channel 4 Volume Envelope envelope: VolumeEnvelope, /// 0xFF22 | NR43 - Chanel 4 Polynomial Counter poly: PolynomialCounter, /// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart freq: Ch4Frequency, // Envelope Functionality period_timer: u8, current_volume: u8, // Length Functionality length_timer: u16, /// Linear Feedback Shift Register (15-bit) lf_shift: u16, freq_timer: u16, enabled: bool, } impl Channel4 { /// 0xFF20 | NR41 - Channel 4 Sound Length pub(crate) fn len(&self) -> u8 { self.len | 0xFF } /// 0xFF20 | NR41 - Channel 4 Sound Length pub(crate) fn set_len(&mut self, byte: u8) { self.len = byte & 0x3F; self.length_timer = 256 - self.len as u16; } /// 0xFF21 | NR42 - Channel 4 Volume Envelope pub(crate) fn envelope(&self) -> u8 { u8::from(self.envelope) } /// 0xFF21 | NR42 - Channel 4 Volume Envelope pub(crate) fn set_envelope(&mut self, byte: u8) { self.envelope = byte.into() } /// 0xFF22 | NR43 - Chanel 4 Polynomial Counter pub(crate) fn poly(&self) -> u8 { u8::from(self.poly) } /// 0xFF22 | NR43 - Chanel 4 Polynomial Counter pub(crate) fn set_poly(&mut self, byte: u8) { self.poly = byte.into(); } /// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart pub(crate) fn frequency(&self) -> u8 { u8::from(self.freq) | 0xBF } /// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart pub(crate) fn set_frequency(&mut self, byte: u8) { self.freq = byte.into(); if self.freq.initial() { // Envelope behaviour during trigger event self.period_timer = self.envelope.period(); self.current_volume = self.envelope.init_vol(); // Length behaviour during trigger event if self.length_timer == 0 { self.length_timer = 64; } // LFSR behaviour during trigger event self.lf_shift = 0x7FFF; self.enabled = true; } } fn amplitude(&self) -> f32 { let dac_input = (!self.lf_shift & 0x01) as u8 * self.current_volume; (dac_input as f32 / 7.5) - 1.0 } fn clock(&mut self) { if self.freq_timer != 0 { self.freq_timer -= 1; } if self.freq_timer == 0 { let divisor = Self::divisor(self.poly.divisor_code()) as u16; self.freq_timer = divisor << self.poly.shift_count(); let xor_result = (self.lf_shift & 0x01) ^ ((self.lf_shift & 0x02) >> 1); self.lf_shift = (self.lf_shift >> 1) | xor_result << 14; if let CounterWidth::Long = self.poly.counter_width() { self.lf_shift = (self.lf_shift & !(0x01 << 6)) | xor_result << 6; } } } fn divisor(code: u8) -> u8 { if code == 0 { return 8; } code << 4 } }