Compare commits

...

7 Commits

4 changed files with 144 additions and 133 deletions

2
.gitignore vendored
View File

@@ -1,2 +1,2 @@
zig-cache/ .zig-cache/
zig-out/ zig-out/

View File

@@ -1,47 +1,68 @@
const std = @import("std"); const std = @import("std");
// Although this function looks imperative, note that its job is to // Although this function looks imperative, it does not perform the build
// declaratively construct a build graph that will be executed by an external // directly and instead it mutates the build graph (`b`) that will be then
// runner. // executed by an external runner. The functions in `std.Build` implement a DSL
// for defining build steps and express dependencies between them, allowing the
// build runner to parallelize the build automatically (and the cache system to
// know when a step doesn't need to be re-run).
pub fn build(b: *std.Build) void { pub fn build(b: *std.Build) void {
// Standard target options allows the person running `zig build` to choose // Standard target options allow the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which // what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options // means any target is allowed, and the default is native. Other options
// for restricting supported target set are available. // for restricting supported target set are available.
const target = b.standardTargetOptions(.{}); const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select // It's also possible to define more custom flags to toggle optional features
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not // of this build script using `b.option()`. All defined flags (including
// set a preferred release mode, allowing the user to decide how to optimize. // target and optimize options) will be listed when running `zig build --help`
const optimize = b.standardOptimizeOption(.{}); // in this directory.
const lib = b.addStaticLibrary(.{ // This creates a module, which represents a collection of source files alongside
.name = "zba-util", // some compilation options, such as optimization mode and linked system libraries.
// In this case the main source file is merely a path, however, in more // Zig modules are the preferred way of making Zig code available to consumers.
// complicated build scripts, this could be a generated file. // addModule defines a module that we intend to make available for importing
.root_source_file = .{ .path = "src/lib.zig" }, // to our consumers. We must give it a name because a Zig package can expose
// multiple modules and consumers will need to be able to specify which
// module they want to access.
const mod = b.addModule("zba_util", .{
// The root source file is the "entry point" of this module. Users of
// this module will only be able to access public declarations contained
// in this file, which means that if you have declarations that you
// intend to expose to consumers that were defined in other files part
// of this module, you will have to make sure to re-export them from
// the root file.
.root_source_file = b.path("src/lib.zig"),
// Later on we'll use this module as the root module of a test executable
// which requires us to specify a target.
.target = target, .target = target,
.optimize = optimize,
}); });
// This declares intent for the library to be installed into the standard // Creates an executable that will run `test` blocks from the provided module.
// location when the user invokes the "install" step (the default step when // Here `mod` needs to define a target, which is why earlier we made sure to
// running `zig build`). // set the releative field.
b.installArtifact(lib); const mod_tests = b.addTest(.{
.root_module = mod,
// Creates a step for unit testing. This only builds the test executable
// but does not run it.
const main_tests = b.addTest(.{
.root_source_file = .{ .path = "src/lib.zig" },
.target = target,
.optimize = optimize,
}); });
const run_main_tests = b.addRunArtifact(main_tests); // A run step that will run the test executable.
const run_mod_tests = b.addRunArtifact(mod_tests);
// This creates a build step. It will be visible in the `zig build --help` menu, // A top level step for running all tests. dependOn can be called multiple
// and can be selected like this: `zig build test` // times and since the two run steps do not depend on one another, this will
// This will evaluate the `test` step rather than the default, which is "install". // make the two of them run in parallel.
const test_step = b.step("test", "Run library tests"); const test_step = b.step("test", "Run tests");
test_step.dependOn(&run_main_tests.step); test_step.dependOn(&run_mod_tests.step);
// Just like flags, top level steps are also listed in the `--help` menu.
//
// The Zig build system is entirely implemented in userland, which means
// that it cannot hook into private compiler APIs. All compilation work
// orchestrated by the build system will result in other Zig compiler
// subcommands being invoked with the right flags defined. You can observe
// these invocations when one fails (or you pass a flag to increase
// verbosity) to validate assumptions and diagnose problems.
//
// Lastly, the Zig build system is relatively simple and self-contained,
// and reading its source code will allow you to master it.
} }

