2022-12-31 06:40:03 +00:00
// MIT License
2024-07-04 00:55:17 +00:00
// Copyright (c) 2023 Evan Pezent
2022-12-31 06:40:03 +00:00
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
2024-07-04 00:55:17 +00:00
// ImPlot v0.17
2022-12-31 06:40:03 +00:00
// You may use this file to debug, understand or extend ImPlot features but we
// don't provide any guarantee of forward compatibility!
//-----------------------------------------------------------------------------
// [SECTION] Header Mess
//-----------------------------------------------------------------------------
# pragma once
# include <time.h>
# include "imgui_internal.h"
# ifndef IMPLOT_VERSION
# error Must include implot.h before implot_internal.h
# endif
// Support for pre-1.84 versions. ImPool's GetSize() -> GetBufSize()
# if (IMGUI_VERSION_NUM < 18303)
# define GetBufSize GetSize
# endif
//-----------------------------------------------------------------------------
// [SECTION] Constants
//-----------------------------------------------------------------------------
// Constants can be changed unless stated otherwise. We may move some of these
// to ImPlotStyleVar_ over time.
// Mimimum allowable timestamp value 01/01/1970 @ 12:00am (UTC) (DO NOT DECREASE THIS)
# define IMPLOT_MIN_TIME 0
// Maximum allowable timestamp value 01/01/3000 @ 12:00am (UTC) (DO NOT INCREASE THIS)
# define IMPLOT_MAX_TIME 32503680000
// Default label format for axis labels
# define IMPLOT_LABEL_FORMAT "%g"
// Max character size for tick labels
# define IMPLOT_LABEL_MAX_SIZE 32
//-----------------------------------------------------------------------------
// [SECTION] Macros
//-----------------------------------------------------------------------------
# define IMPLOT_NUM_X_AXES ImAxis_Y1
# define IMPLOT_NUM_Y_AXES (ImAxis_COUNT - IMPLOT_NUM_X_AXES)
// Split ImU32 color into RGB components [0 255]
# define IM_COL32_SPLIT_RGB(col,r,g,b) \
ImU32 r = ( ( col > > IM_COL32_R_SHIFT ) & 0xFF ) ; \
ImU32 g = ( ( col > > IM_COL32_G_SHIFT ) & 0xFF ) ; \
ImU32 b = ( ( col > > IM_COL32_B_SHIFT ) & 0xFF ) ;
//-----------------------------------------------------------------------------
// [SECTION] Forward Declarations
//-----------------------------------------------------------------------------
struct ImPlotTick ;
struct ImPlotAxis ;
struct ImPlotAxisColor ;
struct ImPlotItem ;
struct ImPlotLegend ;
struct ImPlotPlot ;
struct ImPlotNextPlotData ;
struct ImPlotTicker ;
//-----------------------------------------------------------------------------
// [SECTION] Context Pointer
//-----------------------------------------------------------------------------
# ifndef GImPlot
extern IMPLOT_API ImPlotContext * GImPlot ; // Current implicit context pointer
# endif
//-----------------------------------------------------------------------------
// [SECTION] Generic Helpers
//-----------------------------------------------------------------------------
// Computes the common (base-10) logarithm
static inline float ImLog10 ( float x ) { return log10f ( x ) ; }
static inline double ImLog10 ( double x ) { return log10 ( x ) ; }
static inline float ImSinh ( float x ) { return sinhf ( x ) ; }
static inline double ImSinh ( double x ) { return sinh ( x ) ; }
static inline float ImAsinh ( float x ) { return asinhf ( x ) ; }
static inline double ImAsinh ( double x ) { return asinh ( x ) ; }
// Returns true if a flag is set
template < typename TSet , typename TFlag >
static inline bool ImHasFlag ( TSet set , TFlag flag ) { return ( set & flag ) = = flag ; }
// Flips a flag in a flagset
template < typename TSet , typename TFlag >
static inline void ImFlipFlag ( TSet & set , TFlag flag ) { ImHasFlag ( set , flag ) ? set & = ~ flag : set | = flag ; }
// Linearly remaps x from [x0 x1] to [y0 y1].
template < typename T >
static inline T ImRemap ( T x , T x0 , T x1 , T y0 , T y1 ) { return y0 + ( x - x0 ) * ( y1 - y0 ) / ( x1 - x0 ) ; }
// Linear rempas x from [x0 x1] to [0 1]
template < typename T >
static inline T ImRemap01 ( T x , T x0 , T x1 ) { return ( x - x0 ) / ( x1 - x0 ) ; }
// Returns always positive modulo (assumes r != 0)
static inline int ImPosMod ( int l , int r ) { return ( l % r + r ) % r ; }
// Returns true if val is NAN
static inline bool ImNan ( double val ) { return isnan ( val ) ; }
// Returns true if val is NAN or INFINITY
static inline bool ImNanOrInf ( double val ) { return ! ( val > = - DBL_MAX & & val < = DBL_MAX ) | | ImNan ( val ) ; }
// Turns NANs to 0s
static inline double ImConstrainNan ( double val ) { return ImNan ( val ) ? 0 : val ; }
// Turns infinity to floating point maximums
static inline double ImConstrainInf ( double val ) { return val > = DBL_MAX ? DBL_MAX : val < = - DBL_MAX ? - DBL_MAX : val ; }
// Turns numbers less than or equal to 0 to 0.001 (sort of arbitrary, is there a better way?)
static inline double ImConstrainLog ( double val ) { return val < = 0 ? 0.001f : val ; }
// Turns numbers less than 0 to zero
static inline double ImConstrainTime ( double val ) { return val < IMPLOT_MIN_TIME ? IMPLOT_MIN_TIME : ( val > IMPLOT_MAX_TIME ? IMPLOT_MAX_TIME : val ) ; }
// True if two numbers are approximately equal using units in the last place.
static inline bool ImAlmostEqual ( double v1 , double v2 , int ulp = 2 ) { return ImAbs ( v1 - v2 ) < DBL_EPSILON * ImAbs ( v1 + v2 ) * ulp | | ImAbs ( v1 - v2 ) < DBL_MIN ; }
// Finds min value in an unsorted array
template < typename T >
static inline T ImMinArray ( const T * values , int count ) { T m = values [ 0 ] ; for ( int i = 1 ; i < count ; + + i ) { if ( values [ i ] < m ) { m = values [ i ] ; } } return m ; }
// Finds the max value in an unsorted array
template < typename T >
static inline T ImMaxArray ( const T * values , int count ) { T m = values [ 0 ] ; for ( int i = 1 ; i < count ; + + i ) { if ( values [ i ] > m ) { m = values [ i ] ; } } return m ; }
// Finds the min and max value in an unsorted array
template < typename T >
static inline void ImMinMaxArray ( const T * values , int count , T * min_out , T * max_out ) {
T Min = values [ 0 ] ; T Max = values [ 0 ] ;
for ( int i = 1 ; i < count ; + + i ) {
if ( values [ i ] < Min ) { Min = values [ i ] ; }
if ( values [ i ] > Max ) { Max = values [ i ] ; }
}
* min_out = Min ; * max_out = Max ;
}
// Finds the sim of an array
template < typename T >
static inline T ImSum ( const T * values , int count ) {
T sum = 0 ;
for ( int i = 0 ; i < count ; + + i )
sum + = values [ i ] ;
return sum ;
}
// Finds the mean of an array
template < typename T >
static inline double ImMean ( const T * values , int count ) {
double den = 1.0 / count ;
double mu = 0 ;
for ( int i = 0 ; i < count ; + + i )
mu + = ( double ) values [ i ] * den ;
return mu ;
}
// Finds the sample standard deviation of an array
template < typename T >
static inline double ImStdDev ( const T * values , int count ) {
double den = 1.0 / ( count - 1.0 ) ;
double mu = ImMean ( values , count ) ;
double x = 0 ;
for ( int i = 0 ; i < count ; + + i )
x + = ( ( double ) values [ i ] - mu ) * ( ( double ) values [ i ] - mu ) * den ;
return sqrt ( x ) ;
}
// Mix color a and b by factor s in [0 256]
static inline ImU32 ImMixU32 ( ImU32 a , ImU32 b , ImU32 s ) {
# ifdef IMPLOT_MIX64
const ImU32 af = 256 - s ;
const ImU32 bf = s ;
const ImU64 al = ( a & 0x00ff00ff ) | ( ( ( ImU64 ) ( a & 0xff00ff00 ) ) < < 24 ) ;
const ImU64 bl = ( b & 0x00ff00ff ) | ( ( ( ImU64 ) ( b & 0xff00ff00 ) ) < < 24 ) ;
const ImU64 mix = ( al * af + bl * bf ) ;
return ( ( mix > > 32 ) & 0xff00ff00 ) | ( ( mix & 0xff00ff00 ) > > 8 ) ;
