gb/src/ppu.rs
Rekai Musuka b57df3d2a7 chore(ppu): rename Pixel to Pixels
Since the Pixel struct represents 8 pixels in a 2BPP format, I felt like
the name of the type needed to represent this
2021-05-04 22:55:34 -05:00

1005 lines
28 KiB
Rust

use crate::Cycle;
use crate::GB_HEIGHT;
use crate::GB_WIDTH;
use std::collections::VecDeque;
use std::convert::TryInto;
use registers::{
BackgroundPalette, GrayShade, LCDControl, LCDStatus, ObjectFlags, ObjectPalette,
ObjectPaletteId, Pixels, PpuMode, RenderPriority, TileDataAddress,
};
mod registers;
const VRAM_SIZE: usize = 0x2000;
const OAM_SIZE: usize = 0xA0;
const PPU_START_ADDRESS: usize = 0x8000;
// OAM Scan
const OBJECT_LIMIT: usize = 10;
// // White
// const WHITE: [u8; 4] = 0xFFFFFFFFu32.to_be_bytes();
// const LIGHT_GRAY: [u8; 4] = 0xB6B6B6FFu32.to_be_bytes();
// const DARK_GRAY: [u8; 4] = 0x676767FFu32.to_be_bytes();
// const BLACK: [u8; 4] = 0x000000FFu32.to_be_bytes();
// Green
const WHITE: [u8; 4] = 0xE3EEC0FFu32.to_be_bytes();
const LIGHT_GRAY: [u8; 4] = 0xAEBA89FFu32.to_be_bytes();
const DARK_GRAY: [u8; 4] = 0x5E6745FFu32.to_be_bytes();
const BLACK: [u8; 4] = 0x202020FFu32.to_be_bytes();
#[derive(Debug, Clone)]
pub struct Ppu {
pub int: Interrupt,
pub control: LCDControl,
pub monochrome: Monochrome,
pub pos: ScreenPosition,
pub vram: Box<[u8; VRAM_SIZE]>,
pub stat: LCDStatus,
pub oam: ObjectAttributeTable,
scan_state: OamScanState,
fetcher: PixelFetcher,
fifo: FifoRenderer,
obj_buffer: ObjectBuffer,
frame_buf: Box<[u8; GB_WIDTH * GB_HEIGHT * 4]>,
window_stat: WindowStatus,
x_pos: u8,
cycles: Cycle, // TODO: Rename this to Cycle
}
impl Ppu {
pub fn read_byte(&self, addr: u16) -> u8 {
self.vram[addr as usize - PPU_START_ADDRESS]
}
pub fn write_byte(&mut self, addr: u16, byte: u8) {
self.vram[addr as usize - PPU_START_ADDRESS] = byte;
}
}
impl Ppu {
pub fn step(&mut self, cycles: Cycle) {
let start: u32 = self.cycles.into();
let end: u32 = cycles.into();
for _ in start..(start + end) {
self.cycles += 1;
match self.stat.mode() {
PpuMode::OamScan => {
if self.cycles >= 80.into() {
self.stat.set_mode(PpuMode::Drawing);
}
self.scan_oam();
}
PpuMode::Drawing => {
if self.x_pos >= 160 {
if self.stat.hblank_int() {
// Enable HBlank LCDStat Interrupt
self.int.set_lcd_stat(true);
}
// Done with rendering this frame,
// we can reset the ppu x_pos and fetcher state now
self.x_pos = 0;
self.fetcher.hblank_reset();
self.obj_buffer.clear();
self.stat.set_mode(PpuMode::HBlank);
} else if self.control.lcd_enabled() {
// Only Draw when the LCD Is Enabled
self.draw(self.cycles.into());
} else {
self.reset();
}
}
PpuMode::HBlank => {
// This mode will always end at 456 cycles
if self.cycles >= 456.into() {
self.cycles %= 456;
self.pos.line_y += 1;
// New Scanline is next, check for LYC=LY
if self.stat.coincidence_int() {
let are_equal = self.pos.line_y == self.pos.ly_compare;
self.stat.set_coincidence(are_equal);
}
let next_mode = if self.pos.line_y >= 144 {
// Request VBlank Interrupt
self.int.set_vblank(true);
// Reset Window Line Counter in Fetcher
self.fetcher.vblank_reset();
if self.stat.vblank_int() {
// Enable Vblank LCDStat Interrupt
self.int.set_lcd_stat(true);
}
PpuMode::VBlank
} else {
if self.stat.oam_int() {
// Enable OAM LCDStat Interrupt
self.int.set_lcd_stat(true);
}
self.scan_state.reset();
PpuMode::OamScan
};
self.stat.set_mode(next_mode);
}
}
PpuMode::VBlank => {
if self.cycles > 456.into() {
self.cycles %= 456;
self.pos.line_y += 1;
// New Scanline is next, check for LYC=LY
if self.stat.coincidence_int() {
let are_equal = self.pos.line_y == self.pos.ly_compare;
