turbo/src/core/nds9/io.zig

456 lines
14 KiB
Zig

const std = @import("std");
const Bitfield = @import("bitfield").Bitfield;
const Bit = @import("bitfield").Bit;
const Bus = @import("Bus.zig");
const SharedCtx = @import("../emu.zig").SharedCtx;
const masks = @import("../io.zig").masks;
const IntEnable = @import("../io.zig").IntEnable;
const IntRequest = @import("../io.zig").IntEnable;
const sext = @import("../../util.zig").sext;
const shift = @import("../../util.zig").shift;
const log = std.log.scoped(.nds9_io);
pub const Io = struct {
shr: *SharedCtx.Io,
/// Interrupt Master Enable
/// Read/Write
ime: bool = false,
/// Interrupt Enable
/// Read/Write
///
/// Caller must cast the `u32` to either `nds7.IntEnable` or `nds9.IntEnable`
ie: IntEnable = .{ .raw = 0x0000_0000 },
/// IF - Interrupt Request
/// Read/Write
///
/// Caller must cast the `u32` to either `nds7.IntRequest` or `nds9.IntRequest`
irq: IntRequest = .{ .raw = 0x0000_0000 },
/// POWCNT1 - Graphics Power Control
/// Read / Write
powcnt: PowCnt = .{ .raw = 0x0000_0000 },
// Read Only
keyinput: AtomicKeyInput = .{},
/// DS Maths
div: Divisor = .{},
sqrt: SquareRootUnit = .{},
pub fn init(io: *SharedCtx.Io) @This() {
return .{ .shr = io };
}
};
pub fn read(bus: *const Bus, comptime T: type, address: u32) T {
return switch (T) {
u32 => switch (address) {
0x0400_0180 => bus.io.shr.ipc._nds9.sync.raw,
0x0400_0208 => @intFromBool(bus.io.ime),
0x0400_0210 => bus.io.ie.raw,
0x0400_0214 => bus.io.irq.raw,
0x0400_02A0, 0x0400_02A4 => @truncate(bus.io.div.result >> shift(u64, address)),
0x0400_02A8, 0x0400_02AC => @truncate(bus.io.div.remainder >> shift(u64, address)),
0x0400_02B4 => @truncate(bus.io.sqrt.result),
0x0400_4008 => 0x0000_0000, // Lets software know this is NOT a DSi
0x0410_0000 => bus.io.shr.ipc.recv(.nds9),
else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }),
},
u16 => switch (address) {
0x0400_0004 => bus.ppu.io.dispstat.raw,
0x0400_0130 => bus.io.keyinput.load(.Monotonic),
0x0400_0180 => @truncate(bus.io.shr.ipc._nds9.sync.raw),
0x0400_0184 => @truncate(bus.io.shr.ipc._nds9.cnt.raw),
0x0400_0280 => @truncate(bus.io.div.cnt.raw),
0x0400_02B0 => @truncate(bus.io.sqrt.cnt.raw),
else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }),
},
u8 => switch (address) {
0x0400_4000 => 0x00, // Lets software know this is NOT a DSi
else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }),
},
else => @compileError(T ++ " is an unsupported bus read type"),
};
}
const subset = @import("../../util.zig").subset;
pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
switch (T) {
u32 => switch (address) {
0x0400_0000 => bus.ppu.io.dispcnt_a.raw = value,
0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds9, value),
0x0400_0184 => bus.io.shr.ipc.setIpcFifoCnt(.nds9, value),
0x0400_0188 => bus.io.shr.ipc.send(.nds9, value),
0x0400_0240 => {
bus.ppu.vram.io.cnt_a.raw = @truncate(value >> 0); // 0x0400_0240
bus.ppu.vram.io.cnt_b.raw = @truncate(value >> 8); // 0x0400_0241
bus.ppu.vram.io.cnt_c.raw = @truncate(value >> 16); // 0x0400_0242
bus.ppu.vram.io.cnt_d.raw = @truncate(value >> 24); // 0x0400_0243
},
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0210 => bus.io.ie.raw = value,
0x0400_0214 => bus.io.irq.raw &= ~value,
0x0400_0290, 0x0400_0294 => {
bus.io.div.numerator = subset(u64, u32, address, bus.io.div.numerator, value);
bus.io.div.schedule(bus.scheduler);
},
0x0400_0298, 0x0400_029C => {
bus.io.div.denominator = subset(u64, u32, address, bus.io.div.denominator, value);
bus.io.div.schedule(bus.scheduler);
},
0x0400_02B8, 0x0400_02BC => {
bus.io.sqrt.param = subset(u64, u32, address, bus.io.sqrt.param, value);
bus.io.sqrt.schedule(bus.scheduler);
},
0x0400_0304 => bus.io.powcnt.raw = value,
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }),
},
u16 => switch (address) {