# else
const ImU32 af = 256 - s ;
const ImU32 bf = s ;
const ImU32 al = ( a & 0x00ff00ff ) ;
const ImU32 ah = ( a & 0xff00ff00 ) > > 8 ;
const ImU32 bl = ( b & 0x00ff00ff ) ;
const ImU32 bh = ( b & 0xff00ff00 ) > > 8 ;
const ImU32 ml = ( al * af + bl * bf ) ;
const ImU32 mh = ( ah * af + bh * bf ) ;
return ( mh & 0xff00ff00 ) | ( ( ml & 0xff00ff00 ) > > 8 ) ;
# endif
}
// Lerp across an array of 32-bit collors given t in [0.0 1.0]
static inline ImU32 ImLerpU32 ( const ImU32 * colors , int size , float t ) {
int i1 = ( int ) ( ( size - 1 ) * t ) ;
int i2 = i1 + 1 ;
if ( i2 = = size | | size = = 1 )
return colors [ i1 ] ;
float den = 1.0f / ( size - 1 ) ;
float t1 = i1 * den ;
float t2 = i2 * den ;
float tr = ImRemap01 ( t , t1 , t2 ) ;
return ImMixU32 ( colors [ i1 ] , colors [ i2 ] , ( ImU32 ) ( tr * 256 ) ) ;
}
// Set alpha channel of 32-bit color from float in range [0.0 1.0]
static inline ImU32 ImAlphaU32 ( ImU32 col , float alpha ) {
return col & ~ ( ( ImU32 ) ( ( 1.0f - alpha ) * 255 ) < < IM_COL32_A_SHIFT ) ;
}
// Returns true of two ranges overlap
template < typename T >
static inline bool ImOverlaps ( T min_a , T max_a , T min_b , T max_b ) {
return min_a < = max_b & & min_b < = max_a ;
}
//-----------------------------------------------------------------------------
// [SECTION] ImPlot Enums
//-----------------------------------------------------------------------------
typedef int ImPlotTimeUnit ; // -> enum ImPlotTimeUnit_
typedef int ImPlotDateFmt ; // -> enum ImPlotDateFmt_
typedef int ImPlotTimeFmt ; // -> enum ImPlotTimeFmt_
enum ImPlotTimeUnit_ {
ImPlotTimeUnit_Us , // microsecond
ImPlotTimeUnit_Ms , // millisecond
ImPlotTimeUnit_S , // second
ImPlotTimeUnit_Min , // minute
ImPlotTimeUnit_Hr , // hour
ImPlotTimeUnit_Day , // day
ImPlotTimeUnit_Mo , // month
ImPlotTimeUnit_Yr , // year
ImPlotTimeUnit_COUNT
} ;
enum ImPlotDateFmt_ { // default [ ISO 8601 ]
ImPlotDateFmt_None = 0 ,
ImPlotDateFmt_DayMo , // 10/3 [ --10-03 ]
ImPlotDateFmt_DayMoYr , // 10/3/91 [ 1991-10-03 ]
ImPlotDateFmt_MoYr , // Oct 1991 [ 1991-10 ]
ImPlotDateFmt_Mo , // Oct [ --10 ]
ImPlotDateFmt_Yr // 1991 [ 1991 ]
} ;
enum ImPlotTimeFmt_ { // default [ 24 Hour Clock ]
ImPlotTimeFmt_None = 0 ,
ImPlotTimeFmt_Us , // .428 552 [ .428 552 ]
ImPlotTimeFmt_SUs , // :29.428 552 [ :29.428 552 ]
ImPlotTimeFmt_SMs , // :29.428 [ :29.428 ]
ImPlotTimeFmt_S , // :29 [ :29 ]
ImPlotTimeFmt_MinSMs , // 21:29.428 [ 21:29.428 ]
ImPlotTimeFmt_HrMinSMs , // 7:21:29.428pm [ 19:21:29.428 ]
ImPlotTimeFmt_HrMinS , // 7:21:29pm [ 19:21:29 ]
ImPlotTimeFmt_HrMin , // 7:21pm [ 19:21 ]
ImPlotTimeFmt_Hr // 7pm [ 19:00 ]
} ;
//-----------------------------------------------------------------------------
// [SECTION] Callbacks
//-----------------------------------------------------------------------------
typedef void ( * ImPlotLocator ) ( ImPlotTicker & ticker , const ImPlotRange & range , float pixels , bool vertical , ImPlotFormatter formatter , void * formatter_data ) ;
//-----------------------------------------------------------------------------
// [SECTION] Structs
//-----------------------------------------------------------------------------
// Combined date/time format spec
struct ImPlotDateTimeSpec {
ImPlotDateTimeSpec ( ) { }
ImPlotDateTimeSpec ( ImPlotDateFmt date_fmt , ImPlotTimeFmt time_fmt , bool use_24_hr_clk = false , bool use_iso_8601 = false ) {
Date = date_fmt ;
Time = time_fmt ;
UseISO8601 = use_iso_8601 ;
Use24HourClock = use_24_hr_clk ;
}
ImPlotDateFmt Date ;
ImPlotTimeFmt Time ;
bool UseISO8601 ;
bool Use24HourClock ;
} ;
// Two part timestamp struct.
struct ImPlotTime {
time_t S ; // second part
int Us ; // microsecond part
ImPlotTime ( ) { S = 0 ; Us = 0 ; }
ImPlotTime ( time_t s , int us = 0 ) { S = s + us / 1000000 ; Us = us % 1000000 ; }
void RollOver ( ) { S = S + Us / 1000000 ; Us = Us % 1000000 ; }
double ToDouble ( ) const { return ( double ) S + ( double ) Us / 1000000.0 ; }
static ImPlotTime FromDouble ( double t ) { return ImPlotTime ( ( time_t ) t , ( int ) ( t * 1000000 - floor ( t ) * 1000000 ) ) ; }
} ;
static inline ImPlotTime operator + ( const ImPlotTime & lhs , const ImPlotTime & rhs )
{ return ImPlotTime ( lhs . S + rhs . S , lhs . Us + rhs . Us ) ; }
static inline ImPlotTime operator - ( const ImPlotTime & lhs , const ImPlotTime & rhs )
{ return ImPlotTime ( lhs . S - rhs . S , lhs . Us - rhs . Us ) ; }
static inline bool operator = = ( const ImPlotTime & lhs , const ImPlotTime & rhs )
{ return lhs . S = = rhs . S & & lhs . Us = = rhs . Us ; }
static inline bool operator < ( const ImPlotTime & lhs , const ImPlotTime & rhs )
{ return lhs . S = = rhs . S ? lhs . Us < rhs . Us : lhs . S < rhs . S ; }
static inline bool operator > ( const ImPlotTime & lhs , const ImPlotTime & rhs )
{ return rhs < lhs ; }
static inline bool operator < = ( const ImPlotTime & lhs , const ImPlotTime & rhs )
{ return lhs < rhs | | lhs = = rhs ; }
static inline bool operator > = ( const ImPlotTime & lhs , const ImPlotTime & rhs )
{ return lhs > rhs | | lhs = = rhs ; }
// Colormap data storage
struct ImPlotColormapData {
ImVector < ImU32 > Keys ;
ImVector < int > KeyCounts ;
ImVector < int > KeyOffsets ;
ImVector < ImU32 > Tables ;
ImVector < int > TableSizes ;
ImVector < int > TableOffsets ;
ImGuiTextBuffer Text ;
ImVector < int > TextOffsets ;
ImVector < bool > Quals ;
ImGuiStorage Map ;
int Count ;
ImPlotColormapData ( ) { Count = 0 ; }
int Append ( const char * name , const ImU32 * keys , int count , bool qual ) {
if ( GetIndex ( name ) ! = - 1 )
return - 1 ;
KeyOffsets . push_back ( Keys . size ( ) ) ;
KeyCounts . push_back ( count ) ;
Keys . reserve ( Keys . size ( ) + count ) ;
for ( int i = 0 ; i < count ; + + i )
Keys . push_back ( keys [ i ] ) ;
TextOffsets . push_back ( Text . size ( ) ) ;
Text . append ( name , name + strlen ( name ) + 1 ) ;
Quals . push_back ( qual ) ;
ImGuiID id = ImHashStr ( name ) ;
int idx = Count + + ;
Map . SetInt ( id , idx ) ;
_AppendTable ( idx ) ;
return idx ;
}
void _AppendTable ( ImPlotColormap cmap ) {
int key_count = GetKeyCount ( cmap ) ;
const ImU32 * keys = GetKeys ( cmap ) ;
int off = Tables . size ( ) ;
TableOffsets . push_back ( off ) ;
if ( IsQual ( cmap ) ) {
Tables . reserve ( key_count ) ;
for ( int i = 0 ; i < key_count ; + + i )
Tables . push_back ( keys [ i ] ) ;
TableSizes . push_back ( key_count ) ;
}
else {
int max_size = 255 * ( key_count - 1 ) + 1 ;
Tables . reserve ( off + max_size ) ;
// ImU32 last = keys[0];
// Tables.push_back(last);
// int n = 1;
for ( int i = 0 ; i < key_count - 1 ; + + i ) {
for ( int s = 0 ; s < 255 ; + + s ) {
ImU32 a = keys [ i ] ;
ImU32 b = keys [ i + 1 ] ;
ImU32 c = ImMixU32 ( a , b , s ) ;
// if (c != last) {
Tables . push_back ( c ) ;
// last = c;
// n++;
// }
}
}
ImU32 c = keys [ key_count - 1 ] ;
// if (c != last) {
Tables . push_back ( c ) ;
// n++;
// }
// TableSizes.push_back(n);
TableSizes . push_back ( max_size ) ;
}
}
void RebuildTables ( ) {
Tables . resize ( 0 ) ;
TableSizes . resize ( 0 ) ;
TableOffsets . resize ( 0 ) ;
for ( int i = 0 ; i < Count ; + + i )
_AppendTable ( i ) ;
}
2023-06-19 15:44:38 +00:00
inline bool IsQual ( ImPlotColormap cmap ) const { return Quals [ cmap ] ; }
inline const char * GetName ( ImPlotColormap cmap ) const { return cmap < Count ? Text . Buf . Data + TextOffsets [ cmap ] : nullptr ; }
inline ImPlotColormap GetIndex ( const char * name ) const { ImGuiID key = ImHashStr ( name ) ; return Map . GetInt ( key , - 1 ) ; }
2022-12-31 06:40:03 +00:00
2023-06-19 15:44:38 +00:00
