Compare commits

..

No commits in common. "2afd6dbf9e8cba738bcdd650bca7b744eb8e2d4f" and "64b1bdbe19ba4e235eb72855f28eb20f2b5d1c68" have entirely different histories.

26 changed files with 276 additions and 1936 deletions

3
.gitignore vendored
View File

@ -3,6 +3,3 @@ zig-out/
bin/ bin/
doc/ doc/
imgui.ini imgui.ini
.build_config/
**/*.log

3
.gitmodules vendored
View File

@ -4,3 +4,6 @@
[submodule "lib/zgui"] [submodule "lib/zgui"]
path = lib/zgui path = lib/zgui
url = https://git.musuka.dev/paoda/zgui url = https://git.musuka.dev/paoda/zgui
[submodule "lib/arm32"]
path = lib/arm32
url = https://git.musuka.dev/paoda/arm32.git

View File

@ -1,7 +1,8 @@
const std = @import("std"); const std = @import("std");
const Sdk = @import("lib/SDL.zig/build.zig"); const Sdk = @import("lib/SDL.zig/Sdk.zig");
const zgui = @import("lib/zgui/build.zig"); const zgui = @import("lib/zgui/build.zig");
const arm32 = @import("lib/arm32/build.zig");
// Although this function looks imperative, note that its job is to // Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external // declaratively construct a build graph that will be executed by an external
@ -27,23 +28,21 @@ pub fn build(b: *std.Build) void {
.optimize = optimize, .optimize = optimize,
}); });
exe.root_module.addImport("arm32", b.dependency("arm32", .{}).module("arm32")); exe.addModule("arm32", arm32.module(b));
exe.root_module.addImport("gdbstub", b.dependency("zba-gdbstub", .{}).module("gdbstub")); exe.addModule("zig-clap", b.dependency("zig-clap", .{}).module("clap"));
exe.root_module.addImport("zig-clap", b.dependency("zig-clap", .{}).module("clap"));
exe.root_module.addAnonymousImport("bitfield", .{ .root_source_file = .{ .path = "lib/bitfield.zig" } }); // https://github.com/FlorenceOS/ exe.addAnonymousModule("bitfield", .{ .source_file = .{ .path = "lib/bitfield.zig" } }); // https://github.com/FlorenceOS/
exe.root_module.addAnonymousImport("gl", .{ .root_source_file = .{ .path = "lib/gl.zig" } }); // https://github.com/MasterQ32/zig-opengl exe.addAnonymousModule("gl", .{ .source_file = .{ .path = "lib/gl.zig" } }); // https://github.com/MasterQ32/zig-opengl
// https://github.com/MasterQ32/SDL.zig // https://github.com/MasterQ32/SDL.zig
const sdk = Sdk.init(b, null); const sdk = Sdk.init(b, null);
sdk.link(exe, .static); sdk.link(exe, .dynamic);
exe.root_module.addImport("sdl2", sdk.getNativeModule()); exe.addModule("sdl2", sdk.getNativeModule());
// https://git.musuka.dev/paoda/zgui // https://git.musuka.dev/paoda/zgui
// .shared option should stay in sync with SDL.zig call above where true == .dynamic, and false == .static
const zgui_pkg = zgui.package(b, target, optimize, .{ .options = .{ .backend = .sdl2_opengl3 } }); const zgui_pkg = zgui.package(b, target, optimize, .{ .options = .{ .backend = .sdl2_opengl3, .shared = true } });
zgui_pkg.link(exe); zgui_pkg.link(exe);
sdk.link(zgui_pkg.zgui_c_cpp, .static);
// This declares intent for the executable to be installed into the // This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default // standard location when the user invokes the "install" step (the default

View File

@ -1,25 +1,15 @@
.{ .{
.name = "turbo", .name = "turbo",
.version = "0.1.0", .version = "0.1.0",
.paths = .{
"lib/bitfield.zig",
"lib/gl.zig",
"src",
"build.zig",
"build.zig.zon",
},
.dependencies = .{ .dependencies = .{
.@"zig-clap" = .{ .@"zig-clap" = .{
.url = "https://github.com/Hejsil/zig-clap/archive/4267b0b60ef6f87cccf3ee6ed481e6d0759180c6.tar.gz", .url = "https://github.com/Hejsil/zig-clap/archive/f49b94700e0761b7514abdca0e4f0e7f3f938a93.tar.gz",
.hash = "12202fa30d679d821292bcd953458b9e76097a5d16999489125a206db63a53392833", .hash = "1220f48518ce22882e102255ed3bcdb7aeeb4891f50b2cdd3bd74b5b2e24d3149ba2",
}, },
.@"zba-gdbstub" = .{ .@"zba-util" = .{
.url = "https://git.musuka.dev/paoda/zba-gdbstub/archive/7ae72ed5a892d2fc6cc3f5511e2b96134d928b59.tar.gz", // Necessary to use paoda/arm32 as a git submodule
.hash = "1220823e961f369e22b62edc1b4da3742af0a7cb420ae9a52ec33216ff5a8ef270c8", .url = "https://git.musuka.dev/paoda/zba-util/archive/322c798e384a0d24cc84ffcfa2e4a3ca807798a0.tar.gz",
}, .hash = "12209ce0e729460b997706e47a53a32f1842672cd120189e612f4871731780a30ed0",
.arm32 = .{
.url = "https://git.musuka.dev/paoda/arm32/archive/6f0e27136072610e6dba97ff8aaf5e2ec86e2c09.tar.gz",
.hash = "122047d0affe12b9e9e9c655a7ba6d51b311f02d688e9f1c9a91394a03103f1c0cd5",
}, },
}, },
} }

View File

@ -1,32 +0,0 @@
$SDL2Version = "2.30.0"
$ArchiveFile = ".\SDL2-devel-mingw.zip"
$Json = @"
{
"x86_64-windows-gnu": {
"include": "SDL2\\include",
"libs": "SDL2\\lib",
"bin": "SDL2\\bin"
}
}
"@
New-Item -Force -ItemType Directory -Path .\.build_config
Set-Location -Path .build_config -PassThru
if (!(Test-Path -PathType Leaf $ArchiveFile)) {
Invoke-WebRequest "https://github.com/libsdl-org/SDL/releases/download/release-$SDL2Version/SDL2-devel-$SDL2Version-mingw.zip" -OutFile $ArchiveFile
}
Expand-Archive $ArchiveFile
if (Test-Path -PathType Leaf .\SDL2) {
Remove-Item -Recurse .\SDL2
}
New-Item -Force -ItemType Directory -Path .\SDL2
Get-ChildItem -Path ".\SDL2-devel-mingw\SDL2-$SDL2Version\x86_64-w64-mingw32" | Move-Item -Destination .\SDL2
New-Item -Force .\sdl.json -Value $Json
Remove-Item -Recurse .\SDL2-devel-mingw
Set-Location -Path .. -PassThru

@ -1 +1 @@
Subproject commit 6d42434c4d92efb1199d58f821edb7f701812f7e Subproject commit 80e7409e21ebbf0bd182b34b6e0206cc26e5ca05

1
lib/arm32 Submodule

@ -0,0 +1 @@
Subproject commit dcff3fd588af36cab270631ba83b47d9b27ec78c

@ -1 +1 @@
Subproject commit 1fff275f8d322d44355a08f2eac3e7c4905fc382 Subproject commit ca27a472249a70dd1e94fb94f05f26dd931363fb