0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds9, value),
0x0400_0184 => bus.io.shr.ipc.setIpcFifoCnt(.nds9, value),
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0280 => {
bus.io.div.cnt.raw = value;
bus.io.div.schedule(bus.scheduler);
},
0x0400_02B0 => {
bus.io.sqrt.cnt.raw = value;
bus.io.sqrt.schedule(bus.scheduler);
},
0x0400_0304 => bus.io.powcnt.raw = value,
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }),
},
u8 => switch (address) {
0x0400_0240 => {
bus.ppu.vram.io.cnt_a.raw = value;
bus.ppu.vram.update();
},
0x0400_0241 => {
bus.ppu.vram.io.cnt_b.raw = value;
bus.ppu.vram.update();
},
0x0400_0242 => {
bus.ppu.vram.io.cnt_c.raw = value;
bus.ppu.vram.update();
},
0x0400_0243 => {
bus.ppu.vram.io.cnt_d.raw = value;
bus.ppu.vram.update();
},
0x0400_0244 => {
bus.ppu.vram.io.cnt_e.raw = value;
bus.ppu.vram.update();
},
0x0400_0245 => {
bus.ppu.vram.io.cnt_f.raw = value;
bus.ppu.vram.update();
},
0x0400_0246 => {
bus.ppu.vram.io.cnt_g.raw = value;
bus.ppu.vram.update();
},
0x0400_0247 => {
bus.io.shr.wramcnt.raw = value;
bus.wram.update(bus.io.shr.wramcnt);
},
0x0400_0248 => {
bus.ppu.vram.io.cnt_h.raw = value;
bus.ppu.vram.update();
},
0x0400_0249 => {
bus.ppu.vram.io.cnt_i.raw = value;
bus.ppu.vram.update();
},
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }),
},
else => @compileError(T ++ " is an unsupported bus write type"),
}
}
fn warn(comptime format: []const u8, args: anytype) u0 {
log.warn(format, args);
return 0;
}
const PowCnt = extern union {
// Enable flag for both LCDs
lcd: Bit(u32, 0),
engine2d_a: Bit(u32, 1),
render3d: Bit(u32, 2),
geometry3d: Bit(u32, 3),
engine2d_b: Bit(u32, 9),
display_swap: Bit(u32, 15),
raw: u32,
};
/// Divisor
const Divisor = struct {
const Scheduler = @import("../Scheduler.zig");
/// DIVCNT - Division Control (R/W)
cnt: Cnt = .{ .raw = 0x0000_0000 },
/// DIV_NUMER - division numerator (R/W)
numerator: u64 = 0x0000_0000_0000_0000,
/// DIV_DENOM - division denominator (R/W)
denominator: u64 = 0x0000_0000_0000_0000,
/// DIV_RESULT - division quotient (R)
result: u64 = 0x0000_0000_0000_0000,
/// DIVREM_RESULT - remainder
remainder: u64 = 0x0000_0000_0000_0000,
const Cnt = extern union {
mode: Bitfield(u32, 0, 2),
div_by_zero: Bit(u32, 14),
busy: Bit(u32, 15),
raw: u32,
};
pub fn schedule(self: *@This(), scheduler: *Scheduler) void {
defer self.cnt.busy.set();
const cycle_count: u64 = switch (self.cnt.mode.read()) {
0b00 => 18,
0b01, 0b10, 0b11 => 34,
};
scheduler.remove(.{ .nds9 = .div });
scheduler.push(.{ .nds9 = .div }, cycle_count);
}
pub fn onDivCalc(self: *@This()) void {
defer self.cnt.busy.unset();
self.cnt.div_by_zero.write(self.denominator == 0);
switch (self.cnt.mode.read()) {
0b00 => {
// 32bit / 32bit = 32bit , 32bit
const left = sext(i64, i32, self.numerator);
const right = sext(i64, i32, self.denominator);
if (right == 0) {
self.remainder = @bitCast(left);
self.result = if (left >> 63 & 1 == 1) @as(u64, 1) else @bitCast(@as(i64, -1));
// FIXME(chore): replace `>> 32 ) << 32` with mask
self.result = masks.mask(self.result, (~self.result >> 32) << 32, 0xFFFF_FFFF << 32);
return;
}
self.result = @bitCast(@divTrunc(left, right));
self.remainder = @bitCast(@rem(left, right));
},
0b01, 0b11 => {
// 64bit / 32bit = 64bit , 32bit
const left = sext(i128, i64, self.numerator);
const right = sext(i128, i32, self.denominator);
if (right == 0) {
self.remainder = @bitCast(@as(i64, @truncate(left)));
self.result = if (left >> 63 & 1 == 1) @as(u64, 1) else @bitCast(@as(i64, -1));
return;
}
self.result = @bitCast(@as(i64, @truncate(@divTrunc(left, right))));
self.remainder = @bitCast(@as(i64, @truncate(@rem(left, right))));
},
0b10 => {
// 64bit / 64bit = 64bit , 64bit
const left = sext(i128, i64, self.numerator);
const right = sext(i128, i64, self.denominator);
if (right == 0) {