inline const ImU32 * GetKeys ( ImPlotColormap cmap ) const { return & Keys [ KeyOffsets [ cmap ] ] ; }
inline int GetKeyCount ( ImPlotColormap cmap ) const { return KeyCounts [ cmap ] ; }
inline ImU32 GetKeyColor ( ImPlotColormap cmap , int idx ) const { return Keys [ KeyOffsets [ cmap ] + idx ] ; }
inline void SetKeyColor ( ImPlotColormap cmap , int idx , ImU32 value ) { Keys [ KeyOffsets [ cmap ] + idx ] = value ; RebuildTables ( ) ; }
2022-12-31 06:40:03 +00:00
2023-06-19 15:44:38 +00:00
inline const ImU32 * GetTable ( ImPlotColormap cmap ) const { return & Tables [ TableOffsets [ cmap ] ] ; }
inline int GetTableSize ( ImPlotColormap cmap ) const { return TableSizes [ cmap ] ; }
inline ImU32 GetTableColor ( ImPlotColormap cmap , int idx ) const { return Tables [ TableOffsets [ cmap ] + idx ] ; }
2022-12-31 06:40:03 +00:00
inline ImU32 LerpTable ( ImPlotColormap cmap , float t ) const {
int off = TableOffsets [ cmap ] ;
int siz = TableSizes [ cmap ] ;
int idx = Quals [ cmap ] ? ImClamp ( ( int ) ( siz * t ) , 0 , siz - 1 ) : ( int ) ( ( siz - 1 ) * t + 0.5f ) ;
return Tables [ off + idx ] ;
}
} ;
// ImPlotPoint with positive/negative error values
struct ImPlotPointError {
double X , Y , Neg , Pos ;
ImPlotPointError ( double x , double y , double neg , double pos ) {
X = x ; Y = y ; Neg = neg ; Pos = pos ;
}
} ;
// Interior plot label/annotation
struct ImPlotAnnotation {
ImVec2 Pos ;
ImVec2 Offset ;
ImU32 ColorBg ;
ImU32 ColorFg ;
int TextOffset ;
bool Clamp ;
ImPlotAnnotation ( ) {
ColorBg = ColorFg = 0 ;
TextOffset = 0 ;
Clamp = false ;
}
} ;
// Collection of plot labels
struct ImPlotAnnotationCollection {
ImVector < ImPlotAnnotation > Annotations ;
ImGuiTextBuffer TextBuffer ;
int Size ;
ImPlotAnnotationCollection ( ) { Reset ( ) ; }
void AppendV ( const ImVec2 & pos , const ImVec2 & off , ImU32 bg , ImU32 fg , bool clamp , const char * fmt , va_list args ) IM_FMTLIST ( 7 ) {
ImPlotAnnotation an ;
an . Pos = pos ; an . Offset = off ;
an . ColorBg = bg ; an . ColorFg = fg ;
an . TextOffset = TextBuffer . size ( ) ;
an . Clamp = clamp ;
Annotations . push_back ( an ) ;
TextBuffer . appendfv ( fmt , args ) ;
const char nul [ ] = " " ;
TextBuffer . append ( nul , nul + 1 ) ;
Size + + ;
}
void Append ( const ImVec2 & pos , const ImVec2 & off , ImU32 bg , ImU32 fg , bool clamp , const char * fmt , . . . ) IM_FMTARGS ( 7 ) {
va_list args ;
va_start ( args , fmt ) ;
AppendV ( pos , off , bg , fg , clamp , fmt , args ) ;
va_end ( args ) ;
}
const char * GetText ( int idx ) {
return TextBuffer . Buf . Data + Annotations [ idx ] . TextOffset ;
}
void Reset ( ) {
Annotations . shrink ( 0 ) ;
TextBuffer . Buf . shrink ( 0 ) ;
Size = 0 ;
}
} ;
struct ImPlotTag {
ImAxis Axis ;
double Value ;
ImU32 ColorBg ;
ImU32 ColorFg ;
int TextOffset ;
} ;
struct ImPlotTagCollection {
ImVector < ImPlotTag > Tags ;
ImGuiTextBuffer TextBuffer ;
int Size ;
ImPlotTagCollection ( ) { Reset ( ) ; }
void AppendV ( ImAxis axis , double value , ImU32 bg , ImU32 fg , const char * fmt , va_list args ) IM_FMTLIST ( 6 ) {
ImPlotTag tag ;
tag . Axis = axis ;
tag . Value = value ;
tag . ColorBg = bg ;
tag . ColorFg = fg ;
tag . TextOffset = TextBuffer . size ( ) ;
Tags . push_back ( tag ) ;
TextBuffer . appendfv ( fmt , args ) ;
const char nul [ ] = " " ;
TextBuffer . append ( nul , nul + 1 ) ;
Size + + ;
}
void Append ( ImAxis axis , double value , ImU32 bg , ImU32 fg , const char * fmt , . . . ) IM_FMTARGS ( 6 ) {
va_list args ;
va_start ( args , fmt ) ;
AppendV ( axis , value , bg , fg , fmt , args ) ;
va_end ( args ) ;
}
const char * GetText ( int idx ) {
return TextBuffer . Buf . Data + Tags [ idx ] . TextOffset ;
}
void Reset ( ) {
Tags . shrink ( 0 ) ;
TextBuffer . Buf . shrink ( 0 ) ;
Size = 0 ;
}
} ;
// Tick mark info
struct ImPlotTick
{
double PlotPos ;
float PixelPos ;
ImVec2 LabelSize ;
int TextOffset ;
bool Major ;
bool ShowLabel ;
int Level ;
int Idx ;
ImPlotTick ( double value , bool major , int level , bool show_label ) {
PixelPos = 0 ;
PlotPos = value ;
Major = major ;
ShowLabel = show_label ;
Level = level ;
TextOffset = - 1 ;
}
} ;
// Collection of ticks
struct ImPlotTicker {
ImVector < ImPlotTick > Ticks ;
ImGuiTextBuffer TextBuffer ;
ImVec2 MaxSize ;
ImVec2 LateSize ;
int Levels ;
ImPlotTicker ( ) {
Reset ( ) ;
}
ImPlotTick & AddTick ( double value , bool major , int level , bool show_label , const char * label ) {
ImPlotTick tick ( value , major , level , show_label ) ;
2023-06-19 15:44:38 +00:00
if ( show_label & & label ! = nullptr ) {
2022-12-31 06:40:03 +00:00
tick . TextOffset = TextBuffer . size ( ) ;
TextBuffer . append ( label , label + strlen ( label ) + 1 ) ;
tick . LabelSize = ImGui : : CalcTextSize ( TextBuffer . Buf . Data + tick . TextOffset ) ;
}
return AddTick ( tick ) ;
}
ImPlotTick & AddTick ( double value , bool major , int level , bool show_label , ImPlotFormatter formatter , void * data ) {
ImPlotTick tick ( value , major , level , show_label ) ;
2023-06-19 15:44:38 +00:00
if ( show_label & & formatter ! = nullptr ) {
2022-12-31 06:40:03 +00:00
char buff [ IMPLOT_LABEL_MAX_SIZE ] ;
tick . TextOffset = TextBuffer . size ( ) ;
formatter ( tick . PlotPos , buff , sizeof ( buff ) , data ) ;
TextBuffer . append ( buff , buff + strlen ( buff ) + 1 ) ;
tick . LabelSize = ImGui : : CalcTextSize ( TextBuffer . Buf . Data + tick . TextOffset ) ;
}
return AddTick ( tick ) ;
}
inline ImPlotTick & AddTick ( ImPlotTick tick ) {
if ( tick . ShowLabel ) {
MaxSize . x = tick . LabelSize . x > MaxSize . x ? tick . LabelSize . x : MaxSize . x ;
MaxSize . y = tick . LabelSize . y > MaxSize . y ? tick . LabelSize . y : MaxSize . y ;
}
tick . Idx = Ticks . size ( ) ;
Ticks . push_back ( tick ) ;
return Ticks . back ( ) ;
}
const char * GetText ( int idx ) const {
return TextBuffer . Buf . Data + Ticks [ idx ] . TextOffset ;
}
const char * GetText ( const ImPlotTick & tick ) {
return GetText ( tick . Idx ) ;
}
void OverrideSizeLate ( const ImVec2 & size ) {
LateSize . x = size . x > LateSize . x ? size . x : LateSize . x ;
LateSize . y = size . y > LateSize . y ? size . y : LateSize . y ;
}
void Reset ( ) {
Ticks . shrink ( 0 ) ;
TextBuffer . Buf . shrink ( 0 ) ;
MaxSize = LateSize ;
LateSize = ImVec2 ( 0 , 0 ) ;
Levels = 1 ;
}
int TickCount ( ) const {
return Ticks . Size ;
}
} ;
// Axis state information that must persist after EndPlot
struct ImPlotAxis
{
ImGuiID ID ;
ImPlotAxisFlags Flags ;
ImPlotAxisFlags PreviousFlags ;
ImPlotRange Range ;
ImPlotCond RangeCond ;
ImPlotScale Scale ;
ImPlotRange FitExtents ;
ImPlotAxis * OrthoAxis ;
ImPlotRange ConstraintRange ;
ImPlotRange ConstraintZoom ;
ImPlotTicker Ticker ;
ImPlotFormatter Formatter ;
void * FormatterData ;
char FormatSpec [ 16 ] ;
ImPlotLocator Locator ;
double * LinkedMin ;
double * LinkedMax ;
int PickerLevel ;
ImPlotTime PickerTimeMin , PickerTimeMax ;
ImPlotTransform TransformForward ;
ImPlotTransform TransformInverse ;
void * TransformData ;
float PixelMin , PixelMax ;
double ScaleMin , ScaleMax ;
double ScaleToPixel ;
float Datum1 , Datum2 ;
ImRect HoverRect ;
int LabelOffset ;
ImU32 ColorMaj , ColorMin , ColorTick , ColorTxt , ColorBg , ColorHov , ColorAct , ColorHiLi ;
bool Enabled ;
bool Vertical ;
bool FitThisFrame ;
bool HasRange ;
bool HasFormatSpec ;
bool ShowDefaultTicks ;
bool Hovered ;
bool Held ;
ImPlotAxis ( ) {
ID = 0 ;
Flags = PreviousFlags = ImPlotAxisFlags_None ;
Range . Min = 0 ;
Range . Max = 1 ;
Scale = ImPlotScale_Linear ;
2023-06-19 15:44:38 +00:00
TransformForward = TransformInverse = nullptr ;