81
build.zig.zon Normal file
View File

@@ -0,0 +1,81 @@
.{
// This is the default name used by packages depending on this one. For
// example, when a user runs `zig fetch --save <url>`, this field is used
// as the key in the `dependencies` table. Although the user can choose a
// different name, most users will stick with this provided value.
//
// It is redundant to include "zig" in this name because it is already
// within the Zig package namespace.
.name = .zba_util,
// This is a [Semantic Version](https://semver.org/).
// In a future version of Zig it will be used for package deduplication.
.version = "0.0.0",
// Together with name, this represents a globally unique package
// identifier. This field is generated by the Zig toolchain when the
// package is first created, and then *never changes*. This allows
// unambiguous detection of one package being an updated version of
// another.
//
// When forking a Zig project, this id should be regenerated (delete the
// field and run `zig build`) if the upstream project is still maintained.
// Otherwise, the fork is *hostile*, attempting to take control over the
// original project's identity. Thus it is recommended to leave the comment
// on the following line intact, so that it shows up in code reviews that
// modify the field.
.fingerprint = 0xc252e6a789d0ad48, // Changing this has security and trust implications.
// Tracks the earliest Zig version that the package considers to be a
// supported use case.
.minimum_zig_version = "0.15.1",
// This field is optional.
// Each dependency must either provide a `url` and `hash`, or a `path`.
// `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
// Once all dependencies are fetched, `zig build` no longer requires
// internet connectivity.
.dependencies = .{
// See `zig fetch --save <url>` for a command-line interface for adding dependencies.
//.example = .{
// // When updating this field to a new URL, be sure to delete the corresponding
// // `hash`, otherwise you are communicating that you expect to find the old hash at
// // the new URL. If the contents of a URL change this will result in a hash mismatch
// // which will prevent zig from using it.
// .url = "https://example.com/foo.tar.gz",
//
// // This is computed from the file contents of the directory of files that is
// // obtained after fetching `url` and applying the inclusion rules given by
// // `paths`.
// //
// // This field is the source of truth; packages do not come from a `url`; they
// // come from a `hash`. `url` is just one of many possible mirrors for how to
// // obtain a package matching this `hash`.
// //
// // Uses the [multihash](https://multiformats.io/multihash/) format.
// .hash = "...",
//
// // When this is provided, the package is found in a directory relative to the
// // build root. In this case the package's hash is irrelevant and therefore not
// // computed. This field and `url` are mutually exclusive.
// .path = "foo",
//
// // When this is set to `true`, a package is declared to be lazily
// // fetched. This makes the dependency only get fetched if it is
// // actually used.
// .lazy = false,
//},
},
// Specifies the set of files and directories that are included in this package.
// Only files and directories listed here are included in the `hash` that
// is computed for this package. Only files listed here will remain on disk
// when using the zig package manager. As a rule of thumb, one should list
// files required for compilation plus any license(s).
// Paths are relative to the build root. Use the empty string (`""`) to refer to
// the build root itself.
// A directory listed here means that all files within, recursively, are included.
.paths = .{
"build.zig",
"build.zig.zon",
"src",
// For example...
//"LICENSE",
//"README.md",
},
}

