zba-util/src/lib.zig

275 lines
8.0 KiB
Zig
Raw Normal View History

2023-03-10 05:41:46 +00:00
const std = @import("std");
const Log2Int = std.math.Log2Int;
2023-05-24 03:45:39 +00:00
const Allocator = std.mem.Allocator;
2023-05-24 03:45:39 +00:00
// TODO: Rewrite
// pub const TwoWayChannel = struct {
// const Self = @This();
2023-05-24 03:45:39 +00:00
// emu: Channel(EmuMessage),
// gui: Channel(GuiMessage),
2023-05-24 03:45:39 +00:00
// pub fn init(items: []u8) Self {
// comptime std.debug.assert(@sizeOf(EmuMessage) == @sizeOf(GuiMessage));
// comptime std.debug.assert(@sizeOf(@typeInfo([]u8).Pointer.child) == @sizeOf(EmuMessage));
2023-05-24 03:45:39 +00:00
// std.debug.assert(items.len % 2 == 0);
2023-05-24 03:45:39 +00:00
// const left = @ptrCast([*]EmuMessage, items)[0 .. items.len / 2];
// const right = @ptrCast([*]GuiMessage, items)[items.len / 2 .. items.len];
2023-05-24 03:45:39 +00:00
// return .{ .emu = Channel(EmuMessage).init(left), .gui = Channel(GuiMessage).init(right) };
// }
// };
2023-05-24 03:45:39 +00:00
pub fn Channel(comptime T: type, comptime N: usize) type {
2023-03-10 05:41:46 +00:00
return struct {
const Index = usize;
2023-05-24 03:45:39 +00:00
const capacity_limit = (@as(Index, 1) << @typeInfo(Index).Int.bits - 1) - 1; // half the range of index type
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
tx: Sender,
rx: Receiver,
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
pub const Sender = struct {
const Self = @This();
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
read: *Index,
write: *Index,
ptr: *[N]T,
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
const Error = error{buffer_full};
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
pub fn send(self: Self, value: T) void {
const idx_r = @atomicLoad(Index, self.read, .Acquire);
const idx_w = @atomicLoad(Index, self.write, .Acquire);
// Check to see if Queue is full
if (idx_w - idx_r == N) @panic("Channel: Buffer is full");
self.ptr[mask(idx_w)] = value;
std.atomic.fence(.Release);
@atomicStore(Index, self.write, idx_w + 1, .Release);
}
pub fn len(self: Self) Index {
const idx_r = @atomicLoad(Index, self.read, .Acquire);
const idx_w = @atomicLoad(Index, self.write, .Acquire);
return idx_w - idx_r;
}
};
pub const Receiver = struct {
const Self = @This();
read: *Index,
write: *Index,
ptr: *[N]T,
pub fn recv(self: Self) ?T {
const idx_r = @atomicLoad(Index, self.read, .Acquire);
const idx_w = @atomicLoad(Index, self.write, .Acquire);
if (idx_r == idx_w) return null;
std.atomic.fence(.Acquire);
const value = self.ptr[mask(idx_r)];
std.atomic.fence(.Release);
@atomicStore(Index, self.read, idx_r + 1, .Release);
return value;
}
pub fn peek(self: Self) ?T {
const idx_r = @atomicLoad(Index, self.read, .Acquire);
const idx_w = @atomicLoad(Index, self.write, .Acquire);
if (idx_r == idx_w) return null;
std.atomic.fence(.Acquire);
return self.ptr[mask(idx_r)];
}
pub fn len(self: Self) Index {
const idx_r = @atomicLoad(Index, self.read, .Acquire);
const idx_w = @atomicLoad(Index, self.write, .Acquire);
return idx_w - idx_r;
}
};
fn mask(idx: Index) Index {
return idx & (@intCast(Index, N) - 1);
}
pub fn init(allocator: Allocator) !Channel(T, N) {
const buf = try allocator.alloc(T, N);
const indicies = try allocator.alloc(Index, 2);
2023-03-10 05:41:46 +00:00
return .{
2023-05-24 03:45:39 +00:00
.tx = Sender{
.ptr = buf[0..N],
.read = &indicies[0],
.write = &indicies[1],
},
.rx = Receiver{
.ptr = buf[0..N],
.read = &indicies[0],
.write = &indicies[1],
},
2023-03-10 05:41:46 +00:00
};
}
2023-05-24 03:45:39 +00:00
pub fn deinit(self: *Channel(T, N), allocator: Allocator) void {
const indicies: []Index = @ptrCast([*]Index, self.tx.read)[0..2];
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
allocator.free(indicies);
allocator.free(self.tx.ptr);
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
self.* = undefined;
}
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
comptime {
std.debug.assert(std.math.isPowerOfTwo(N));