self.stat.set_coincidence(are_equal);
}
if self.pos.line_y == 154 {
self.pos.line_y = 0;
if self.stat.oam_int() {
// Enable OAM LCDStat Interrupt
self.int.set_lcd_stat(true);
}
self.scan_state.reset();
self.window_stat.set_coincidence(false);
self.stat.set_mode(PpuMode::OamScan);
}
}
}
}
}
}
fn scan_oam(&mut self) {
if self.scan_state.mode() == OamScanMode::Scan {
let sprite_height = self.control.obj_size().as_u8();
let index = self.scan_state.count();
let attr = self.oam.attribute(index as usize);
let line_y = self.pos.line_y + 16;
if attr.x > 0
&& line_y >= attr.y
&& line_y < (attr.y + sprite_height)
&& !self.obj_buffer.is_full()
{
self.obj_buffer.add(attr);
}
self.scan_state.increase();
}
self.scan_state.next();
}
fn draw(&mut self, _cycle: u32) {
use FetcherState::*;
let iter = &mut self.obj_buffer.iter();
let obj_attr = loop {
match iter.flatten().next() {
Some(attr) => {
if attr.x <= (self.x_pos + 8) {
self.fetcher.bg.reset();
self.fetcher.bg.pause();
self.fifo.pause();
break Some(*attr);
}
}
None => break None,
}
};
if let Some(attr) = obj_attr {
match self.fetcher.obj.state {
TileNumber => {
self.fetcher.obj.tile.with_id(attr.tile_index);
self.fetcher.obj.next(ToLowByteSleep);
}
ToLowByteSleep => self.fetcher.obj.next(TileLowByte),
TileLowByte => {
let obj_size = self.control.obj_size().as_u8();
let addr = PixelFetcher::get_obj_low_addr(&attr, &self.pos, obj_size);
let byte = self.read_byte(addr);
self.fetcher.obj.tile.with_low_byte(byte);
self.fetcher.obj.next(ToHighByteSleep);
}
ToHighByteSleep => self.fetcher.obj.next(TileHighByte),
TileHighByte => {
let obj_size = self.control.obj_size().as_u8();
let addr = PixelFetcher::get_obj_low_addr(&attr, &self.pos, obj_size);
let byte = self.read_byte(addr + 1);
self.fetcher.obj.tile.with_high_byte(byte);
self.fetcher.obj.next(ToFifoSleep);
}
ToFifoSleep => self.fetcher.obj.next(SendToFifoOne),
SendToFifoOne => {
// Load into Fifo
let maybe_low = self.fetcher.obj.tile.low;
let maybe_high = self.fetcher.obj.tile.high;
let (low, high) = maybe_low
.zip(maybe_high)
.expect("Low & High Bytes in TileBuilder were unexpectedly missing.");
let tbpp = Pixels::from_bytes(high, low);
let palette = match attr.flags.palette() {
ObjectPaletteId::Zero => self.monochrome.obj_palette_0,
ObjectPaletteId::One => self.monochrome.obj_palette_1,
};
let end = Pixels::PIXEL_COUNT - self.fifo.object.len();
let start = Pixels::PIXEL_COUNT - end;
let x_flip = attr.flags.x_flip();
for i in start..Pixels::PIXEL_COUNT {
let x = if x_flip { 7 - i } else { i };
let priority = attr.flags.priority();
let shade = palette.shade(tbpp.shade_id(x));
let fifo_info = ObjectFifoInfo {
shade,
palette,
priority,
};
self.fifo.object.push_back(fifo_info);
}
self.fetcher.bg.resume();
self.fifo.resume();
self.obj_buffer.remove(&attr);
self.fetcher.obj.next(SendToFifoTwo);
}
SendToFifoTwo => self.fetcher.obj.reset(),
}
}
if self.fetcher.bg.is_enabled() {
match self.fetcher.bg.state {
TileNumber => {
// Increment Window line counter if scanline had any window pixels on it
// only increment once per scanline though
if self.window_stat.should_draw() {
self.fetcher.bg.window_line.increment();
}
let x_pos = self.fetcher.x_pos;
let addr = self.fetcher.bg_tile_num_addr(
&self.control,
&self.pos,
x_pos,
self.window_stat.should_draw(),
);
let id = self.read_byte(addr);
self.fetcher.bg.tile.with_id(id);
// Move on to the Next state in 2 T-cycles
self.fetcher.bg.next(ToLowByteSleep);
}
ToLowByteSleep => self.fetcher.bg.next(TileLowByte),
TileLowByte => {
let addr = self.fetcher.bg_byte_low_addr(
&self.control,
&self.pos,
self.window_stat.should_draw(),