View File

@ -2,13 +2,9 @@ const std = @import("std");
const Header = @import("cartridge.zig").Header; const Header = @import("cartridge.zig").Header;
const Scheduler = @import("Scheduler.zig"); const Scheduler = @import("Scheduler.zig");
const Ui = @import("../platform.zig").Ui;
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
const dma7 = @import("nds7/dma.zig");
const dma9 = @import("nds9/dma.zig");
/// Load a NDS Cartridge /// Load a NDS Cartridge
/// ///
/// intended to be used immediately after Emulator initialization /// intended to be used immediately after Emulator initialization
@ -114,19 +110,27 @@ pub fn runFrame(scheduler: *Scheduler, system: System) void {
switch (isHalted(system)) { switch (isHalted(system)) {
.both => scheduler.tick = scheduler.peekTimestamp(), .both => scheduler.tick = scheduler.peekTimestamp(),
inline else => |halt| { inline else => |halt| {
if (!dma9.step(system.arm946es) and comptime halt != .arm9) { if (comptime halt != .arm9) {
system.arm946es.step(); system.arm946es.step();
system.arm946es.step(); system.arm946es.step();
} }
if (!dma7.step(system.arm7tdmi) and comptime halt != .arm7) { if (comptime halt != .arm7)
system.arm7tdmi.step(); system.arm7tdmi.step();
}
}, },
} }
if (scheduler.check()) |ev| { if (scheduler.check()) |ev| {
const late = scheduler.tick - ev.tick; const late = scheduler.tick - ev.tick;
// this is kinda really jank lol
const bus_ptr: ?*anyopaque = switch (ev.kind) {
.heat_death => null,
.nds7 => system.bus7,
.nds9 => system.bus9,
};
_ = bus_ptr;
scheduler.handle(system, ev, late); scheduler.handle(system, ev, late);
} }
} }
@ -266,12 +270,15 @@ pub const Wram = struct {
} }
} }
pub fn read(self: @This(), comptime T: type, comptime proc: System.Process, address: u32) T { // TODO: Rename
const Device = enum { nds9, nds7 };
pub fn read(self: @This(), comptime T: type, comptime dev: Device, address: u32) T {
const bits = @typeInfo(IntFittingRange(0, page_size - 1)).Int.bits; const bits = @typeInfo(IntFittingRange(0, page_size - 1)).Int.bits;
const masked_addr = address & (addr_space_size - 1); const masked_addr = address & (addr_space_size - 1);
const page = masked_addr >> bits; const page = masked_addr >> bits;
const offset = masked_addr & (page_size - 1); const offset = masked_addr & (page_size - 1);
const table = if (proc == .nds9) self.nds9_table else self.nds7_table; const table = if (dev == .nds9) self.nds9_table else self.nds7_table;
if (table[page]) |some_ptr| { if (table[page]) |some_ptr| {
const ptr: [*]const T = @ptrCast(@alignCast(some_ptr)); const ptr: [*]const T = @ptrCast(@alignCast(some_ptr));
@ -279,16 +286,16 @@ pub const Wram = struct {
return ptr[offset / @sizeOf(T)]; return ptr[offset / @sizeOf(T)];
} }
log.err("{s}: read(T: {}, addr: 0x{X:0>8}) was in un-mapped WRAM space", .{ @tagName(proc), T, 0x0300_0000 + address }); log.err("{s}: read(T: {}, addr: 0x{X:0>8}) was in un-mapped WRAM space", .{ @tagName(dev), T, 0x0300_0000 + address });
return 0x00; return 0x00;
} }
pub fn write(self: *@This(), comptime T: type, comptime proc: System.Process, address: u32, value: T) void { pub fn write(self: *@This(), comptime T: type, comptime dev: Device, address: u32, value: T) void {
const bits = @typeInfo(IntFittingRange(0, page_size - 1)).Int.bits; const bits = @typeInfo(IntFittingRange(0, page_size - 1)).Int.bits;
const masked_addr = address & (addr_space_size - 1); const masked_addr = address & (addr_space_size - 1);
const page = masked_addr >> bits; const page = masked_addr >> bits;
const offset = masked_addr & (page_size - 1); const offset = masked_addr & (page_size - 1);
const table = if (proc == .nds9) self.nds9_table else self.nds7_table; const table = if (dev == .nds9) self.nds9_table else self.nds7_table;
if (table[page]) |some_ptr| { if (table[page]) |some_ptr| {
const ptr: [*]T = @ptrCast(@alignCast(some_ptr)); const ptr: [*]T = @ptrCast(@alignCast(some_ptr));
@ -297,7 +304,7 @@ pub const Wram = struct {
return; return;
} }
log.err("{s}: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8}) was in un-mapped WRAM space", .{ @tagName(proc), T, 0x0300_0000 + address, value }); log.err("{s}: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8}) was in un-mapped WRAM space", .{ @tagName(dev), T, 0x0300_0000 + address, value });
} }
}; };
@ -313,8 +320,6 @@ pub const System = struct {
pub const Arm7tdmi = @import("arm32").Arm7tdmi; pub const Arm7tdmi = @import("arm32").Arm7tdmi;
pub const Arm946es = @import("arm32").Arm946es; pub const Arm946es = @import("arm32").Arm946es;
pub const Process = enum { nds7, nds9 };
arm7tdmi: *Arm7tdmi, arm7tdmi: *Arm7tdmi,
arm946es: *Arm946es, arm946es: *Arm946es,
@ -327,29 +332,17 @@ pub const System = struct {
self.bus7.deinit(allocator); self.bus7.deinit(allocator);
self.bus9.deinit(allocator); self.bus9.deinit(allocator);
} }
fn Cpu(comptime proc: Process) type {
return switch (proc) {
.nds7 => Arm7tdmi,
.nds9 => Arm946es,
};
}
fn Bus(comptime proc: Process) type {
return switch (proc) {
.nds7 => Bus7,
.nds9 => Bus9,
};
}
}; };
pub fn handleInterrupt(comptime proc: System.Process, cpu: *System.Cpu(proc)) void { // FIXME: Using Wram.Device here is jank. System should probably carry an Enum + some Generic Type Fns
const bus_ptr: *System.Bus(proc) = @ptrCast(@alignCast(cpu.bus.ptr)); pub fn handleInterrupt(comptime dev: Wram.Device, cpu: if (dev == .nds9) *System.Arm946es else *System.Arm7tdmi) void {
const Bus = if (dev == .nds9) System.Bus9 else System.Bus7;
const bus_ptr: *Bus = @ptrCast(@alignCast(cpu.bus.ptr));
if (!bus_ptr.io.ime or cpu.cpsr.i.read()) return; // ensure irqs are enabled if (!bus_ptr.io.ime or cpu.cpsr.i.read()) return; // ensure irqs are enabled
if ((bus_ptr.io.ie.raw & bus_ptr.io.irq.raw) == 0) return; // ensure there is an irq to handle if ((bus_ptr.io.ie.raw & bus_ptr.io.irq.raw) == 0) return; // ensure there is an irq to handle
switch (proc) { switch (dev) {
.nds9 => { .nds9 => {