self.remainder = @bitCast(@as(i64, @truncate(left)));
self.result = if (left >> 63 & 1 == 1) @as(u64, 1) else @bitCast(@as(i64, -1));
return;
}
self.result = @bitCast(@as(i64, @truncate(@divTrunc(left, right))));
self.remainder = @bitCast(@as(i64, @truncate(@rem(left, right))));
},
}
}
};
/// Square Root Unit
const SquareRootUnit = struct {
const Scheduler = @import("../Scheduler.zig");
/// SQRTCNT - Division Control (R/W)
cnt: Cnt = .{ .raw = 0x0000_0000 },
/// SQRT_RESULT - square root result (R)
result: u32 = 0x0000_0000,
/// SQRT_PARAM - square root paramater input (R/W)
param: u64 = 0x0000_0000_0000_0000,
const Cnt = extern union {
mode: Bit(u32, 0),
busy: Bit(u32, 15),
raw: u32,
};
pub fn schedule(self: *@This(), scheduler: *Scheduler) void {
defer self.cnt.busy.set();
scheduler.remove(.{ .nds9 = .sqrt });
scheduler.push(.{ .nds9 = .sqrt }, 13); // always takes 13 cycles
}
pub fn onSqrtCalc(self: *@This()) void {
defer self.cnt.busy.unset();
const mask: u64 = blk: {
const value: u64 = @intFromBool(!self.cnt.mode.read());
break :blk (value << 32) -% 1;
};
self.result = @truncate(std.math.sqrt(self.param & mask));
}
};
pub const DispcntA = extern union {
bg_mode: Bitfield(u32, 0, 2),
/// toggle between 2D and 3D for BG0
bg0_dimension: Bit(u32, 3),
tile_obj_mapping: Bit(u32, 4),
bitmap_obj_2d_dimension: Bit(u32, 5),
bitmap_obj_mapping: Bit(u32, 6),
forced_blank: Bit(u32, 7),
bg_enable: Bitfield(u32, 8, 4),
obj_enable: Bit(u32, 12),
win_enable: Bitfield(u32, 13, 2),
obj_win_enable: Bit(u32, 15),
display_mode: Bitfield(u32, 16, 2),
vram_block: Bitfield(u32, 18, 2),
tile_obj_1d_boundary: Bitfield(u32, 20, 2),
bitmap_obj_1d_boundary: Bit(u32, 22),
obj_during_hblank: Bit(u32, 23),
character_base: Bitfield(u32, 24, 3),
screen_base: Bitfield(u32, 27, 2),
bg_ext_pal_enable: Bit(u32, 30),
obj_ext_pal_enable: Bit(u32, 31),
raw: u32,
};
pub const Vramcnt = struct {
/// Can be used by VRAM-A and VRAM-B
pub const A = extern union {
mst: Bitfield(u8, 0, 2),
offset: Bitfield(u8, 3, 2),
enable: Bit(u8, 7),
raw: u8,
};
/// Can be used by VRAM-C, VRAM-D, VRAM-F, VRAM-G
pub const C = extern union {
mst: Bitfield(u8, 0, 3),
offset: Bitfield(u8, 3, 2),
enable: Bit(u8, 7),
raw: u8,
};
/// Can be used by VRAM-E
pub const E = extern union {
mst: Bitfield(u8, 0, 3),
enable: Bit(u8, 7),
raw: u8,
};
/// can be used by VRAM-H and VRAM-I
pub const H = extern union {
mst: Bitfield(u8, 0, 2),
enable: Bit(u8, 7),
raw: u8,
};
};
// Compared to the GBA:
// - LY/LYC values are now 9-bits
pub const Vcount = extern union {
scanline: Bitfield(u16, 0, 9),
raw: u16,
};
pub const Dispstat = extern union {
vblank: Bit(u16, 0),
hblank: Bit(u16, 1),
coincidence: Bit(u16, 2),
vblank_irq: Bit(u16, 3),
hblank_irq: Bit(u16, 4),
vcount_irq: Bit(u16, 5),
/// FIXME: confirm that I'm reading DISPSTAT.7 correctly into LYC
lyc: Bitfield(u16, 7, 9),
raw: u16,
};
/// Read Only
/// 0 = Pressed, 1 = Released
pub const KeyInput = extern union {
a: Bit(u16, 0),
b: Bit(u16, 1),
select: Bit(u16, 2),
start: Bit(u16, 3),
right: Bit(u16, 4),
left: Bit(u16, 5),
up: Bit(u16, 6),
down: Bit(u16, 7),
shoulder_r: Bit(u16, 8),
shoulder_l: Bit(u16, 9),
raw: u16,
};
const AtomicKeyInput = struct {
const Self = @This();
const Ordering = std.atomic.Ordering;
inner: KeyInput = .{ .raw = 0x03FF },
pub inline fn load(self: *const Self, comptime ordering: Ordering) u16 {
return switch (ordering) {
.AcqRel, .Release => @compileError("not supported for atomic loads"),
else => @atomicLoad(u16, &self.inner.raw, ordering),
};
}
pub inline fn fetchOr(self: *Self, value: u16, comptime ordering: Ordering) void {
_ = @atomicRmw(u16, &self.inner.raw, .Or, value, ordering);
}
pub inline fn fetchAnd(self: *Self, value: u16, comptime ordering: Ordering) void {
_ = @atomicRmw(u16, &self.inner.raw, .And, value, ordering);
}
};