);
let low = self.read_byte(addr);
self.fetcher.bg.tile.with_low_byte(low);
self.fetcher.bg.next(ToHighByteSleep);
}
ToHighByteSleep => self.fetcher.bg.next(TileHighByte),
TileHighByte => {
let addr = self.fetcher.bg_byte_low_addr(
&self.control,
&self.pos,
self.window_stat.should_draw(),
);
let high = self.read_byte(addr + 1);
self.fetcher.bg.tile.with_high_byte(high);
self.fetcher.bg.next(ToFifoSleep);
}
ToFifoSleep => self.fetcher.bg.next(SendToFifoOne),
SendToFifoOne => {
self.fetcher.bg.next(SendToFifoTwo);
}
SendToFifoTwo => {
let palette = &self.monochrome.bg_palette;
self.fetcher.send_to_fifo(&mut self.fifo, palette);
// FIXME: Should this be equivalent to a reset?
self.fetcher.bg.next(TileNumber);
}
}
}
if self.fifo.is_enabled() {
// Handle Background Pixel and Sprite FIFO
let bg_enabled = self.control.bg_win_enabled();
// FIXME: Is this the correct behaviour
let bg_zero_colour = self.monochrome.bg_palette.i0_colour();
let maybe_rgba = self.fifo.background.pop_front().map(|bg_info| {
match self.fifo.object.pop_front() {
Some(obj_info) => match obj_info.shade {
Some(obj_shade) => match obj_info.priority {
RenderPriority::BackgroundAndWindow => match bg_info.shade {
GrayShade::White => obj_shade.into_rgba(),
_ if bg_enabled => bg_info.shade.into_rgba(),
_ => bg_zero_colour.into_rgba(),
},
RenderPriority::Object => obj_shade.into_rgba(),
},
None if bg_enabled => bg_info.shade.into_rgba(),
None => bg_zero_colour.into_rgba(),
},
None if bg_enabled => bg_info.shade.into_rgba(),
None => bg_zero_colour.into_rgba(),
}
});
if let Some(rgba) = maybe_rgba.as_ref() {
let y = self.pos.line_y as usize;
let x = self.x_pos as usize;
let i = (GB_WIDTH * 4) * y + (x * 4);
self.frame_buf[i..(i + rgba.len())].copy_from_slice(rgba);
self.x_pos += 1;
// Determine whether we should draw the window next frame
if self.pos.line_y == self.pos.window_y {
self.window_stat.set_coincidence(true);
}
if self.window_stat.coincidence()
&& self.control.window_enabled()
&& self.x_pos >= self.pos.window_x - 7
{
self.window_stat.set_should_draw(true);
self.fetcher.bg.reset();
self.fifo.background.clear();
self.fetcher.x_pos = 0;
} else {
self.window_stat.set_should_draw(false);
}
}
}
}
fn reset(&mut self) {
// FIXME: Discover what actually is supposed to be reset here
self.scan_state = Default::default();
self.cycles = Cycle::new(0);
self.x_pos = 0;
self.window_stat = Default::default();
self.stat.set_mode(PpuMode::OamScan);
self.pos.line_y = 0;
self.fetcher.bg.reset();
self.fetcher.obj.reset();
self.obj_buffer.clear();
}
pub fn copy_to_gui(&self, frame: &mut [u8]) {
frame.copy_from_slice(self.frame_buf.as_ref());
}
}
impl Default for Ppu {
fn default() -> Self {
Self {
vram: Box::new([0u8; VRAM_SIZE]),
cycles: Cycle::new(0),
frame_buf: Box::new([0; GB_WIDTH * GB_HEIGHT * 4]),
int: Default::default(),
control: Default::default(),
monochrome: Default::default(),
pos: Default::default(),
stat: Default::default(),
oam: Default::default(),
scan_state: Default::default(),
fetcher: Default::default(),
fifo: Default::default(),
obj_buffer: Default::default(),
window_stat: Default::default(),
x_pos: 0,
}
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Interrupt {
_vblank: bool,
_lcd_stat: bool,
}
impl Interrupt {
pub fn vblank(&self) -> bool {
self._vblank
}
pub fn set_vblank(&mut self, enabled: bool) {
self._vblank = enabled;
}
pub fn lcd_stat(&self) -> bool {
self._lcd_stat
}
pub fn set_lcd_stat(&mut self, enabled: bool) {
self._lcd_stat = enabled;
}
}
#[derive(Debug, Clone, Copy, Default)]
pub struct ScreenPosition {
pub scroll_y: u8,