std.debug.assert(N <= capacity_limit);
2023-03-10 05:41:46 +00:00
}
2023-05-24 03:45:39 +00:00
};
}
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
test "Channel init + deinit" {
var ch = try Channel(u8, 64).init(std.testing.allocator);
defer ch.deinit(std.testing.allocator);
}
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
test "Channel basic queue" {
var ch = try Channel(u8, 64).init(std.testing.allocator);
defer ch.deinit(std.testing.allocator);
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
ch.tx.send(128);
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
try std.testing.expectEqual(@as(?u8, 128), ch.rx.recv());
}
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
test "Channel basic multithreaded" {
const builtin = @import("builtin");
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
if (builtin.single_threaded)
return error.SkipZigTest;
2023-05-23 06:38:15 +00:00
2023-05-24 03:45:39 +00:00
const run_tx = struct {
fn run(tx: anytype) void {
tx.send(128);
}
}.run;
2023-05-23 06:38:15 +00:00
2023-05-24 03:45:39 +00:00
const run_rx = struct {
fn run(rx: anytype) !void {
while (rx.recv()) |value| {
try std.testing.expectEqual(@as(?u8, 128), value);
}
2023-05-23 06:38:15 +00:00
}
2023-05-24 03:45:39 +00:00
}.run;
2023-05-23 06:38:15 +00:00
2023-05-24 03:45:39 +00:00
var ch = try Channel(u8, 64).init(std.testing.allocator);
defer ch.deinit(std.testing.allocator);
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
const tx_handle = try std.Thread.spawn(.{}, run_tx, .{&ch.tx});
defer tx_handle.join();
2023-03-10 05:41:46 +00:00
2023-05-24 03:45:39 +00:00
const rx_handle = try std.Thread.spawn(.{}, run_rx, .{&ch.rx});
defer rx_handle.join();
2023-03-10 05:41:46 +00:00
}
pub fn RingBuffer(comptime T: type) type {
return struct {
const Self = @This();
const Index = usize;
const max_capacity = (@as(Index, 1) << @typeInfo(Index).Int.bits - 1) - 1; // half the range of index type
const log = std.log.scoped(.RingBuffer);
read: Index,
write: Index,
buf: []T,
const Error = error{buffer_full};
pub fn init(buf: []T) Self {
std.debug.assert(std.math.isPowerOfTwo(buf.len)); // capacity must be a power of two
std.debug.assert(buf.len <= max_capacity);
2023-05-02 05:00:02 +00:00
@memset(buf, 0);
return .{ .read = 0, .write = 0, .buf = buf };
}
pub fn push(self: *Self, value: T) Error!void {
if (self.isFull()) return error.buffer_full;
defer self.write += 1;
self.buf[self.mask(self.write)] = value;
}
pub fn pop(self: *Self) ?T {
if (self.isEmpty()) return null;
defer self.read += 1;
return self.buf[self.mask(self.read)];
}
/// Returns the number of entries read
pub fn copy(self: *const Self, cpy: []T) Index {
const count = std.math.min(self.len(), cpy.len);
var start: Index = self.read;
for (cpy, 0..) |*v, i| {
if (i >= count) break;
v.* = self.buf[self.mask(start)];
start += 1;
}
return count;
}
fn len(self: *const Self) Index {
return self.write - self.read;
}
fn isFull(self: *const Self) bool {
return self.len() == self.buf.len;
}
fn isEmpty(self: *const Self) bool {
return self.read == self.write;
}
fn mask(self: *const Self, idx: Index) Index {
return idx & (self.buf.len - 1);
}
};
}
// Sign-Extend value of type `T` to type `U`
pub fn sext(comptime T: type, comptime U: type, value: T) T {
// U must have less bits than T
comptime std.debug.assert(@typeInfo(U).Int.bits <= @typeInfo(T).Int.bits);
const iT = std.meta.Int(.signed, @typeInfo(T).Int.bits);
const ExtU = if (@typeInfo(U).Int.signedness == .unsigned) T else iT;
const shift_amt = @intCast(Log2Int(T), @typeInfo(T).Int.bits - @typeInfo(U).Int.bits);
return @bitCast(T, @bitCast(iT, @as(ExtU, @truncate(U, value)) << shift_amt) >> shift_amt);
}
/// See https://godbolt.org/z/W3en9Eche
pub inline fn rotr(comptime T: type, x: T, r: anytype) T {
if (@typeInfo(T).Int.signedness == .signed)
@compileError("cannot rotate signed integer");
const ar = @intCast(Log2Int(T), @mod(r, @typeInfo(T).Int.bits));
return x >> ar | x << (1 +% ~ar);
}