TransformData = nullptr ;
2022-12-31 06:40:03 +00:00
FitExtents . Min = HUGE_VAL ;
FitExtents . Max = - HUGE_VAL ;
2023-06-19 15:44:38 +00:00
OrthoAxis = nullptr ;
2022-12-31 06:40:03 +00:00
ConstraintRange = ImPlotRange ( - INFINITY , INFINITY ) ;
ConstraintZoom = ImPlotRange ( DBL_MIN , INFINITY ) ;
2023-06-19 15:44:38 +00:00
LinkedMin = LinkedMax = nullptr ;
2022-12-31 06:40:03 +00:00
PickerLevel = 0 ;
Datum1 = Datum2 = 0 ;
PixelMin = PixelMax = 0 ;
LabelOffset = - 1 ;
ColorMaj = ColorMin = ColorTick = ColorTxt = ColorBg = ColorHov = ColorAct = 0 ;
ColorHiLi = IM_COL32_BLACK_TRANS ;
2023-06-19 15:44:38 +00:00
Formatter = nullptr ;
FormatterData = nullptr ;
Locator = nullptr ;
2022-12-31 06:40:03 +00:00
Enabled = Hovered = Held = FitThisFrame = HasRange = HasFormatSpec = false ;
ShowDefaultTicks = true ;
}
inline void Reset ( ) {
Enabled = false ;
Scale = ImPlotScale_Linear ;
2023-06-19 15:44:38 +00:00
TransformForward = TransformInverse = nullptr ;
TransformData = nullptr ;
2022-12-31 06:40:03 +00:00
LabelOffset = - 1 ;
HasFormatSpec = false ;
2023-06-19 15:44:38 +00:00
Formatter = nullptr ;
FormatterData = nullptr ;
Locator = nullptr ;
2022-12-31 06:40:03 +00:00
ShowDefaultTicks = true ;
FitThisFrame = false ;
FitExtents . Min = HUGE_VAL ;
FitExtents . Max = - HUGE_VAL ;
2023-06-19 15:44:38 +00:00
OrthoAxis = nullptr ;
2022-12-31 06:40:03 +00:00
ConstraintRange = ImPlotRange ( - INFINITY , INFINITY ) ;
ConstraintZoom = ImPlotRange ( DBL_MIN , INFINITY ) ;
Ticker . Reset ( ) ;
}
inline bool SetMin ( double _min , bool force = false ) {
if ( ! force & & IsLockedMin ( ) )
return false ;
_min = ImConstrainNan ( ImConstrainInf ( _min ) ) ;
if ( _min < ConstraintRange . Min )
_min = ConstraintRange . Min ;
double z = Range . Max - _min ;
if ( z < ConstraintZoom . Min )
_min = Range . Max - ConstraintZoom . Min ;
if ( z > ConstraintZoom . Max )
_min = Range . Max - ConstraintZoom . Max ;
if ( _min > = Range . Max )
return false ;
Range . Min = _min ;
PickerTimeMin = ImPlotTime : : FromDouble ( Range . Min ) ;
UpdateTransformCache ( ) ;
return true ;
} ;
inline bool SetMax ( double _max , bool force = false ) {
if ( ! force & & IsLockedMax ( ) )
return false ;
_max = ImConstrainNan ( ImConstrainInf ( _max ) ) ;
if ( _max > ConstraintRange . Max )
_max = ConstraintRange . Max ;
double z = _max - Range . Min ;
if ( z < ConstraintZoom . Min )
_max = Range . Min + ConstraintZoom . Min ;
if ( z > ConstraintZoom . Max )
_max = Range . Min + ConstraintZoom . Max ;
if ( _max < = Range . Min )
return false ;
Range . Max = _max ;
PickerTimeMax = ImPlotTime : : FromDouble ( Range . Max ) ;
UpdateTransformCache ( ) ;
return true ;
} ;
inline void SetRange ( double v1 , double v2 ) {
Range . Min = ImMin ( v1 , v2 ) ;
Range . Max = ImMax ( v1 , v2 ) ;
Constrain ( ) ;
PickerTimeMin = ImPlotTime : : FromDouble ( Range . Min ) ;
PickerTimeMax = ImPlotTime : : FromDouble ( Range . Max ) ;
UpdateTransformCache ( ) ;
}
inline void SetRange ( const ImPlotRange & range ) {
SetRange ( range . Min , range . Max ) ;
}
inline void SetAspect ( double unit_per_pix ) {
double new_size = unit_per_pix * PixelSize ( ) ;
double delta = ( new_size - Range . Size ( ) ) * 0.5 ;
if ( IsLocked ( ) )
return ;
else if ( IsLockedMin ( ) & & ! IsLockedMax ( ) )
SetRange ( Range . Min , Range . Max + 2 * delta ) ;
else if ( ! IsLockedMin ( ) & & IsLockedMax ( ) )
SetRange ( Range . Min - 2 * delta , Range . Max ) ;
else
SetRange ( Range . Min - delta , Range . Max + delta ) ;
}
inline float PixelSize ( ) const { return ImAbs ( PixelMax - PixelMin ) ; }
inline double GetAspect ( ) const { return Range . Size ( ) / PixelSize ( ) ; }
inline void Constrain ( ) {
Range . Min = ImConstrainNan ( ImConstrainInf ( Range . Min ) ) ;
Range . Max = ImConstrainNan ( ImConstrainInf ( Range . Max ) ) ;
if ( Range . Min < ConstraintRange . Min )
Range . Min = ConstraintRange . Min ;
if ( Range . Max > ConstraintRange . Max )
Range . Max = ConstraintRange . Max ;
double z = Range . Size ( ) ;
if ( z < ConstraintZoom . Min ) {
double delta = ( ConstraintZoom . Min - z ) * 0.5 ;
Range . Min - = delta ;
Range . Max + = delta ;
}
if ( z > ConstraintZoom . Max ) {
double delta = ( z - ConstraintZoom . Max ) * 0.5 ;
Range . Min + = delta ;
Range . Max - = delta ;
}
if ( Range . Max < = Range . Min )
Range . Max = Range . Min + DBL_EPSILON ;
}
inline void UpdateTransformCache ( ) {
ScaleToPixel = ( PixelMax - PixelMin ) / Range . Size ( ) ;
2023-06-19 15:44:38 +00:00
if ( TransformForward ! = nullptr ) {
2022-12-31 06:40:03 +00:00
ScaleMin = TransformForward ( Range . Min , TransformData ) ;
ScaleMax = TransformForward ( Range . Max , TransformData ) ;
}
else {
ScaleMin = Range . Min ;
ScaleMax = Range . Max ;
}
}
inline float PlotToPixels ( double plt ) const {
2023-06-19 15:44:38 +00:00
if ( TransformForward ! = nullptr ) {
2022-12-31 06:40:03 +00:00
double s = TransformForward ( plt , TransformData ) ;
double t = ( s - ScaleMin ) / ( ScaleMax - ScaleMin ) ;
plt = Range . Min + Range . Size ( ) * t ;
}
return ( float ) ( PixelMin + ScaleToPixel * ( plt - Range . Min ) ) ;
}
inline double PixelsToPlot ( float pix ) const {
double plt = ( pix - PixelMin ) / ScaleToPixel + Range . Min ;
2023-06-19 15:44:38 +00:00
if ( TransformInverse ! = nullptr ) {
2022-12-31 06:40:03 +00:00
double t = ( plt - Range . Min ) / Range . Size ( ) ;
double s = t * ( ScaleMax - ScaleMin ) + ScaleMin ;
plt = TransformInverse ( s , TransformData ) ;
}
return plt ;
}
inline void ExtendFit ( double v ) {
if ( ! ImNanOrInf ( v ) & & v > = ConstraintRange . Min & & v < = ConstraintRange . Max ) {
FitExtents . Min = v < FitExtents . Min ? v : FitExtents . Min ;
FitExtents . Max = v > FitExtents . Max ? v : FitExtents . Max ;
}
}
inline void ExtendFitWith ( ImPlotAxis & alt , double v , double v_alt ) {
if ( ImHasFlag ( Flags , ImPlotAxisFlags_RangeFit ) & & ! alt . Range . Contains ( v_alt ) )
return ;
if ( ! ImNanOrInf ( v ) & & v > = ConstraintRange . Min & & v < = ConstraintRange . Max ) {
FitExtents . Min = v < FitExtents . Min ? v : FitExtents . Min ;
FitExtents . Max = v > FitExtents . Max ? v : FitExtents . Max ;
}
}
inline void ApplyFit ( float padding ) {
const double ext_size = FitExtents . Size ( ) * 0.5 ;
FitExtents . Min - = ext_size * padding ;
FitExtents . Max + = ext_size * padding ;
if ( ! IsLockedMin ( ) & & ! ImNanOrInf ( FitExtents . Min ) )
Range . Min = FitExtents . Min ;
if ( ! IsLockedMax ( ) & & ! ImNanOrInf ( FitExtents . Max ) )
Range . Max = FitExtents . Max ;
if ( ImAlmostEqual ( Range . Min , Range . Max ) ) {
Range . Max + = 0.5 ;
Range . Min - = 0.5 ;
}
Constrain ( ) ;
UpdateTransformCache ( ) ;
}
inline bool HasLabel ( ) const { return LabelOffset ! = - 1 & & ! ImHasFlag ( Flags , ImPlotAxisFlags_NoLabel ) ; }
inline bool HasGridLines ( ) const { return ! ImHasFlag ( Flags , ImPlotAxisFlags_NoGridLines ) ; }
inline bool HasTickLabels ( ) const { return ! ImHasFlag ( Flags , ImPlotAxisFlags_NoTickLabels ) ; }
inline bool HasTickMarks ( ) const { return ! ImHasFlag ( Flags , ImPlotAxisFlags_NoTickMarks ) ; }
inline bool WillRender ( ) const { return Enabled & & ( HasGridLines ( ) | | HasTickLabels ( ) | | HasTickMarks ( ) ) ; }
inline bool IsOpposite ( ) const { return ImHasFlag ( Flags , ImPlotAxisFlags_Opposite ) ; }
inline bool IsInverted ( ) const { return ImHasFlag ( Flags , ImPlotAxisFlags_Invert ) ; }
inline bool IsForeground ( ) const { return ImHasFlag ( Flags , ImPlotAxisFlags_Foreground ) ; }
inline bool IsAutoFitting ( ) const { return ImHasFlag ( Flags , ImPlotAxisFlags_AutoFit ) ; }