const cp15: *System.Cp15 = @ptrCast(@alignCast(cpu.cp15.ptr)); const cp15: *System.Cp15 = @ptrCast(@alignCast(cpu.cp15.ptr));
cp15.wait_for_interrupt = false; cp15.wait_for_interrupt = false;
@ -366,208 +359,6 @@ pub fn handleInterrupt(comptime proc: System.Process, cpu: *System.Cpu(proc)) vo
cpu.r[14] = ret_addr; cpu.r[14] = ret_addr;
cpu.spsr.raw = spsr.raw; cpu.spsr.raw = spsr.raw;
cpu.r[15] = if (proc == .nds9) 0xFFFF_0018 else 0x0000_0018; cpu.r[15] = if (dev == .nds9) 0xFFFF_0018 else 0x0000_0018;
cpu.pipe.reload(cpu); cpu.pipe.reload(cpu);
} }
pub fn fastBoot(system: System) void {
{
const Bank = System.Arm946es.Bank;
const cpu = system.arm946es;
// from advanDS
cpu.spsr = .{ .raw = 0x0000_000DF };
@memset(cpu.r[0..12], 0x0000_0000); // r0 -> r11 are zeroed
// TODO: r12, r14, and r15 are set to the entrypoint?
cpu.r[13] = 0x0300_2F7C; // FIXME: Why is there (!) in GBATEK?
cpu.bank.r[Bank.regIdx(.Irq, .R13)] = 0x0300_3F80;
cpu.bank.r[Bank.regIdx(.Supervisor, .R13)] = 0x0300_3FC0;
cpu.bank.spsr[Bank.spsrIdx(.Irq)] = .{ .raw = 0x0000_0000 };
cpu.bank.spsr[Bank.spsrIdx(.Supervisor)] = .{ .raw = 0x0000_0000 };
}
{
const Bank = System.Arm7tdmi.Bank;
const cpu = system.arm7tdmi;
// from advanDS
cpu.spsr = .{ .raw = 0x0000_000D3 };
@memset(cpu.r[0..12], 0x0000_0000); // r0 -> r11 are zeroed
// TODO: r12, r14, and r15 are set to the entrypoint?
cpu.r[13] = 0x0380_FD80;
cpu.bank.r[Bank.regIdx(.Irq, .R13)] = 0x0380_FF80;
cpu.bank.r[Bank.regIdx(.Supervisor, .R13)] = 0x0380_FFC0;
cpu.bank.spsr[Bank.spsrIdx(.Irq)] = .{ .raw = 0x0000_0000 };
cpu.bank.spsr[Bank.spsrIdx(.Supervisor)] = .{ .raw = 0x0000_0000 };
}
}
pub const Sync = struct {
const Atomic = std.atomic.Value;
should_quit: Atomic(bool) = Atomic(bool).init(false),
pub fn init(self: *Sync) void {
self.* = .{};
}
};
pub const debug = struct {
const Interface = @import("gdbstub").Emulator;
const Server = @import("gdbstub").Server;
const AtomicBool = std.atomic.Value(bool);
const log = std.log.scoped(.gdbstub);
const nds7 = struct {
const target: []const u8 =
\\<target version="1.0">
\\ <architecture>armv4t</architecture>
\\ <feature name="org.gnu.gdb.arm.core">
\\ <reg name="r0" bitsize="32" type="uint32"/>
\\ <reg name="r1" bitsize="32" type="uint32"/>
\\ <reg name="r2" bitsize="32" type="uint32"/>
\\ <reg name="r3" bitsize="32" type="uint32"/>
\\ <reg name="r4" bitsize="32" type="uint32"/>
\\ <reg name="r5" bitsize="32" type="uint32"/>
\\ <reg name="r6" bitsize="32" type="uint32"/>
\\ <reg name="r7" bitsize="32" type="uint32"/>
\\ <reg name="r8" bitsize="32" type="uint32"/>
\\ <reg name="r9" bitsize="32" type="uint32"/>
\\ <reg name="r10" bitsize="32" type="uint32"/>
\\ <reg name="r11" bitsize="32" type="uint32"/>
\\ <reg name="r12" bitsize="32" type="uint32"/>
\\ <reg name="sp" bitsize="32" type="data_ptr"/>
\\ <reg name="lr" bitsize="32"/>
\\ <reg name="pc" bitsize="32" type="code_ptr"/>
\\
\\ <reg name="cpsr" bitsize="32" regnum="25"/>
\\ </feature>
\\</target>
;
// Remember that a lot of memory regions are mirrored
const memory_map: []const u8 =
\\ <memory-map version="1.0">
\\ <memory type="rom" start="0x00000000" length="0x00004000"/>
\\ <memory type="ram" start="0x02000000" length="0x01000000"/>
\\ <memory type="ram" start="0x03000000" length="0x00800000"/>
\\ <memory type="ram" start="0x03800000" length="0x00800000"/>
\\ <memory type="ram" start="0x04000000" length="0x00100010"/>
\\ <memory type="ram" start="0x06000000" length="0x01000000"/>
\\ <memory type="rom" start="0x08000000" length="0x02000000"/>
\\ <memory type="rom" start="0x0A000000" length="0x01000000"/>
\\ </memory-map>
;
};
pub fn Wrapper(comptime proc: System.Process) type {
return struct {
system: System,
scheduler: *Scheduler,
tick: u64 = 0,
pub fn init(system: System, scheduler: *Scheduler) @This() {
return .{ .system = system, .scheduler = scheduler };
}
pub fn interface(self: *@This(), allocator: Allocator) Interface {
return Interface.init(allocator, self);
}
pub fn read(self: *const @This(), addr: u32) u8 {
const arm = switch (proc) {
.nds7 => self.system.arm7tdmi,
.nds9 => self.system.arm946es,
};
return arm.dbgRead(u8, addr);
}
pub fn write(self: *@This(), addr: u32, value: u8) void {
const arm = switch (proc) {
.nds7 => self.system.arm7tdmi,
.nds9 => self.system.arm946es,
};
return arm.dbgWrite(u8, addr, value);
}
pub fn registers(self: *const @This()) *[16]u32 {
const arm = switch (proc) {
.nds7 => self.system.arm7tdmi,
.nds9 => self.system.arm946es,
};
return &arm.r;
}
pub fn cpsr(self: *const @This()) u32 {
const arm = switch (proc) {
.nds7 => self.system.arm7tdmi,
.nds9 => self.system.arm946es,
};
return arm.cpsr.raw;
}
pub fn step(self: *@This()) void {
const scheduler = self.scheduler;
const system = self.system;
var did_step: bool = false;
// TODO: keep in lockstep with runFrame
while (true) {
if (did_step) break;
switch (isHalted(system)) {
.both => scheduler.tick = scheduler.peekTimestamp(),
inline else => |halt| {
if (!dma9.step(system.arm946es) and comptime halt != .arm9) {
system.arm946es.step();
switch (proc) {
.nds9 => did_step = true,
.nds7 => system.arm946es.step(),
}
}
if (!dma7.step(system.arm7tdmi) and comptime halt != .arm7) {
if (proc == .nds7 or self.tick % 2 == 0) system.arm7tdmi.step();
if (proc == .nds7) {
did_step = true;
self.tick += 1;
}
}
},
}
if (scheduler.check()) |ev| {
const late = scheduler.tick - ev.tick;
scheduler.handle(system, ev, late);
}
}
}
};
}
pub fn run(allocator: Allocator, ui: *Ui, scheduler: *Scheduler, system: System, sync: *Sync) !void {
var wrapper = Wrapper(.nds9).init(system, scheduler);
var emu_interface = wrapper.interface(allocator);
defer emu_interface.deinit();
var server = try Server.init(emu_interface, .{ .target = nds7.target, .memory_map = nds7.memory_map });
defer server.deinit(allocator);
const thread = try std.Thread.spawn(.{}, Server.run, .{ &server, allocator, &sync.should_quit });
defer thread.join();
try ui.debug_run(scheduler, system, sync);
}
};