View File

@@ -1,101 +1,12 @@
const std = @import("std"); const std = @import("std");
const Log2Int = std.math.Log2Int; const Log2Int = std.math.Log2Int;
const Allocator = std.mem.Allocator;
const EmuMessage = enum { Pause, Resume, Quit };
const GuiMessage = enum { Paused, Quit };
pub const TwoWayChannel = struct {
const Self = @This();
emu: Channel(EmuMessage),
gui: Channel(GuiMessage),
pub fn init(items: []u8) Self {
comptime std.debug.assert(@sizeOf(EmuMessage) == @sizeOf(GuiMessage));
comptime std.debug.assert(@sizeOf(@typeInfo([]u8).Pointer.child) == @sizeOf(EmuMessage));
std.debug.assert(items.len % 2 == 0);
const left = @ptrCast([*]EmuMessage, items)[0 .. items.len / 2];
const right = @ptrCast([*]GuiMessage, items)[items.len / 2 .. items.len];
return .{ .emu = Channel(EmuMessage).init(left), .gui = Channel(GuiMessage).init(right) };
}
};
fn Channel(comptime T: type) type {
return struct {
const Self = @This();
const Index = usize;
const Atomic = std.atomic.Atomic;
const max_capacity = (@as(Index, 1) << @typeInfo(Index).Int.bits - 1) - 1; // half the range of index type
const log = std.log.scoped(.Channel);
read: Atomic(Index),
write: Atomic(Index),
buf: []T,
const Error = error{buffer_full};
pub fn init(buf: []T) Self {
std.debug.assert(std.math.isPowerOfTwo(buf.len)); // capacity must be a power of two
std.debug.assert(buf.len <= max_capacity);
return .{
.read = Atomic(Index).init(0),
.write = Atomic(Index).init(0),
.buf = buf,
};
}
pub fn push(self: *Self, value: T) void {
const read_idx = self.read.load(.Acquire);
const write_idx = self.write.load(.Acquire);
// Check to see if Queue is full
if (write_idx - read_idx == self.buf.len) @panic("Channel: Buffer is full");
self.buf[self.mask(write_idx)] = value;
std.atomic.fence(.Release);
self.write.store(write_idx + 1, .Release);
}
pub fn pop(self: *Self) ?T {
const read_idx = self.read.load(.Acquire);
const write_idx = self.write.load(.Acquire);
if (read_idx == write_idx) return null;
std.atomic.fence(.Acquire);
const value = self.buf[self.mask(read_idx)];
std.atomic.fence(.Release);
self.read.store(read_idx + 1, .Release);
return value;
}
pub fn len(self: *const Self) Index {
const read_idx = self.read.load(.Acquire);
const write_idx = self.write.load(.Acquire);
return write_idx - read_idx;
}
fn mask(self: *const Self, idx: Index) Index {
return idx & (self.buf.len - 1);
}
};
}
pub fn RingBuffer(comptime T: type) type { pub fn RingBuffer(comptime T: type) type {
return struct { return struct {
const Self = @This(); const Self = @This();
const Index = usize; const Index = usize;
const max_capacity = (@as(Index, 1) << @typeInfo(Index).Int.bits - 1) - 1; // half the range of index type const max_capacity = (@as(Index, 1) << @typeInfo(Index).int.bits - 1) - 1; // half the range of index type
const log = std.log.scoped(.RingBuffer); const log = std.log.scoped(.RingBuffer);
@@ -109,8 +20,6 @@ pub fn RingBuffer(comptime T: type) type {
std.debug.assert(std.math.isPowerOfTwo(buf.len)); // capacity must be a power of two std.debug.assert(std.math.isPowerOfTwo(buf.len)); // capacity must be a power of two
std.debug.assert(buf.len <= max_capacity); std.debug.assert(buf.len <= max_capacity);
@memset(buf, 0);
return .{ .read = 0, .write = 0, .buf = buf }; return .{ .read = 0, .write = 0, .buf = buf };
} }
@@ -130,7 +39,7 @@ pub fn RingBuffer(comptime T: type) type {
/// Returns the number of entries read /// Returns the number of entries read
pub fn copy(self: *const Self, cpy: []T) Index { pub fn copy(self: *const Self, cpy: []T) Index {
const count = std.math.min(self.len(), cpy.len); const count = @min(self.len(), cpy.len);
var start: Index = self.read; var start: Index = self.read;
for (cpy, 0..) |*v, i| { for (cpy, 0..) |*v, i| {
@@ -164,20 +73,20 @@ pub fn RingBuffer(comptime T: type) type {
// Sign-Extend value of type `T` to type `U` // Sign-Extend value of type `T` to type `U`
pub fn sext(comptime T: type, comptime U: type, value: T) T { pub fn sext(comptime T: type, comptime U: type, value: T) T {
// U must have less bits than T // U must have less bits than T
comptime std.debug.assert(@typeInfo(U).Int.bits <= @typeInfo(T).Int.bits); comptime std.debug.assert(@typeInfo(U).int.bits <= @typeInfo(T).int.bits);
const iT = std.meta.Int(.signed, @typeInfo(T).Int.bits); const iT = std.meta.Int(.signed, @typeInfo(T).int.bits);
const ExtU = if (@typeInfo(U).Int.signedness == .unsigned) T else iT; const ExtU = if (@typeInfo(U).int.signedness == .unsigned) T else iT;
const shift_amt = @intCast(Log2Int(T), @typeInfo(T).Int.bits - @typeInfo(U).Int.bits); const shift_amt: Log2Int(T) = @intCast(@typeInfo(T).int.bits - @typeInfo(U).int.bits);
return @bitCast(T, @bitCast(iT, @as(ExtU, @truncate(U, value)) << shift_amt) >> shift_amt); return @bitCast(@as(iT, @bitCast(@as(ExtU, @as(U, @truncate(value))) << shift_amt)) >> shift_amt);
} }
/// See https://godbolt.org/z/W3en9Eche /// See https://godbolt.org/z/W3en9Eche
pub inline fn rotr(comptime T: type, x: T, r: anytype) T { pub inline fn rotr(comptime T: type, x: T, r: anytype) T {
if (@typeInfo(T).Int.signedness == .signed) if (@typeInfo(T).int.signedness == .signed)
@compileError("cannot rotate signed integer"); @compileError("cannot rotate signed integer");
const ar = @intCast(Log2Int(T), @mod(r, @typeInfo(T).Int.bits)); const ar: Log2Int(T) = @intCast(@mod(r, @typeInfo(T).int.bits));
return x >> ar | x << (1 +% ~ar); return x >> ar | x << (1 +% ~ar);
} }