inline bool CanInitFit ( ) const { return ! ImHasFlag ( Flags , ImPlotAxisFlags_NoInitialFit ) & & ! HasRange & & ! LinkedMin & & ! LinkedMax ; }
inline bool IsRangeLocked ( ) const { return HasRange & & RangeCond = = ImPlotCond_Always ; }
inline bool IsLockedMin ( ) const { return ! Enabled | | IsRangeLocked ( ) | | ImHasFlag ( Flags , ImPlotAxisFlags_LockMin ) ; }
inline bool IsLockedMax ( ) const { return ! Enabled | | IsRangeLocked ( ) | | ImHasFlag ( Flags , ImPlotAxisFlags_LockMax ) ; }
inline bool IsLocked ( ) const { return IsLockedMin ( ) & & IsLockedMax ( ) ; }
inline bool IsInputLockedMin ( ) const { return IsLockedMin ( ) | | IsAutoFitting ( ) ; }
inline bool IsInputLockedMax ( ) const { return IsLockedMax ( ) | | IsAutoFitting ( ) ; }
inline bool IsInputLocked ( ) const { return IsLocked ( ) | | IsAutoFitting ( ) ; }
inline bool HasMenus ( ) const { return ! ImHasFlag ( Flags , ImPlotAxisFlags_NoMenus ) ; }
inline bool IsPanLocked ( bool increasing ) {
if ( ImHasFlag ( Flags , ImPlotAxisFlags_PanStretch ) ) {
return IsInputLocked ( ) ;
}
else {
if ( IsLockedMin ( ) | | IsLockedMax ( ) | | IsAutoFitting ( ) )
return false ;
if ( increasing )
return Range . Max = = ConstraintRange . Max ;
else
return Range . Min = = ConstraintRange . Min ;
}
}
void PushLinks ( ) {
if ( LinkedMin ) { * LinkedMin = Range . Min ; }
if ( LinkedMax ) { * LinkedMax = Range . Max ; }
}
void PullLinks ( ) {
2024-07-04 00:55:17 +00:00
if ( LinkedMin & & LinkedMax ) { SetRange ( * LinkedMin , * LinkedMax ) ; }
else if ( LinkedMin ) { SetMin ( * LinkedMin , true ) ; }
else if ( LinkedMax ) { SetMax ( * LinkedMax , true ) ; }
2022-12-31 06:40:03 +00:00
}
} ;
// Align plots group data
struct ImPlotAlignmentData {
bool Vertical ;
float PadA ;
float PadB ;
float PadAMax ;
float PadBMax ;
ImPlotAlignmentData ( ) {
Vertical = true ;
PadA = PadB = PadAMax = PadBMax = 0 ;
}
void Begin ( ) { PadAMax = PadBMax = 0 ; }
void Update ( float & pad_a , float & pad_b , float & delta_a , float & delta_b ) {
float bak_a = pad_a ; float bak_b = pad_b ;
if ( PadAMax < pad_a ) { PadAMax = pad_a ; }
if ( PadBMax < pad_b ) { PadBMax = pad_b ; }
if ( pad_a < PadA ) { pad_a = PadA ; delta_a = pad_a - bak_a ; } else { delta_a = 0 ; }
if ( pad_b < PadB ) { pad_b = PadB ; delta_b = pad_b - bak_b ; } else { delta_b = 0 ; }
}
void End ( ) { PadA = PadAMax ; PadB = PadBMax ; }
void Reset ( ) { PadA = PadB = PadAMax = PadBMax = 0 ; }
} ;
// State information for Plot items
struct ImPlotItem
{
ImGuiID ID ;
ImU32 Color ;
ImRect LegendHoverRect ;
int NameOffset ;
bool Show ;
bool LegendHovered ;
bool SeenThisFrame ;
ImPlotItem ( ) {
ID = 0 ;
Color = IM_COL32_WHITE ;
NameOffset = - 1 ;
Show = true ;
SeenThisFrame = false ;
LegendHovered = false ;
}
~ ImPlotItem ( ) { ID = 0 ; }
} ;
// Holds Legend state
struct ImPlotLegend
{
ImPlotLegendFlags Flags ;
ImPlotLegendFlags PreviousFlags ;
ImPlotLocation Location ;
ImPlotLocation PreviousLocation ;
2024-07-04 00:55:17 +00:00
ImVec2 Scroll ;
2022-12-31 06:40:03 +00:00
ImVector < int > Indices ;
ImGuiTextBuffer Labels ;
ImRect Rect ;
2024-07-04 00:55:17 +00:00
ImRect RectClamped ;
2022-12-31 06:40:03 +00:00
bool Hovered ;
bool Held ;
bool CanGoInside ;
ImPlotLegend ( ) {
Flags = PreviousFlags = ImPlotLegendFlags_None ;
CanGoInside = true ;
Hovered = Held = false ;
Location = PreviousLocation = ImPlotLocation_NorthWest ;
2024-07-04 00:55:17 +00:00
Scroll = ImVec2 ( 0 , 0 ) ;
2022-12-31 06:40:03 +00:00
}
void Reset ( ) { Indices . shrink ( 0 ) ; Labels . Buf . shrink ( 0 ) ; }
} ;
// Holds Items and Legend data
struct ImPlotItemGroup
{
ImGuiID ID ;
ImPlotLegend Legend ;
ImPool < ImPlotItem > ItemPool ;
int ColormapIdx ;
ImPlotItemGroup ( ) { ID = 0 ; ColormapIdx = 0 ; }
int GetItemCount ( ) const { return ItemPool . GetBufSize ( ) ; }
ImGuiID GetItemID ( const char * label_id ) { return ImGui : : GetID ( label_id ) ; /* GetIDWithSeed */ }
ImPlotItem * GetItem ( ImGuiID id ) { return ItemPool . GetByKey ( id ) ; }
ImPlotItem * GetItem ( const char * label_id ) { return GetItem ( GetItemID ( label_id ) ) ; }
ImPlotItem * GetOrAddItem ( ImGuiID id ) { return ItemPool . GetOrAddByKey ( id ) ; }
ImPlotItem * GetItemByIndex ( int i ) { return ItemPool . GetByIndex ( i ) ; }
int GetItemIndex ( ImPlotItem * item ) { return ItemPool . GetIndex ( item ) ; }
int GetLegendCount ( ) const { return Legend . Indices . size ( ) ; }
ImPlotItem * GetLegendItem ( int i ) { return ItemPool . GetByIndex ( Legend . Indices [ i ] ) ; }
const char * GetLegendLabel ( int i ) { return Legend . Labels . Buf . Data + GetLegendItem ( i ) - > NameOffset ; }
void Reset ( ) { ItemPool . Clear ( ) ; Legend . Reset ( ) ; ColormapIdx = 0 ; }
} ;
// Holds Plot state information that must persist after EndPlot
struct ImPlotPlot
{
ImGuiID ID ;
ImPlotFlags Flags ;
ImPlotFlags PreviousFlags ;
ImPlotLocation MouseTextLocation ;
ImPlotMouseTextFlags MouseTextFlags ;
ImPlotAxis Axes [ ImAxis_COUNT ] ;
ImGuiTextBuffer TextBuffer ;
ImPlotItemGroup Items ;
ImAxis CurrentX ;
ImAxis CurrentY ;
ImRect FrameRect ;
ImRect CanvasRect ;
ImRect PlotRect ;
ImRect AxesRect ;
ImRect SelectRect ;
ImVec2 SelectStart ;
int TitleOffset ;
bool JustCreated ;
bool Initialized ;
bool SetupLocked ;
bool FitThisFrame ;
bool Hovered ;
bool Held ;
bool Selecting ;
bool Selected ;
bool ContextLocked ;
ImPlotPlot ( ) {
Flags = PreviousFlags = ImPlotFlags_None ;
for ( int i = 0 ; i < IMPLOT_NUM_X_AXES ; + + i )
XAxis ( i ) . Vertical = false ;
for ( int i = 0 ; i < IMPLOT_NUM_Y_AXES ; + + i )
YAxis ( i ) . Vertical = true ;
SelectStart = ImVec2 ( 0 , 0 ) ;
CurrentX = ImAxis_X1 ;
CurrentY = ImAxis_Y1 ;
MouseTextLocation = ImPlotLocation_South | ImPlotLocation_East ;
MouseTextFlags = ImPlotMouseTextFlags_None ;
TitleOffset = - 1 ;
JustCreated = true ;
Initialized = SetupLocked = FitThisFrame = false ;
Hovered = Held = Selected = Selecting = ContextLocked = false ;
}
inline bool IsInputLocked ( ) const {
for ( int i = 0 ; i < IMPLOT_NUM_X_AXES ; + + i ) {
if ( ! XAxis ( i ) . IsInputLocked ( ) )
return false ;
}
for ( int i = 0 ; i < IMPLOT_NUM_Y_AXES ; + + i ) {
if ( ! YAxis ( i ) . IsInputLocked ( ) )
return false ;
}
return true ;
}
inline void ClearTextBuffer ( ) { TextBuffer . Buf . shrink ( 0 ) ; }
inline void SetTitle ( const char * title ) {
2023-06-19 15:44:38 +00:00
if ( title & & ImGui : : FindRenderedTextEnd ( title , nullptr ) ! = title ) {
2022-12-31 06:40:03 +00:00
TitleOffset = TextBuffer . size ( ) ;
TextBuffer . append ( title , title + strlen ( title ) + 1 ) ;
}
else {
TitleOffset = - 1 ;
}
}
inline bool HasTitle ( ) const { return TitleOffset ! = - 1 & & ! ImHasFlag ( Flags , ImPlotFlags_NoTitle ) ; }
inline const char * GetTitle ( ) const { return TextBuffer . Buf . Data + TitleOffset ; }
inline ImPlotAxis & XAxis ( int i ) { return Axes [ ImAxis_X1 + i ] ; }
inline const ImPlotAxis & XAxis ( int i ) const { return Axes [ ImAxis_X1 + i ] ; }
inline ImPlotAxis & YAxis ( int i ) { return Axes [ ImAxis_Y1 + i ] ; }
inline const ImPlotAxis & YAxis ( int i ) const { return Axes [ ImAxis_Y1 + i ] ; }
inline int EnabledAxesX ( ) {
int cnt = 0 ;
for ( int i = 0 ; i < IMPLOT_NUM_X_AXES ; + + i )
cnt + = XAxis ( i ) . Enabled ;
return cnt ;
}
inline int EnabledAxesY ( ) {
int cnt = 0 ;
for ( int i = 0 ; i < IMPLOT_NUM_Y_AXES ; + + i )
cnt + = YAxis ( i ) . Enabled ;
return cnt ;
}
inline void SetAxisLabel ( ImPlotAxis & axis , const char * label ) {
2023-06-19 15:44:38 +00:00
if ( label & & ImGui : : FindRenderedTextEnd ( label , nullptr ) ! = label ) {