View File

@ -14,7 +14,7 @@ pub const Io = struct {
wramcnt: WramCnt = .{ .raw = 0x00 }, wramcnt: WramCnt = .{ .raw = 0x00 },
// Read Only // Read Only
input: Input = .{}, keyinput: AtomicKeyInput = .{},
}; };
fn warn(comptime format: []const u8, args: anytype) u0 { fn warn(comptime format: []const u8, args: anytype) u0 {
@ -36,6 +36,8 @@ const Ipc = struct {
// TODO: DS Cartridge I/O Ports // TODO: DS Cartridge I/O Ports
const Source = enum { nds7, nds9 };
const Impl = struct { const Impl = struct {
/// IPC Synchronize /// IPC Synchronize
/// Read/Write /// Read/Write
@ -58,8 +60,8 @@ const Ipc = struct {
/// IPCSYNC /// IPCSYNC
/// Read/Write /// Read/Write
pub fn setIpcSync(self: *@This(), comptime proc: System.Process, value: anytype) void { pub fn setIpcSync(self: *@This(), comptime src: Source, value: anytype) void {
switch (proc) { switch (src) {
.nds7 => { .nds7 => {
self._nds7.sync.raw = masks.ipcFifoSync(self._nds7.sync.raw, value); self._nds7.sync.raw = masks.ipcFifoSync(self._nds7.sync.raw, value);
self._nds9.sync.raw = masks.mask(self._nds9.sync.raw, (self._nds7.sync.raw >> 8) & 0xF, 0xF); self._nds9.sync.raw = masks.mask(self._nds9.sync.raw, (self._nds7.sync.raw >> 8) & 0xF, 0xF);
@ -107,8 +109,8 @@ const Ipc = struct {
/// IPCFIFOCNT /// IPCFIFOCNT
/// Read/Write /// Read/Write
pub fn setIpcFifoCnt(self: *@This(), comptime proc: System.Process, value: anytype) void { pub fn setIpcFifoCnt(self: *@This(), comptime src: Source, value: anytype) void {
switch (proc) { switch (src) {
.nds7 => self._nds7.cnt.raw = masks.ipcFifoCnt(self._nds7.cnt.raw, value), .nds7 => self._nds7.cnt.raw = masks.ipcFifoCnt(self._nds7.cnt.raw, value),
.nds9 => self._nds9.cnt.raw = masks.ipcFifoCnt(self._nds9.cnt.raw, value), .nds9 => self._nds9.cnt.raw = masks.ipcFifoCnt(self._nds9.cnt.raw, value),
} }
@ -116,8 +118,8 @@ const Ipc = struct {
/// IPC Send FIFO /// IPC Send FIFO
/// Write-Only /// Write-Only
pub fn send(self: *@This(), comptime proc: System.Process, value: u32) void { pub fn send(self: *@This(), comptime src: Source, value: u32) void {
switch (proc) { switch (src) {
.nds7 => { .nds7 => {
if (!self._nds7.cnt.enable_fifos.read()) return; if (!self._nds7.cnt.enable_fifos.read()) return;
self._nds7.fifo.push(value) catch unreachable; // see early return above self._nds7.fifo.push(value) catch unreachable; // see early return above
@ -171,8 +173,8 @@ const Ipc = struct {
/// IPC Receive FIFO /// IPC Receive FIFO
/// Read-Only /// Read-Only
pub fn recv(self: *@This(), comptime proc: System.Process) u32 { pub fn recv(self: *@This(), comptime src: Source) u32 {
switch (proc) { switch (src) {
.nds7 => { .nds7 => {
const enabled = self._nds7.cnt.enable_fifos.read(); const enabled = self._nds7.cnt.enable_fifos.read();
const val_opt = if (enabled) self._nds9.fifo.pop() else self._nds9.fifo.peek(); const val_opt = if (enabled) self._nds9.fifo.pop() else self._nds9.fifo.peek();
@ -325,11 +327,6 @@ pub const IntEnable = extern union {
hblank: Bit(u32, 1), hblank: Bit(u32, 1),
coincidence: Bit(u32, 2), coincidence: Bit(u32, 2),
dma0: Bit(u32, 8),
dma1: Bit(u32, 9),
dma2: Bit(u32, 10),
dma3: Bit(u32, 11),
ipcsync: Bit(u32, 16), ipcsync: Bit(u32, 16),
ipc_send_empty: Bit(u32, 17), ipc_send_empty: Bit(u32, 17),
ipc_recv_not_empty: Bit(u32, 18), ipc_recv_not_empty: Bit(u32, 18),
@ -413,54 +410,24 @@ pub const KeyInput = extern union {
raw: u16, raw: u16,
}; };
pub const ExtKeyIn = extern union { const AtomicKeyInput = struct {
x: Bit(u16, 0), const Self = @This();
y: Bit(u16, 1), const Ordering = std.atomic.Ordering;
debug: Bit(u16, 3),
stylus: Bit(u16, 6),
hinge: Bit(u16, 7),
raw: u16,
};
const Input = struct { inner: KeyInput = .{ .raw = 0x03FF },
const AtomicOrder = std.builtin.AtomicOrder;
const AtomicRmwOp = std.builtin.AtomicRmwOp;
inner: u32 = 0x007F_03FF, pub inline fn load(self: *const Self, comptime ordering: Ordering) u16 {
return switch (ordering) {
pub inline fn keyinput(self: *const Input) KeyInput { .AcqRel, .Release => @compileError("not supported for atomic loads"),
const value = @atomicLoad(u32, &self.inner, .Monotonic); else => @atomicLoad(u16, &self.inner.raw, ordering),
return .{ .raw = @truncate(value) };
}
pub inline fn set_keyinput(self: *Input, comptime op: AtomicRmwOp, input: KeyInput) void {
const msked = switch (op) {
.And => 0xFFFF_FFFF & @as(u32, input.raw),
.Or => 0x0000_0000 | @as(u32, input.raw),
else => @compileError("not supported"),
}; };
_ = @atomicRmw(u32, &self.inner, op, msked, .Monotonic);
} }
pub inline fn extkeyin(self: *const Input) ExtKeyIn { pub inline fn fetchOr(self: *Self, value: u16, comptime ordering: Ordering) void {
const value = @atomicLoad(u32, &self.inner, .Monotonic); _ = @atomicRmw(u16, &self.inner.raw, .Or, value, ordering);
const shifted: u16 = @truncate(value >> 16);
return .{ .raw = shifted | 0b00110100 }; // bits 2, 4, 5 are always set
} }
pub inline fn set_extkeyin(self: *Input, comptime op: AtomicRmwOp, input: ExtKeyIn) void { pub inline fn fetchAnd(self: *Self, value: u16, comptime ordering: Ordering) void {
const msked = switch (op) { _ = @atomicRmw(u16, &self.inner.raw, .And, value, ordering);
.And => 0xFFFF_FFFF & (@as(u32, ~input.raw) << 16),
.Or => 0x0000_0000 | (@as(u32, input.raw) << 16),
else => @compileError("not supported"),
};
_ = @atomicRmw(u32, &self.inner, op, msked, .Monotonic);
}
pub inline fn set(self: *Input, comptime op: AtomicRmwOp, value: u32) void {
_ = @atomicRmw(u32, &self.inner, op, value, .Monotonic);
} }
}; };