pub scroll_x: u8,
pub line_y: u8,
pub ly_compare: u8,
pub window_y: u8,
pub window_x: u8,
}
#[derive(Debug, Clone, Copy, Default)]
pub struct Monochrome {
pub bg_palette: BackgroundPalette,
pub obj_palette_0: ObjectPalette,
pub obj_palette_1: ObjectPalette,
}
#[derive(Debug, Clone)]
pub struct ObjectAttributeTable {
buf: Box<[u8; OAM_SIZE]>,
}
impl ObjectAttributeTable {
pub fn read_byte(&self, addr: u16) -> u8 {
let index = (addr - 0xFE00) as usize;
self.buf[index]
}
pub fn write_byte(&mut self, addr: u16, byte: u8) {
let index = (addr - 0xFE00) as usize;
self.buf[index] = byte;
}
pub fn attribute(&self, index: usize) -> ObjectAttribute {
let start = index * 4;
let slice: &[u8; 4] = self.buf[start..(start + 4)]
.try_into()
.expect("Could not interpret &[u8] as a &[u8; 4]");
slice.into()
}
}
impl Default for ObjectAttributeTable {
fn default() -> Self {
Self {
buf: Box::new([0; OAM_SIZE]),
}
}
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
pub struct ObjectAttribute {
y: u8,
x: u8,
tile_index: u8,
flags: ObjectFlags,
}
impl From<[u8; 4]> for ObjectAttribute {
fn from(bytes: [u8; 4]) -> Self {
Self {
y: bytes[0],
x: bytes[1],
tile_index: bytes[2],
flags: bytes[3].into(),
}
}
}
impl<'a> From<&'a [u8; 4]> for ObjectAttribute {
fn from(bytes: &'a [u8; 4]) -> Self {
Self {
y: bytes[0],
x: bytes[1],
tile_index: bytes[2],
flags: bytes[3].into(),
}
}
}
#[derive(Debug, Clone, Copy)]
struct ObjectBuffer {
buf: [Option<ObjectAttribute>; OBJECT_LIMIT],
len: usize,
}
impl ObjectBuffer {
pub fn iter(&self) -> std::slice::Iter<'_, Option<ObjectAttribute>> {
self.into_iter()
}
}
impl<'a> IntoIterator for &'a ObjectBuffer {
type Item = &'a Option<ObjectAttribute>;
type IntoIter = std::slice::Iter<'a, Option<ObjectAttribute>>;
fn into_iter(self) -> Self::IntoIter {
self.buf.iter()
}
}
impl<'a> IntoIterator for &'a mut ObjectBuffer {
type Item = &'a Option<ObjectAttribute>;
type IntoIter = std::slice::Iter<'a, Option<ObjectAttribute>>;
fn into_iter(self) -> Self::IntoIter {
self.buf.iter()
}
}
impl ObjectBuffer {
pub fn is_full(&self) -> bool {
self.len == OBJECT_LIMIT
}
pub fn clear(&mut self) {
self.buf = [Default::default(); 10];
self.len = 0;
}
pub fn add(&mut self, attr: ObjectAttribute) {
self.buf[self.len] = Some(attr);
self.len += 1;
}
pub fn remove(&mut self, attr: &ObjectAttribute) {
let maybe_index = self.buf.iter().position(|maybe_attr| match maybe_attr {
Some(other_attr) => attr == other_attr,
None => false,
});
if let Some(i) = maybe_index {
self.buf[i] = None;
}
}
}
impl Default for ObjectBuffer {
fn default() -> Self {
Self {
buf: [Default::default(); OBJECT_LIMIT],
len: Default::default(),
}
}
}
#[derive(Debug, Clone, Copy, Default)]
struct PixelFetcher {
x_pos: u8,
bg: BackgroundFetcher,
obj: ObjectFetcher,
}
impl PixelFetcher {
pub fn hblank_reset(&mut self) {
self.bg.window_line.hblank_reset();
self.bg.tile = Default::default();
self.bg.state = Default::default();
self.x_pos = 0;
}
pub fn vblank_reset(&mut self) {
self.bg.window_line.vblank_reset();
}
fn bg_tile_num_addr(
&self,
control: &LCDControl,
pos: &ScreenPosition,
x_pos: u8,
window: bool,
) -> u16 {
let line_y = pos.line_y;
let scroll_y = pos.scroll_y;
let scroll_x = pos.scroll_x;
// Determine which tile map is being used
let tile_map = if window {
control.win_tile_map_addr()
} else {
control.bg_tile_map_addr()
};
let tile_map_addr = tile_map.into_address();
// Both Offsets are used to offset the tile map address we found above
// Offsets are ANDed wih 0x3FF so that we stay in bounds of tile map memory
// TODO: Is this necessary / important in other fetcher modes?