2022-12-31 06:40:03 +00:00
axis . LabelOffset = TextBuffer . size ( ) ;
TextBuffer . append ( label , label + strlen ( label ) + 1 ) ;
}
else {
axis . LabelOffset = - 1 ;
}
}
inline const char * GetAxisLabel ( const ImPlotAxis & axis ) const { return TextBuffer . Buf . Data + axis . LabelOffset ; }
} ;
// Holds subplot data that must persist after EndSubplot
struct ImPlotSubplot {
ImGuiID ID ;
ImPlotSubplotFlags Flags ;
ImPlotSubplotFlags PreviousFlags ;
ImPlotItemGroup Items ;
int Rows ;
int Cols ;
int CurrentIdx ;
ImRect FrameRect ;
ImRect GridRect ;
ImVec2 CellSize ;
ImVector < ImPlotAlignmentData > RowAlignmentData ;
ImVector < ImPlotAlignmentData > ColAlignmentData ;
ImVector < float > RowRatios ;
ImVector < float > ColRatios ;
ImVector < ImPlotRange > RowLinkData ;
ImVector < ImPlotRange > ColLinkData ;
float TempSizes [ 2 ] ;
bool FrameHovered ;
bool HasTitle ;
ImPlotSubplot ( ) {
ID = 0 ;
Flags = PreviousFlags = ImPlotSubplotFlags_None ;
Rows = Cols = CurrentIdx = 0 ;
Items . Legend . Location = ImPlotLocation_North ;
Items . Legend . Flags = ImPlotLegendFlags_Horizontal | ImPlotLegendFlags_Outside ;
Items . Legend . CanGoInside = false ;
TempSizes [ 0 ] = TempSizes [ 1 ] = 0 ;
FrameHovered = false ;
HasTitle = false ;
}
} ;
// Temporary data storage for upcoming plot
struct ImPlotNextPlotData
{
ImPlotCond RangeCond [ ImAxis_COUNT ] ;
ImPlotRange Range [ ImAxis_COUNT ] ;
bool HasRange [ ImAxis_COUNT ] ;
bool Fit [ ImAxis_COUNT ] ;
double * LinkedMin [ ImAxis_COUNT ] ;
double * LinkedMax [ ImAxis_COUNT ] ;
ImPlotNextPlotData ( ) { Reset ( ) ; }
void Reset ( ) {
for ( int i = 0 ; i < ImAxis_COUNT ; + + i ) {
HasRange [ i ] = false ;
Fit [ i ] = false ;
2023-06-19 15:44:38 +00:00
LinkedMin [ i ] = LinkedMax [ i ] = nullptr ;
2022-12-31 06:40:03 +00:00
}
}
} ;
// Temporary data storage for upcoming item
struct ImPlotNextItemData {
ImVec4 Colors [ 5 ] ; // ImPlotCol_Line, ImPlotCol_Fill, ImPlotCol_MarkerOutline, ImPlotCol_MarkerFill, ImPlotCol_ErrorBar
float LineWeight ;
ImPlotMarker Marker ;
float MarkerSize ;
float MarkerWeight ;
float FillAlpha ;
float ErrorBarSize ;
float ErrorBarWeight ;
float DigitalBitHeight ;
float DigitalBitGap ;
bool RenderLine ;
bool RenderFill ;
bool RenderMarkerLine ;
bool RenderMarkerFill ;
bool HasHidden ;
bool Hidden ;
ImPlotCond HiddenCond ;
ImPlotNextItemData ( ) { Reset ( ) ; }
void Reset ( ) {
for ( int i = 0 ; i < 5 ; + + i )
Colors [ i ] = IMPLOT_AUTO_COL ;
LineWeight = MarkerSize = MarkerWeight = FillAlpha = ErrorBarSize = ErrorBarWeight = DigitalBitHeight = DigitalBitGap = IMPLOT_AUTO ;
Marker = IMPLOT_AUTO ;
HasHidden = Hidden = false ;
}
} ;
// Holds state information that must persist between calls to BeginPlot()/EndPlot()
struct ImPlotContext {
// Plot States
ImPool < ImPlotPlot > Plots ;
ImPool < ImPlotSubplot > Subplots ;
ImPlotPlot * CurrentPlot ;
ImPlotSubplot * CurrentSubplot ;
ImPlotItemGroup * CurrentItems ;
ImPlotItem * CurrentItem ;
ImPlotItem * PreviousItem ;
// Tick Marks and Labels
ImPlotTicker CTicker ;
// Annotation and Tabs
ImPlotAnnotationCollection Annotations ;
ImPlotTagCollection Tags ;
// Style and Colormaps
ImPlotStyle Style ;
ImVector < ImGuiColorMod > ColorModifiers ;
ImVector < ImGuiStyleMod > StyleModifiers ;
ImPlotColormapData ColormapData ;
ImVector < ImPlotColormap > ColormapModifiers ;
// Time
tm Tm ;
// Temp data for general use
ImVector < double > TempDouble1 , TempDouble2 ;
ImVector < int > TempInt1 ;
// Misc
int DigitalPlotItemCnt ;
int DigitalPlotOffset ;
ImPlotNextPlotData NextPlotData ;
ImPlotNextItemData NextItemData ;
ImPlotInputMap InputMap ;
bool OpenContextThisFrame ;
ImGuiTextBuffer MousePosStringBuilder ;
ImPlotItemGroup * SortItems ;
// Align plots
ImPool < ImPlotAlignmentData > AlignmentData ;
ImPlotAlignmentData * CurrentAlignmentH ;
ImPlotAlignmentData * CurrentAlignmentV ;
} ;
//-----------------------------------------------------------------------------
// [SECTION] Internal API
// No guarantee of forward compatibility here!
//-----------------------------------------------------------------------------
namespace ImPlot {
//-----------------------------------------------------------------------------
// [SECTION] Context Utils
//-----------------------------------------------------------------------------
// Initializes an ImPlotContext
IMPLOT_API void Initialize ( ImPlotContext * ctx ) ;
// Resets an ImPlot context for the next call to BeginPlot
IMPLOT_API void ResetCtxForNextPlot ( ImPlotContext * ctx ) ;
// Resets an ImPlot context for the next call to BeginAlignedPlots
IMPLOT_API void ResetCtxForNextAlignedPlots ( ImPlotContext * ctx ) ;
// Resets an ImPlot context for the next call to BeginSubplot
IMPLOT_API void ResetCtxForNextSubplot ( ImPlotContext * ctx ) ;
//-----------------------------------------------------------------------------
// [SECTION] Plot Utils
//-----------------------------------------------------------------------------
// Gets a plot from the current ImPlotContext
IMPLOT_API ImPlotPlot * GetPlot ( const char * title ) ;
// Gets the current plot from the current ImPlotContext
IMPLOT_API ImPlotPlot * GetCurrentPlot ( ) ;
// Busts the cache for every plot in the current context
IMPLOT_API void BustPlotCache ( ) ;
// Shows a plot's context menu.
IMPLOT_API void ShowPlotContextMenu ( ImPlotPlot & plot ) ;
//-----------------------------------------------------------------------------
// [SECTION] Setup Utils
//-----------------------------------------------------------------------------
// Lock Setup and call SetupFinish if necessary.
static inline void SetupLock ( ) {
2023-06-19 15:44:38 +00:00
ImPlotContext & gp = * GImPlot ;
if ( ! gp . CurrentPlot - > SetupLocked )
2022-12-31 06:40:03 +00:00
SetupFinish ( ) ;
2023-06-19 15:44:38 +00:00
gp . CurrentPlot - > SetupLocked = true ;
2022-12-31 06:40:03 +00:00
}
//-----------------------------------------------------------------------------
// [SECTION] Subplot Utils
//-----------------------------------------------------------------------------
// Advances to next subplot
IMPLOT_API void SubplotNextCell ( ) ;
// Shows a subplot's context menu.
IMPLOT_API void ShowSubplotsContextMenu ( ImPlotSubplot & subplot ) ;
//-----------------------------------------------------------------------------
// [SECTION] Item Utils
//-----------------------------------------------------------------------------
// Begins a new item. Returns false if the item should not be plotted. Pushes PlotClipRect.
IMPLOT_API bool BeginItem ( const char * label_id , ImPlotItemFlags flags = 0 , ImPlotCol recolor_from = IMPLOT_AUTO ) ;
// Same as above but with fitting functionality.
template < typename _Fitter >
bool BeginItemEx ( const char * label_id , const _Fitter & fitter , ImPlotItemFlags flags = 0 , ImPlotCol recolor_from = IMPLOT_AUTO ) {
if ( BeginItem ( label_id , flags , recolor_from ) ) {
ImPlotPlot & plot = * GetCurrentPlot ( ) ;
if ( plot . FitThisFrame & & ! ImHasFlag ( flags , ImPlotItemFlags_NoFit ) )
fitter . Fit ( plot . Axes [ plot . CurrentX ] , plot . Axes [ plot . CurrentY ] ) ;
return true ;
}
return false ;
}
// Ends an item (call only if BeginItem returns true). Pops PlotClipRect.
IMPLOT_API void EndItem ( ) ;
// Register or get an existing item from the current plot.
2023-06-19 15:44:38 +00:00
IMPLOT_API ImPlotItem * RegisterOrGetItem ( const char * label_id , ImPlotItemFlags flags , bool * just_created = nullptr ) ;
2022-12-31 06:40:03 +00:00
// Get a plot item from the current plot.