View File

@ -29,6 +29,7 @@ pub fn deinit(self: @This(), allocator: Allocator) void {
// Note: Parts of 16MiB addrspace that aren't mapped to BIOS are typically undefined // Note: Parts of 16MiB addrspace that aren't mapped to BIOS are typically undefined
pub fn read(self: *const @This(), comptime T: type, address: u32) T { pub fn read(self: *const @This(), comptime T: type, address: u32) T {
const readInt = std.mem.readIntLittle;
const byte_count = @divExact(@typeInfo(T).Int.bits, 8); const byte_count = @divExact(@typeInfo(T).Int.bits, 8);
// if (address >= len) return 0x0000_0000; // TODO: What is undefined actually? // if (address >= len) return 0x0000_0000; // TODO: What is undefined actually?
@ -38,7 +39,7 @@ pub fn read(self: *const @This(), comptime T: type, address: u32) T {
@panic("TODO: ability to load in NDS7 BIOS just-in-time"); @panic("TODO: ability to load in NDS7 BIOS just-in-time");
}; };
return std.mem.readInt(T, ptr[address & (len - 1) ..][0..byte_count], .little); return readInt(T, ptr[address & (len - 1) ..][0..byte_count]);
} }
pub fn write(_: *const @This(), comptime T: type, address: u32, value: T) void { pub fn write(_: *const @This(), comptime T: type, address: u32, value: T) void {

View File

@ -8,8 +8,6 @@ const Vram = @import("../ppu/Vram.zig");
const Bios = @import("Bios.zig"); const Bios = @import("Bios.zig");
const forceAlign = @import("../emu.zig").forceAlign; const forceAlign = @import("../emu.zig").forceAlign;
const Controllers = @import("dma.zig").Controllers;
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
const Mode = enum { normal, debug }; const Mode = enum { normal, debug };
@ -24,8 +22,6 @@ shr_wram: *Wram,
wram: *[64 * KiB]u8, wram: *[64 * KiB]u8,
vram: *Vram, vram: *Vram,
dma: Controllers = .{},
io: io.Io, io: io.Io,
bios: Bios, bios: Bios,
@ -62,6 +58,8 @@ pub fn dbgRead(self: *@This(), comptime T: type, address: u32) T {
fn _read(self: *@This(), comptime T: type, comptime mode: Mode, address: u32) T { fn _read(self: *@This(), comptime T: type, comptime mode: Mode, address: u32) T {
const byte_count = @divExact(@typeInfo(T).Int.bits, 8); const byte_count = @divExact(@typeInfo(T).Int.bits, 8);
const readInt = std.mem.readIntLittle;
const aligned_addr = forceAlign(T, address); const aligned_addr = forceAlign(T, address);
switch (mode) { switch (mode) {
@ -71,13 +69,13 @@ fn _read(self: *@This(), comptime T: type, comptime mode: Mode, address: u32) T
} }
return switch (aligned_addr) { return switch (aligned_addr) {
0x0000_0000...0x01FF_FFFF => self.bios.read(T, aligned_addr), 0x0000_0000...0x01FF_FFFF => self.bios.read(T, address),
0x0200_0000...0x02FF_FFFF => std.mem.readInt(T, self.main[aligned_addr & 0x003F_FFFF ..][0..byte_count], .little), 0x0200_0000...0x02FF_FFFF => readInt(T, self.main[aligned_addr & 0x003F_FFFF ..][0..byte_count]),
0x0300_0000...0x037F_FFFF => switch (self.io.shr.wramcnt.mode.read()) { 0x0300_0000...0x037F_FFFF => switch (self.io.shr.wramcnt.mode.read()) {
0b00 => std.mem.readInt(T, self.wram[aligned_addr & 0x0000_FFFF ..][0..byte_count], .little), 0b00 => readInt(T, self.wram[aligned_addr & 0x0000_FFFF ..][0..byte_count]),
else => self.shr_wram.read(T, .nds7, aligned_addr), else => self.shr_wram.read(T, .nds7, aligned_addr),
}, },
0x0380_0000...0x03FF_FFFF => std.mem.readInt(T, self.wram[aligned_addr & 0x0000_FFFF ..][0..byte_count], .little), 0x0380_0000...0x03FF_FFFF => readInt(T, self.wram[aligned_addr & 0x0000_FFFF ..][0..byte_count]),
0x0400_0000...0x04FF_FFFF => io.read(self, T, aligned_addr), 0x0400_0000...0x04FF_FFFF => io.read(self, T, aligned_addr),
0x0600_0000...0x06FF_FFFF => self.vram.read(T, .nds7, aligned_addr), 0x0600_0000...0x06FF_FFFF => self.vram.read(T, .nds7, aligned_addr),
@ -95,6 +93,7 @@ pub fn dbgWrite(self: *@This(), comptime T: type, address: u32, value: T) void {
fn _write(self: *@This(), comptime T: type, comptime mode: Mode, address: u32, value: T) void { fn _write(self: *@This(), comptime T: type, comptime mode: Mode, address: u32, value: T) void {
const byte_count = @divExact(@typeInfo(T).Int.bits, 8); const byte_count = @divExact(@typeInfo(T).Int.bits, 8);
const writeInt = std.mem.writeIntLittle;
const aligned_addr = forceAlign(T, address); const aligned_addr = forceAlign(T, address);
@ -105,13 +104,13 @@ fn _write(self: *@This(), comptime T: type, comptime mode: Mode, address: u32, v
} }
switch (aligned_addr) { switch (aligned_addr) {
0x0000_0000...0x01FF_FFFF => self.bios.write(T, aligned_addr, value), 0x0000_0000...0x01FF_FFFF => self.bios.write(T, address, value),
0x0200_0000...0x02FF_FFFF => std.mem.writeInt(T, self.main[aligned_addr & 0x003F_FFFF ..][0..byte_count], value, .little), 0x0200_0000...0x02FF_FFFF => writeInt(T, self.main[aligned_addr & 0x003F_FFFF ..][0..byte_count], value),
0x0300_0000...0x037F_FFFF => switch (self.io.shr.wramcnt.mode.read()) { 0x0300_0000...0x037F_FFFF => switch (self.io.shr.wramcnt.mode.read()) {
0b00 => std.mem.writeInt(T, self.wram[aligned_addr & 0x0000_FFFF ..][0..byte_count], value, .little), 0b00 => writeInt(T, self.wram[aligned_addr & 0x0000_FFFF ..][0..byte_count], value),
else => self.shr_wram.write(T, .nds7, aligned_addr, value), else => self.shr_wram.write(T, .nds7, aligned_addr, value),
}, },
0x0380_0000...0x03FF_FFFF => std.mem.writeInt(T, self.wram[aligned_addr & 0x0000_FFFF ..][0..byte_count], value, .little), 0x0380_0000...0x0380_FFFF => writeInt(T, self.wram[aligned_addr & 0x0000_FFFF ..][0..byte_count], value),
0x0400_0000...0x04FF_FFFF => io.write(self, T, aligned_addr, value), 0x0400_0000...0x04FF_FFFF => io.write(self, T, aligned_addr, value),
0x0600_0000...0x06FF_FFFF => self.vram.write(T, .nds7, aligned_addr, value), 0x0600_0000...0x06FF_FFFF => self.vram.write(T, .nds7, aligned_addr, value),
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }),