let scx_offset = if window { 0u16 } else { scroll_x as u16 / 8 } & 0x1F;
let y_offset = if window {
32 * (self.bg.window_line.count() as u16 / 8)
} else {
(32 * (((line_y as u16 + scroll_y as u16) & 0xFF) / 8)) & 0x3FF
};
let x_offset = (x_pos as u16 + scx_offset) & 0x3FF;
let y_offset = y_offset;
tile_map_addr + x_offset + y_offset
}
fn bg_byte_low_addr(
&mut self,
control: &LCDControl,
pos: &ScreenPosition,
window: bool,
) -> u16 {
let line_y = pos.line_y;
let scroll_y = pos.scroll_y;
let id = self.bg.tile.id.expect("Tile Number unexpectedly missing");
let tile_data_addr = match control.tile_data_addr() {
TileDataAddress::X8800 => 0x9000u16.wrapping_add((id as i8 * 16) as u16),
TileDataAddress::X8000 => 0x8000 + (id as u16 * 16),
};
let offset = 2 * if window {
self.bg.window_line.count() % 8
} else {
(line_y + scroll_y) % 8
};
tile_data_addr + offset as u16
}
fn send_to_fifo(&mut self, fifo: &mut FifoRenderer, palette: &BackgroundPalette) {
let maybe_low = self.bg.tile.low;
let maybe_high = self.bg.tile.high;
let (low, high) = maybe_low
.zip(maybe_high)
.expect("Low & High Bytes in TileBuilder were unexpectedly missing.");
let tbpp = Pixels::from_bytes(high, low);
if fifo.background.is_empty() {
for x in 0..Pixels::PIXEL_COUNT {
let shade = palette.shade(tbpp.shade_id(x));
let fifo_info = BackgroundFifoInfo { shade };
fifo.background.push_back(fifo_info);
}
}
self.x_pos += 1;
}
pub fn get_obj_low_addr(attr: &ObjectAttribute, pos: &ScreenPosition, obj_size: u8) -> u16 {
let line_y = pos.line_y;
let scroll_y = pos.scroll_y;
let offset = 2 * if attr.flags.y_flip() {
obj_size - (line_y + scroll_y) % 8
} else {
(line_y + scroll_y) % 8
};
0x8000 + (attr.tile_index as u16 * 16) + offset as u16
}
}
trait Fetcher {
fn next(&mut self, state: FetcherState);
fn reset(&mut self);
fn pause(&mut self);
fn resume(&mut self);
fn is_enabled(&self) -> bool;
}
#[derive(Debug, Clone, Copy)]
struct BackgroundFetcher {
state: FetcherState,
tile: TileBuilder,
window_line: WindowLineCounter,
enabled: bool,
}
impl Fetcher for BackgroundFetcher {
fn next(&mut self, state: FetcherState) {
self.state = state
}
fn reset(&mut self) {
self.state = FetcherState::TileNumber;
self.tile = Default::default();
}
fn pause(&mut self) {
self.enabled = false;
}
fn resume(&mut self) {
self.enabled = true;
}
fn is_enabled(&self) -> bool {
self.enabled
}
}
impl Default for BackgroundFetcher {
fn default() -> Self {
Self {
state: Default::default(),
tile: Default::default(),
window_line: Default::default(),
enabled: true,
}
}
}
#[derive(Debug, Clone, Copy, Default)]
struct ObjectFetcher {
state: FetcherState,
tile: TileBuilder,
enabled: bool,
}
impl Fetcher for ObjectFetcher {
fn next(&mut self, state: FetcherState) {
self.state = state
}
fn reset(&mut self) {
self.state = FetcherState::TileNumber;
}
fn pause(&mut self) {
self.enabled = false;
}
fn resume(&mut self) {
self.enabled = true;
}
fn is_enabled(&self) -> bool {
self.enabled
}
}