IMPLOT_API ImPlotItem * GetItem ( const char * label_id ) ;
// Gets the current item.
IMPLOT_API ImPlotItem * GetCurrentItem ( ) ;
// Busts the cache for every item for every plot in the current context.
IMPLOT_API void BustItemCache ( ) ;
//-----------------------------------------------------------------------------
// [SECTION] Axis Utils
//-----------------------------------------------------------------------------
// Returns true if any enabled axis is locked from user input.
static inline bool AnyAxesInputLocked ( ImPlotAxis * axes , int count ) {
for ( int i = 0 ; i < count ; + + i ) {
if ( axes [ i ] . Enabled & & axes [ i ] . IsInputLocked ( ) )
return true ;
}
return false ;
}
// Returns true if all enabled axes are locked from user input.
static inline bool AllAxesInputLocked ( ImPlotAxis * axes , int count ) {
for ( int i = 0 ; i < count ; + + i ) {
if ( axes [ i ] . Enabled & & ! axes [ i ] . IsInputLocked ( ) )
return false ;
}
return true ;
}
static inline bool AnyAxesHeld ( ImPlotAxis * axes , int count ) {
for ( int i = 0 ; i < count ; + + i ) {
if ( axes [ i ] . Enabled & & axes [ i ] . Held )
return true ;
}
return false ;
}
static inline bool AnyAxesHovered ( ImPlotAxis * axes , int count ) {
for ( int i = 0 ; i < count ; + + i ) {
if ( axes [ i ] . Enabled & & axes [ i ] . Hovered )
return true ;
}
return false ;
}
// Returns true if the user has requested data to be fit.
static inline bool FitThisFrame ( ) {
return GImPlot - > CurrentPlot - > FitThisFrame ;
}
// Extends the current plot's axes so that it encompasses a vertical line at x
static inline void FitPointX ( double x ) {
ImPlotPlot & plot = * GetCurrentPlot ( ) ;
ImPlotAxis & x_axis = plot . Axes [ plot . CurrentX ] ;
x_axis . ExtendFit ( x ) ;
}
// Extends the current plot's axes so that it encompasses a horizontal line at y
static inline void FitPointY ( double y ) {
ImPlotPlot & plot = * GetCurrentPlot ( ) ;
ImPlotAxis & y_axis = plot . Axes [ plot . CurrentY ] ;
y_axis . ExtendFit ( y ) ;
}
// Extends the current plot's axes so that it encompasses point p
static inline void FitPoint ( const ImPlotPoint & p ) {
ImPlotPlot & plot = * GetCurrentPlot ( ) ;
ImPlotAxis & x_axis = plot . Axes [ plot . CurrentX ] ;
ImPlotAxis & y_axis = plot . Axes [ plot . CurrentY ] ;
x_axis . ExtendFitWith ( y_axis , p . x , p . y ) ;
y_axis . ExtendFitWith ( x_axis , p . y , p . x ) ;
}
// Returns true if two ranges overlap
static inline bool RangesOverlap ( const ImPlotRange & r1 , const ImPlotRange & r2 )
{ return r1 . Min < = r2 . Max & & r2 . Min < = r1 . Max ; }
// Shows an axis's context menu.
IMPLOT_API void ShowAxisContextMenu ( ImPlotAxis & axis , ImPlotAxis * equal_axis , bool time_allowed = false ) ;
//-----------------------------------------------------------------------------
// [SECTION] Legend Utils
//-----------------------------------------------------------------------------
// Gets the position of an inner rect that is located inside of an outer rect according to an ImPlotLocation and padding amount.
IMPLOT_API ImVec2 GetLocationPos ( const ImRect & outer_rect , const ImVec2 & inner_size , ImPlotLocation location , const ImVec2 & pad = ImVec2 ( 0 , 0 ) ) ;
2024-07-04 00:55:17 +00:00
// Calculates the bounding box size of a legend _before_ clipping.
2022-12-31 06:40:03 +00:00
IMPLOT_API ImVec2 CalcLegendSize ( ImPlotItemGroup & items , const ImVec2 & pad , const ImVec2 & spacing , bool vertical ) ;
2024-07-04 00:55:17 +00:00
// Clips calculated legend size
IMPLOT_API bool ClampLegendRect ( ImRect & legend_rect , const ImRect & outer_rect , const ImVec2 & pad ) ;
2022-12-31 06:40:03 +00:00
// Renders legend entries into a bounding box
IMPLOT_API bool ShowLegendEntries ( ImPlotItemGroup & items , const ImRect & legend_bb , bool interactable , const ImVec2 & pad , const ImVec2 & spacing , bool vertical , ImDrawList & DrawList ) ;
2024-07-04 00:55:17 +00:00
// Shows an alternate legend for the plot identified by #title_id, outside of the plot frame (can be called before or after of Begin/EndPlot but must occur in the same ImGui window! This is not thoroughly tested nor scrollable!).
2022-12-31 06:40:03 +00:00
IMPLOT_API void ShowAltLegend ( const char * title_id , bool vertical = true , const ImVec2 size = ImVec2 ( 0 , 0 ) , bool interactable = true ) ;
2024-07-04 00:55:17 +00:00
// Shows a legend's context menu.
2022-12-31 06:40:03 +00:00
IMPLOT_API bool ShowLegendContextMenu ( ImPlotLegend & legend , bool visible ) ;
//-----------------------------------------------------------------------------
// [SECTION] Label Utils
//-----------------------------------------------------------------------------
// Create a a string label for a an axis value
IMPLOT_API void LabelAxisValue ( const ImPlotAxis & axis , double value , char * buff , int size , bool round = false ) ;
//-----------------------------------------------------------------------------
// [SECTION] Styling Utils
//-----------------------------------------------------------------------------
// Get styling data for next item (call between Begin/EndItem)
static inline const ImPlotNextItemData & GetItemData ( ) { return GImPlot - > NextItemData ; }
// Returns true if a color is set to be automatically determined
static inline bool IsColorAuto ( const ImVec4 & col ) { return col . w = = - 1 ; }
2023-06-19 15:44:38 +00:00
// Returns true if a style color is set to be automatically determined
2022-12-31 06:40:03 +00:00
static inline bool IsColorAuto ( ImPlotCol idx ) { return IsColorAuto ( GImPlot - > Style . Colors [ idx ] ) ; }
// Returns the automatically deduced style color
IMPLOT_API ImVec4 GetAutoColor ( ImPlotCol idx ) ;
// Returns the style color whether it is automatic or custom set
static inline ImVec4 GetStyleColorVec4 ( ImPlotCol idx ) { return IsColorAuto ( idx ) ? GetAutoColor ( idx ) : GImPlot - > Style . Colors [ idx ] ; }
static inline ImU32 GetStyleColorU32 ( ImPlotCol idx ) { return ImGui : : ColorConvertFloat4ToU32 ( GetStyleColorVec4 ( idx ) ) ; }
// Draws vertical text. The position is the bottom left of the text rect.
2023-06-19 15:44:38 +00:00
IMPLOT_API void AddTextVertical ( ImDrawList * DrawList , ImVec2 pos , ImU32 col , const char * text_begin , const char * text_end = nullptr ) ;
2022-12-31 06:40:03 +00:00
// Draws multiline horizontal text centered.
2023-06-19 15:44:38 +00:00
IMPLOT_API void AddTextCentered ( ImDrawList * DrawList , ImVec2 top_center , ImU32 col , const char * text_begin , const char * text_end = nullptr ) ;
2022-12-31 06:40:03 +00:00
// Calculates the size of vertical text
static inline ImVec2 CalcTextSizeVertical ( const char * text ) {
ImVec2 sz = ImGui : : CalcTextSize ( text ) ;
return ImVec2 ( sz . y , sz . x ) ;
}
// Returns white or black text given background color
static inline ImU32 CalcTextColor ( const ImVec4 & bg ) { return ( bg . x * 0.299f + bg . y * 0.587f + bg . z * 0.114f ) > 0.5f ? IM_COL32_BLACK : IM_COL32_WHITE ; }
static inline ImU32 CalcTextColor ( ImU32 bg ) { return CalcTextColor ( ImGui : : ColorConvertU32ToFloat4 ( bg ) ) ; }
// Lightens or darkens a color for hover
static inline ImU32 CalcHoverColor ( ImU32 col ) { return ImMixU32 ( col , CalcTextColor ( col ) , 32 ) ; }
// Clamps a label position so that it fits a rect defined by Min/Max
static inline ImVec2 ClampLabelPos ( ImVec2 pos , const ImVec2 & size , const ImVec2 & Min , const ImVec2 & Max ) {
if ( pos . x < Min . x ) pos . x = Min . x ;
if ( pos . y < Min . y ) pos . y = Min . y ;
if ( ( pos . x + size . x ) > Max . x ) pos . x = Max . x - size . x ;
if ( ( pos . y + size . y ) > Max . y ) pos . y = Max . y - size . y ;
return pos ;
}
// Returns a color from the Color map given an index >= 0 (modulo will be performed).
IMPLOT_API ImU32 GetColormapColorU32 ( int idx , ImPlotColormap cmap ) ;
// Returns the next unused colormap color and advances the colormap. Can be used to skip colors if desired.
IMPLOT_API ImU32 NextColormapColorU32 ( ) ;
// Linearly interpolates a color from the current colormap given t between 0 and 1.