View File

@ -1,401 +0,0 @@
const std = @import("std");
const System = @import("../emu.zig").System;
const DmaCnt = @import("io.zig").DmaCnt;
const rotr = std.math.rotr;
const shift = @import("../../util.zig").shift;
const subset = @import("../../util.zig").subset;
const handleInterrupt = @import("../emu.zig").handleInterrupt;
const log = std.log.scoped(.nds7_dma_transfer);
pub const Controllers = struct {
Controller(0) = Controller(0){},
Controller(1) = Controller(1){},
Controller(2) = Controller(2){},
Controller(3) = Controller(3){},
};
pub fn read(comptime T: type, dma: *const Controllers, addr: u32) ?T {
const byte_addr: u8 = @truncate(addr);
return switch (T) {
u32 => switch (byte_addr) {
0xB0, 0xB4 => null, // DMA0SAD, DMA0DAD,
0xB8 => @as(T, dma.*[0].dmacntH()) << 16, // DMA0CNT_L is write-only
0xBC, 0xC0 => null, // DMA1SAD, DMA1DAD
0xC4 => @as(T, dma.*[1].dmacntH()) << 16, // DMA1CNT_L is write-only
0xC8, 0xCC => null, // DMA2SAD, DMA2DAD
0xD0 => @as(T, dma.*[2].dmacntH()) << 16, // DMA2CNT_L is write-only
0xD4, 0xD8 => null, // DMA3SAD, DMA3DAD
0xDC => @as(T, dma.*[3].dmacntH()) << 16, // DMA3CNT_L is write-only
else => warn("unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte_addr) {
0xB0, 0xB2, 0xB4, 0xB6 => null, // DMA0SAD, DMA0DAD
0xB8 => 0x0000, // DMA0CNT_L, suite.gba expects 0x0000 instead of 0xDEAD
0xBA => dma.*[0].dmacntH(),
0xBC, 0xBE, 0xC0, 0xC2 => null, // DMA1SAD, DMA1DAD
0xC4 => 0x0000, // DMA1CNT_L
0xC6 => dma.*[1].dmacntH(),
0xC8, 0xCA, 0xCC, 0xCE => null, // DMA2SAD, DMA2DAD
0xD0 => 0x0000, // DMA2CNT_L
0xD2 => dma.*[2].dmacntH(),
0xD4, 0xD6, 0xD8, 0xDA => null, // DMA3SAD, DMA3DAD
0xDC => 0x0000, // DMA3CNT_L
0xDE => dma.*[3].dmacntH(),
else => warn("unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0xB0...0xB7 => null, // DMA0SAD, DMA0DAD
0xB8, 0xB9 => 0x00, // DMA0CNT_L
0xBA, 0xBB => @truncate(dma.*[0].dmacntH() >> shift(u16, byte_addr)),
0xBC...0xC3 => null, // DMA1SAD, DMA1DAD
0xC4, 0xC5 => 0x00, // DMA1CNT_L
0xC6, 0xC7 => @truncate(dma.*[1].dmacntH() >> shift(u16, byte_addr)),
0xC8...0xCF => null, // DMA2SAD, DMA2DAD
0xD0, 0xD1 => 0x00, // DMA2CNT_L
0xD2, 0xD3 => @truncate(dma.*[2].dmacntH() >> shift(u16, byte_addr)),
0xD4...0xDB => null, // DMA3SAD, DMA3DAD
0xDC, 0xDD => 0x00, // DMA3CNT_L
0xDE, 0xDF => @truncate(dma.*[3].dmacntH() >> shift(u16, byte_addr)),
else => warn("unexpected {} read from 0x{X:0>8}", .{ T, addr }),
},
else => @compileError("DMA: Unsupported read width"),
};
}
pub fn write(comptime T: type, dma: *Controllers, addr: u32, value: T) void {
const byte_addr: u8 = @truncate(addr);
switch (T) {
u32 => switch (byte_addr) {
0xB0 => dma.*[0].setDmasad(value),
0xB4 => dma.*[0].setDmadad(value),
0xB8 => dma.*[0].setDmacnt(value),
0xBC => dma.*[1].setDmasad(value),
0xC0 => dma.*[1].setDmadad(value),
0xC4 => dma.*[1].setDmacnt(value),
0xC8 => dma.*[2].setDmasad(value),
0xCC => dma.*[2].setDmadad(value),
0xD0 => dma.*[2].setDmacnt(value),
0xD4 => dma.*[3].setDmasad(value),
0xD8 => dma.*[3].setDmadad(value),
0xDC => dma.*[3].setDmacnt(value),
else => log.warn("Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (byte_addr) {
0xB0, 0xB2 => dma.*[0].setDmasad(subset(u32, u16, byte_addr, dma.*[0].sad, value)),
0xB4, 0xB6 => dma.*[0].setDmadad(subset(u32, u16, byte_addr, dma.*[0].dad, value)),
0xB8 => dma.*[0].setDmacntL(value),
0xBA => dma.*[0].setDmacntH(value),
0xBC, 0xBE => dma.*[1].setDmasad(subset(u32, u16, byte_addr, dma.*[1].sad, value)),
0xC0, 0xC2 => dma.*[1].setDmadad(subset(u32, u16, byte_addr, dma.*[1].dad, value)),
0xC4 => dma.*[1].setDmacntL(value),
0xC6 => dma.*[1].setDmacntH(value),
0xC8, 0xCA => dma.*[2].setDmasad(subset(u32, u16, byte_addr, dma.*[2].sad, value)),
0xCC, 0xCE => dma.*[2].setDmadad(subset(u32, u16, byte_addr, dma.*[2].dad, value)),
0xD0 => dma.*[2].setDmacntL(value),
0xD2 => dma.*[2].setDmacntH(value),
0xD4, 0xD6 => dma.*[3].setDmasad(subset(u32, u16, byte_addr, dma.*[3].sad, value)),
0xD8, 0xDA => dma.*[3].setDmadad(subset(u32, u16, byte_addr, dma.*[3].dad, value)),
0xDC => dma.*[3].setDmacntL(value),
0xDE => dma.*[3].setDmacntH(value),
else => log.warn("Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => switch (byte_addr) {
0xB0, 0xB1, 0xB2, 0xB3 => dma.*[0].setDmasad(subset(u32, u8, byte_addr, dma.*[0].sad, value)),
0xB4, 0xB5, 0xB6, 0xB7 => dma.*[0].setDmadad(subset(u32, u8, byte_addr, dma.*[0].dad, value)),
0xB8, 0xB9 => dma.*[0].setDmacntL(subset(u16, u8, byte_addr, dma.*[0].word_count, value)),
0xBA, 0xBB => dma.*[0].setDmacntH(subset(u16, u8, byte_addr, dma.*[0].cnt.raw, value)),
0xBC, 0xBD, 0xBE, 0xBF => dma.*[1].setDmasad(subset(u32, u8, byte_addr, dma.*[1].sad, value)),
0xC0, 0xC1, 0xC2, 0xC3 => dma.*[1].setDmadad(subset(u32, u8, byte_addr, dma.*[1].dad, value)),
0xC4, 0xC5 => dma.*[1].setDmacntL(subset(u16, u8, byte_addr, dma.*[1].word_count, value)),
0xC6, 0xC7 => dma.*[1].setDmacntH(subset(u16, u8, byte_addr, dma.*[1].cnt.raw, value)),
0xC8, 0xC9, 0xCA, 0xCB => dma.*[2].setDmasad(subset(u32, u8, byte_addr, dma.*[2].sad, value)),
0xCC, 0xCD, 0xCE, 0xCF => dma.*[2].setDmadad(subset(u32, u8, byte_addr, dma.*[2].dad, value)),
0xD0, 0xD1 => dma.*[2].setDmacntL(subset(u16, u8, byte_addr, dma.*[2].word_count, value)),
0xD2, 0xD3 => dma.*[2].setDmacntH(subset(u16, u8, byte_addr, dma.*[2].cnt.raw, value)),
0xD4, 0xD5, 0xD6, 0xD7 => dma.*[3].setDmasad(subset(u32, u8, byte_addr, dma.*[3].sad, value)),
0xD8, 0xD9, 0xDA, 0xDB => dma.*[3].setDmadad(subset(u32, u8, byte_addr, dma.*[3].dad, value)),
0xDC, 0xDD => dma.*[3].setDmacntL(subset(u16, u8, byte_addr, dma.*[3].word_count, value)),
0xDE, 0xDF => dma.*[3].setDmacntH(subset(u16, u8, byte_addr, dma.*[3].cnt.raw, value)),
else => log.warn("Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
},
else => @compileError("DMA: Unsupported write width"),
}
}
fn warn(comptime format: []const u8, args: anytype) u0 {
log.warn(format, args);
return 0;
}
/// Function that creates a DMAController. Determines unique DMA Controller behaiour at compile-time
fn Controller(comptime id: u2) type {
return struct {
const Self = @This();
const sad_mask: u32 = if (id == 0) 0x07FF_FFFF else 0x0FFF_FFFF;
const dad_mask: u32 = if (id != 3) 0x07FF_FFFF else 0x0FFF_FFFF;
const WordCount = if (id == 3) u16 else u14;
/// Write-only. The first address in a DMA transfer. (DMASAD)
/// Note: use writeSrc instead of manipulating src_addr directly
sad: u32 = 0x0000_0000,
/// Write-only. The final address in a DMA transffer. (DMADAD)
/// Note: Use writeDst instead of manipulatig dst_addr directly
dad: u32 = 0x0000_0000,
/// Write-only. The Word Count for the DMA Transfer (DMACNT_L)
word_count: WordCount = 0,
/// Read / Write. DMACNT_H
/// Note: Use writeControl instead of manipulating cnt directly.