#[derive(Debug, Clone, Copy, Default)]
struct WindowLineCounter {
count: u8,
checked: bool,
}
impl WindowLineCounter {
pub fn checked(&self) -> bool {
self.checked
}
pub fn increment(&mut self) {
self.count += 1;
self.checked = true;
}
pub fn hblank_reset(&mut self) {
self.checked = false;
}
pub fn vblank_reset(&mut self) {
self.count = 0;
self.checked = false;
}
pub fn count(&self) -> u8 {
self.count
}
}
#[derive(Debug, Clone, Copy)]
pub enum FetcherState {
TileNumber,
ToLowByteSleep,
TileLowByte,
ToHighByteSleep,
TileHighByte,
ToFifoSleep,
SendToFifoOne,
SendToFifoTwo,
}
impl Default for FetcherState {
fn default() -> Self {
Self::TileNumber
}
}
#[derive(Debug, Clone, Copy, Default)]
struct BackgroundFifoInfo {
shade: GrayShade,
}
#[derive(Debug, Clone, Copy, Default)]
struct ObjectFifoInfo {
shade: Option<GrayShade>,
palette: ObjectPalette,
priority: RenderPriority,
}
// FIXME: Fifo Registers have a known size. Are heap allocations
// really necessary here?
#[derive(Debug, Clone)]
struct FifoRenderer {
background: VecDeque<BackgroundFifoInfo>,
object: VecDeque<ObjectFifoInfo>,
enabled: bool,
}
impl FifoRenderer {
pub fn is_enabled(&self) -> bool {
self.enabled
}
pub fn pause(&mut self) {
self.enabled = false;
}
pub fn resume(&mut self) {
self.enabled = true;
}
}
impl Default for FifoRenderer {
fn default() -> Self {
Self {
background: VecDeque::with_capacity(8),
object: VecDeque::with_capacity(8),
enabled: true,
}
}
}
#[derive(Debug, Clone, Copy, Default)]
struct TileBuilder {
id: Option<u8>,
low: Option<u8>,
high: Option<u8>,
}
impl TileBuilder {
pub fn with_id(&mut self, id: u8) {
self.id = Some(id);
}
pub fn with_low_byte(&mut self, data: u8) {
self.low = Some(data);
}
pub fn with_high_byte(&mut self, data: u8) {
self.high = Some(data);
}
}
#[derive(Debug, Clone, Copy, Default)]
struct OamScanState {
count: u8,
mode: OamScanMode,
}
impl OamScanState {
pub fn increase(&mut self) {
self.count += 1;
self.count %= 40;
}
pub fn reset(&mut self) {
self.count = Default::default();
self.mode = Default::default();
}
pub fn count(&self) -> u8 {
self.count
}
pub fn mode(&self) -> OamScanMode {
self.mode
}
pub fn next(&mut self) {
use OamScanMode::*;
self.mode = match self.mode {
Scan => Sleep,
Sleep => Scan,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
enum OamScanMode {
Scan,
Sleep,
}
impl Default for OamScanMode {
fn default() -> Self {
Self::Scan
}
}
#[derive(Debug, Clone, Copy, Default)]
struct WindowStatus {
/// This will be true if WY == LY at any point in the frame thus far
coincidence: bool,
/// This will be true if the conditions which tell the PPU to start
/// drawing from the window tile map is true
should_draw: bool,
}
impl WindowStatus {
pub fn should_draw(&self) -> bool {
self.should_draw
}
pub fn coincidence(&self) -> bool {
self.coincidence
}
pub fn set_should_draw(&mut self, value: bool) {
self.should_draw = value;
}
pub fn set_coincidence(&mut self, value: bool) {
self.coincidence = value;
}
}