IMPLOT_API ImU32 SampleColormapU32 ( float t , ImPlotColormap cmap ) ;
// Render a colormap bar
IMPLOT_API void RenderColorBar ( const ImU32 * colors , int size , ImDrawList & DrawList , const ImRect & bounds , bool vert , bool reversed , bool continuous ) ;
//-----------------------------------------------------------------------------
// [SECTION] Math and Misc Utils
//-----------------------------------------------------------------------------
// Rounds x to powers of 2,5 and 10 for generating axis labels (from Graphics Gems 1 Chapter 11.2)
IMPLOT_API double NiceNum ( double x , bool round ) ;
// Computes order of magnitude of double.
static inline int OrderOfMagnitude ( double val ) { return val = = 0 ? 0 : ( int ) ( floor ( log10 ( fabs ( val ) ) ) ) ; }
// Returns the precision required for a order of magnitude.
static inline int OrderToPrecision ( int order ) { return order > 0 ? 0 : 1 - order ; }
// Returns a floating point precision to use given a value
static inline int Precision ( double val ) { return OrderToPrecision ( OrderOfMagnitude ( val ) ) ; }
// Round a value to a given precision
static inline double RoundTo ( double val , int prec ) { double p = pow ( 10 , ( double ) prec ) ; return floor ( val * p + 0.5 ) / p ; }
// Returns the intersection point of two lines A and B (assumes they are not parallel!)
static inline ImVec2 Intersection ( const ImVec2 & a1 , const ImVec2 & a2 , const ImVec2 & b1 , const ImVec2 & b2 ) {
float v1 = ( a1 . x * a2 . y - a1 . y * a2 . x ) ; float v2 = ( b1 . x * b2 . y - b1 . y * b2 . x ) ;
float v3 = ( ( a1 . x - a2 . x ) * ( b1 . y - b2 . y ) - ( a1 . y - a2 . y ) * ( b1 . x - b2 . x ) ) ;
return ImVec2 ( ( v1 * ( b1 . x - b2 . x ) - v2 * ( a1 . x - a2 . x ) ) / v3 , ( v1 * ( b1 . y - b2 . y ) - v2 * ( a1 . y - a2 . y ) ) / v3 ) ;
}
// Fills a buffer with n samples linear interpolated from vmin to vmax
template < typename T >
void FillRange ( ImVector < T > & buffer , int n , T vmin , T vmax ) {
buffer . resize ( n ) ;
T step = ( vmax - vmin ) / ( n - 1 ) ;
for ( int i = 0 ; i < n ; + + i ) {
buffer [ i ] = vmin + i * step ;
}
}
// Calculate histogram bin counts and widths
template < typename T >
static inline void CalculateBins ( const T * values , int count , ImPlotBin meth , const ImPlotRange & range , int & bins_out , double & width_out ) {
switch ( meth ) {
case ImPlotBin_Sqrt :
bins_out = ( int ) ceil ( sqrt ( count ) ) ;
break ;
case ImPlotBin_Sturges :
bins_out = ( int ) ceil ( 1.0 + log2 ( count ) ) ;
break ;
case ImPlotBin_Rice :
bins_out = ( int ) ceil ( 2 * cbrt ( count ) ) ;
break ;
case ImPlotBin_Scott :
width_out = 3.49 * ImStdDev ( values , count ) / cbrt ( count ) ;
bins_out = ( int ) round ( range . Size ( ) / width_out ) ;
break ;
}
width_out = range . Size ( ) / bins_out ;
}
//-----------------------------------------------------------------------------
// Time Utils
//-----------------------------------------------------------------------------
// Returns true if year is leap year (366 days long)
static inline bool IsLeapYear ( int year ) {
return year % 4 = = 0 & & ( year % 100 ! = 0 | | year % 400 = = 0 ) ;
}
// Returns the number of days in a month, accounting for Feb. leap years. #month is zero indexed.
static inline int GetDaysInMonth ( int year , int month ) {
static const int days [ 12 ] = { 31 , 28 , 31 , 30 , 31 , 30 , 31 , 31 , 30 , 31 , 30 , 31 } ;
return days [ month ] + ( int ) ( month = = 1 & & IsLeapYear ( year ) ) ;
}
// Make a UNIX timestamp from a tm struct expressed in UTC time (i.e. GMT timezone).
IMPLOT_API ImPlotTime MkGmtTime ( struct tm * ptm ) ;
// Make a tm struct expressed in UTC time (i.e. GMT timezone) from a UNIX timestamp.
IMPLOT_API tm * GetGmtTime ( const ImPlotTime & t , tm * ptm ) ;
// Make a UNIX timestamp from a tm struct expressed in local time.
IMPLOT_API ImPlotTime MkLocTime ( struct tm * ptm ) ;
// Make a tm struct expressed in local time from a UNIX timestamp.
IMPLOT_API tm * GetLocTime ( const ImPlotTime & t , tm * ptm ) ;
// NB: The following functions only work if there is a current ImPlotContext because the
// internal tm struct is owned by the context! They are aware of ImPlotStyle.UseLocalTime.
// Make a timestamp from time components.
// year[1970-3000], month[0-11], day[1-31], hour[0-23], min[0-59], sec[0-59], us[0,999999]
IMPLOT_API ImPlotTime MakeTime ( int year , int month = 0 , int day = 1 , int hour = 0 , int min = 0 , int sec = 0 , int us = 0 ) ;
// Get year component from timestamp [1970-3000]
IMPLOT_API int GetYear ( const ImPlotTime & t ) ;
// Adds or subtracts time from a timestamp. #count > 0 to add, < 0 to subtract.
IMPLOT_API ImPlotTime AddTime ( const ImPlotTime & t , ImPlotTimeUnit unit , int count ) ;
// Rounds a timestamp down to nearest unit.
IMPLOT_API ImPlotTime FloorTime ( const ImPlotTime & t , ImPlotTimeUnit unit ) ;
// Rounds a timestamp up to the nearest unit.
IMPLOT_API ImPlotTime CeilTime ( const ImPlotTime & t , ImPlotTimeUnit unit ) ;
// Rounds a timestamp up or down to the nearest unit.
IMPLOT_API ImPlotTime RoundTime ( const ImPlotTime & t , ImPlotTimeUnit unit ) ;
// Combines the date of one timestamp with the time-of-day of another timestamp.
IMPLOT_API ImPlotTime CombineDateTime ( const ImPlotTime & date_part , const ImPlotTime & time_part ) ;
// Formats the time part of timestamp t into a buffer according to #fmt
IMPLOT_API int FormatTime ( const ImPlotTime & t , char * buffer , int size , ImPlotTimeFmt fmt , bool use_24_hr_clk ) ;
// Formats the date part of timestamp t into a buffer according to #fmt
IMPLOT_API int FormatDate ( const ImPlotTime & t , char * buffer , int size , ImPlotDateFmt fmt , bool use_iso_8601 ) ;
// Formats the time and/or date parts of a timestamp t into a buffer according to #fmt
IMPLOT_API int FormatDateTime ( const ImPlotTime & t , char * buffer , int size , ImPlotDateTimeSpec fmt ) ;
// Shows a date picker widget block (year/month/day).
// #level = 0 for day, 1 for month, 2 for year. Modified by user interaction.
// #t will be set when a day is clicked and the function will return true.
// #t1 and #t2 are optional dates to highlight.
2023-06-19 15:44:38 +00:00
IMPLOT_API bool ShowDatePicker ( const char * id , int * level , ImPlotTime * t , const ImPlotTime * t1 = nullptr , const ImPlotTime * t2 = nullptr ) ;
2022-12-31 06:40:03 +00:00
// Shows a time picker widget block (hour/min/sec).
// #t will be set when a new hour, minute, or sec is selected or am/pm is toggled, and the function will return true.
IMPLOT_API bool ShowTimePicker ( const char * id , ImPlotTime * t ) ;
//-----------------------------------------------------------------------------
// [SECTION] Transforms
//-----------------------------------------------------------------------------
static inline double TransformForward_Log10 ( double v , void * ) {
v = v < = 0.0 ? DBL_MIN : v ;
return ImLog10 ( v ) ;
}
static inline double TransformInverse_Log10 ( double v , void * ) {
return ImPow ( 10 , v ) ;
}
static inline double TransformForward_SymLog ( double v , void * ) {
return 2.0 * ImAsinh ( v / 2.0 ) ;
}
static inline double TransformInverse_SymLog ( double v , void * ) {
return 2.0 * ImSinh ( v / 2.0 ) ;
}
static inline double TransformForward_Logit ( double v , void * ) {
v = ImClamp ( v , DBL_MIN , 1.0 - DBL_EPSILON ) ;
return ImLog10 ( v / ( 1 - v ) ) ;
}
static inline double TransformInverse_Logit ( double v , void * ) {
return 1.0 / ( 1.0 + ImPow ( 10 , - v ) ) ;
}
//-----------------------------------------------------------------------------
// [SECTION] Formatters
//-----------------------------------------------------------------------------
static inline int Formatter_Default ( double value , char * buff , int size , void * data ) {
char * fmt = ( char * ) data ;
return ImFormatString ( buff , size , fmt , value ) ;
}
static inline int Formatter_Logit ( double value , char * buff , int size , void * ) {
if ( value = = 0.5 )
return ImFormatString ( buff , size , " 1/2 " ) ;
else if ( value < 0.5 )
return ImFormatString ( buff , size , " %g " , value ) ;
else
return ImFormatString ( buff , size , " 1 - %g " , 1 - value ) ;
}
struct Formatter_Time_Data {
ImPlotTime Time ;
ImPlotDateTimeSpec Spec ;
ImPlotFormatter UserFormatter ;
void * UserFormatterData ;
} ;
static inline int Formatter_Time ( double , char * buff , int size , void * data ) {
Formatter_Time_Data * ftd = ( Formatter_Time_Data * ) data ;
return FormatDateTime ( ftd - > Time , buff , size , ftd - > Spec ) ;
}
//------------------------------------------------------------------------------
// [SECTION] Locator
//------------------------------------------------------------------------------
void Locator_Default ( ImPlotTicker & ticker , const ImPlotRange & range , float pixels , bool vertical , ImPlotFormatter formatter , void * formatter_data ) ;
void Locator_Time ( ImPlotTicker & ticker , const ImPlotRange & range , float pixels , bool vertical , ImPlotFormatter formatter , void * formatter_data ) ;
void Locator_Log10 ( ImPlotTicker & ticker , const ImPlotRange & range , float pixels , bool vertical , ImPlotFormatter formatter , void * formatter_data ) ;
void Locator_SymLog ( ImPlotTicker & ticker , const ImPlotRange & range , float pixels , bool vertical , ImPlotFormatter formatter , void * formatter_data ) ;
} // namespace ImPlot