cnt: DmaCnt = .{ .raw = 0x0000 },
/// Internal. The last successfully read value
data_latch: u32 = 0x0000_0000,
/// Internal. Currrent Source Address
sad_latch: u32 = 0x0000_0000,
/// Internal. Current Destination Address
dad_latch: u32 = 0x0000_0000,
/// Internal. Word Count
_word_count: WordCount = 0,
/// Some DMA Transfers are enabled during Hblank / VBlank and / or
/// have delays. Thefore bit 15 of DMACNT isn't actually something
/// we can use to control when we do or do not execute a step in a DMA Transfer
in_progress: bool = false,
pub fn reset(self: *Self) void {
self.* = Self.init();
}
pub fn setDmasad(self: *Self, addr: u32) void {
self.sad = addr & sad_mask;
}
pub fn setDmadad(self: *Self, addr: u32) void {
self.dad = addr & dad_mask;
}
pub fn setDmacntL(self: *Self, halfword: u16) void {
self.word_count = @truncate(halfword);
}
pub fn dmacntH(self: *const Self) u16 {
return self.cnt.raw & if (id == 3) 0xFFE0 else 0xF7E0;
}
pub fn setDmacntH(self: *Self, halfword: u16) void {
const new = DmaCnt{ .raw = halfword };
if (!self.cnt.enabled.read() and new.enabled.read()) {
// Reload Internals on Rising Edge.
self.sad_latch = self.sad;
self.dad_latch = self.dad;
self._word_count = if (self.word_count == 0) std.math.maxInt(WordCount) else self.word_count;
// Only a Start Timing of 00 has a DMA Transfer immediately begin
self.in_progress = new.start_timing.read() == 0b00;
// this is just for debug purposes
const start_timing: Kind = @enumFromInt(new.start_timing.read());
switch (start_timing) {
.immediate, .vblank => {},
else => log.err("TODO: Implement DMA({}) {s} mode", .{ id, @tagName(start_timing) }),
}
// Debug stuff
{
const sad_adj: Adjustment = @enumFromInt(new.sad_adj.read());
const dad_adj: Adjustment = @enumFromInt(new.dad_adj.read());
const byte_count = @as(u32, @sizeOf(u16)) << @intFromBool(new.transfer_type.read());
const sad_final = switch (sad_adj) {
.Increment, .IncrementReload => self.sad_latch +% self._word_count * byte_count,
.Decrement => self.sad_latch -% self._word_count * byte_count,
.Fixed => self.sad_latch,
};
const dad_final = switch (dad_adj) {
.Increment, .IncrementReload => self.dad_latch +% self._word_count * byte_count,
.Decrement => self.dad_latch -% self._word_count * byte_count,
.Fixed => self.dad_latch,
};
log.debug("configured {s} transfer from 0x{X:0>8} -> 0x{X:0>8} to 0x{X:0>8} -> 0x{X:0>8} ({} words) for DMA{}", .{
@tagName(start_timing),
self.sad_latch,
sad_final,
self.dad_latch,
dad_final,
self._word_count,
id,
});
}
}
self.cnt.raw = halfword;
}
pub fn setDmacnt(self: *Self, word: u32) void {
self.setDmacntL(@truncate(word));
self.setDmacntH(@truncate(word >> 16));
}
pub fn step(self: *Self, cpu: *System.Arm7tdmi) void {
const bus_ptr: *System.Bus7 = @ptrCast(@alignCast(cpu.bus.ptr));
const is_fifo = (id == 1 or id == 2) and self.cnt.start_timing.read() == 0b11;
const sad_adj: Adjustment = @enumFromInt(self.cnt.sad_adj.read());
const dad_adj: Adjustment = if (is_fifo) .Fixed else @enumFromInt(self.cnt.dad_adj.read());
const transfer_type = is_fifo or self.cnt.transfer_type.read();
const offset: u32 = if (transfer_type) @sizeOf(u32) else @sizeOf(u16);
const mask = if (transfer_type) ~@as(u32, 3) else ~@as(u32, 1);
const sad_addr = self.sad_latch & mask;
const dad_addr = self.dad_latch & mask;
if (transfer_type) {
if (sad_addr >= 0x0200_0000) self.data_latch = cpu.bus.read(u32, sad_addr);
cpu.bus.write(u32, dad_addr, self.data_latch);
} else {
if (sad_addr >= 0x0200_0000) {
const value: u32 = cpu.bus.read(u16, sad_addr);
self.data_latch = value << 16 | value;
}
cpu.bus.write(u16, dad_addr, @as(u16, @truncate(rotr(u32, self.data_latch, 8 * (dad_addr & 3)))));
}
switch (@as(u8, @truncate(sad_addr >> 24))) {
// according to fleroviux, DMAs with a source address in ROM misbehave
// the resultant behaviour is that the source address will increment despite what DMAXCNT says
0x08...0x0D => self.sad_latch +%= offset, // obscure behaviour
else => switch (sad_adj) {
.Increment => self.sad_latch +%= offset,
.Decrement => self.sad_latch -%= offset,
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
.Fixed => {},
},
}
switch (dad_adj) {
.Increment, .IncrementReload => self.dad_latch +%= offset,
.Decrement => self.dad_latch -%= offset,
.Fixed => {},
}
self._word_count -= 1;
if (self._word_count == 0) {
if (self.cnt.irq.read()) {
switch (id) {
0 => bus_ptr.io.irq.dma0.set(),
1 => bus_ptr.io.irq.dma1.set(),
2 => bus_ptr.io.irq.dma2.set(),
3 => bus_ptr.io.irq.dma3.set(),
}
handleInterrupt(.nds7, cpu);
}
// If we're not repeating, Fire the IRQs and disable the DMA
if (!self.cnt.repeat.read()) self.cnt.enabled.unset();
// We want to disable our internal enabled flag regardless of repeat
// because we only want to step A DMA that repeats during it's specific
// timing window
self.in_progress = false;
}
}
fn poll(self: *Self, comptime kind: Kind) void {
if (self.in_progress) return; // If there's an ongoing DMA Transfer, exit early
// No ongoing DMA Transfer, We want to check if we should repeat an existing one
// Determined by the repeat bit and whether the DMA is in the right start_timing
switch (kind) {
.vblank => self.in_progress = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b01,
.cartridge_slot, .immediate, .special => {},
}
// If we determined that the repeat bit is set (and now the Hblank / Vblank DMA is now in progress)
// Reload internal word count latch
// Reload internal DAD latch if we are in IncrementRelaod
if (self.in_progress) {
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
if (@as(Adjustment, @enumFromInt(self.cnt.dad_adj.read())) == .IncrementReload) self.dad_latch = self.dad;
}
}
pub fn requestAudio(self: *Self, _: u32) void {
comptime std.debug.assert(id == 1 or id == 2);
if (self.in_progress) return; // APU must wait their turn
// DMA May not be configured for handling DMAs
if (self.cnt.start_timing.read() != 0b11) return;
// We Assume the Repeat Bit is Set
// We Assume that DAD is set to 0x0400_00A0 or 0x0400_00A4 (fifo_addr)
// We Assume DMACNT_L is set to 4
// FIXME: Safe to just assume whatever DAD is set to is the FIFO Address?
// self.dad_latch = fifo_addr;
self.cnt.repeat.set();
self._word_count = 4;
self.in_progress = true;
}
};
}
pub fn onVblank(bus: *System.Bus7) void {
inline for (0..4) |i| bus.dma[i].poll(.vblank);
}
pub fn step(cpu: *System.Arm7tdmi) bool {
const bus: *System.Bus7 = @ptrCast(@alignCast(cpu.bus.ptr));
inline for (0..4) |i| {
if (bus.dma[i].in_progress) {
bus.dma[i].step(cpu);
return true;
}
}
return false;
}
const Adjustment = enum(u2) {
Increment = 0,
Decrement = 1,
Fixed = 2,
IncrementReload = 3,
};
const Kind = enum(u2) {
immediate = 0,
vblank,
cartridge_slot,
special,
};

View File

@ -12,8 +12,6 @@ const masks = @import("../io.zig").masks;
const IntEnable = @import("../io.zig").IntEnable; const IntEnable = @import("../io.zig").IntEnable;
const IntRequest = @import("../io.zig").IntEnable; const IntRequest = @import("../io.zig").IntEnable;
const dma = @import("dma.zig");
const log = std.log.scoped(.nds7_io); const log = std.log.scoped(.nds7_io);
pub const Io = struct { pub const Io = struct {
@ -54,10 +52,10 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) T {
return switch (T) { return switch (T) {
u32 => switch (address) { u32 => switch (address) {
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DC => dma.read(T, &bus.dma, address) orelse 0x000_0000, 0x0400_00B0...0x0400_00DC => warn("TODO: impl DMA", .{}),
// Timers // Timers
0x0400_0100...0x0400_010C => warn("TODO(timer): read(T: {}, addr: 0x{X:0>8}) {}", .{ T, address, T }), 0x0400_0100...0x0400_010C => warn("TODO: impl timer", .{}),
0x0400_0180 => bus.io.shr.ipc._nds7.sync.raw, 0x0400_0180 => bus.io.shr.ipc._nds7.sync.raw,
0x0400_0208 => @intFromBool(bus.io.ime), 0x0400_0208 => @intFromBool(bus.io.ime),
@ -70,27 +68,22 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) T {
u16 => switch (address) { u16 => switch (address) {
0x0400_0004 => bus.io.ppu.?.nds7.dispstat.raw, 0x0400_0004 => bus.io.ppu.?.nds7.dispstat.raw,
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DE => dma.read(T, &bus.dma, address) orelse 0x0000, 0x0400_00B0...0x0400_00DE => warn("TODO: impl DMA", .{}),
// Timers // Timers
0x0400_0100...0x0400_010E => warn("TODO(timer): read(T: {}, addr: 0x{X:0>8}) {}", .{ T, address, T }), 0x0400_0100...0x0400_010E => warn("TODO: impl timer", .{}),
0x0400_0130 => bus.io.shr.input.keyinput().raw,
0x0400_0136 => bus.io.shr.input.extkeyin().raw,
0x0400_0130 => bus.io.shr.keyinput.load(.Monotonic),
0x0400_0180 => @truncate(bus.io.shr.ipc._nds7.sync.raw), 0x0400_0180 => @truncate(bus.io.shr.ipc._nds7.sync.raw),
0x0400_0184 => @truncate(bus.io.shr.ipc._nds7.cnt.raw), 0x0400_0184 => @truncate(bus.io.shr.ipc._nds7.cnt.raw),
else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }), else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }),
}, },
u8 => switch (address) { u8 => switch (address) {
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DF => dma.read(T, &bus.dma, address) orelse 0x00, 0x0400_00B0...0x0400_00DF => warn("TODO: impl DMA", .{}),
// Timers // Timers
0x0400_0100...0x0400_010F => warn("TODO(timer): read(T: {}, addr: 0x{X:0>8}) {}", .{ T, address, T }), 0x0400_0100...0x0400_010F => warn("TODO: impl timer", .{}),
// RTC
0x0400_0138 => warn("TODO(rtc): read(T: {}, addr: 0x{X:0>8}) {}", .{ T, address, T }),
0x0400_0240 => bus.vram.stat().raw, 0x0400_0240 => bus.vram.stat().raw,
0x0400_0241 => bus.io.shr.wramcnt.raw, 0x0400_0241 => bus.io.shr.wramcnt.raw,
@ -106,10 +99,10 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
switch (T) { switch (T) {
u32 => switch (address) { u32 => switch (address) {
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DC => dma.write(T, &bus.dma, address, value), 0x0400_00B0...0x0400_00DC => log.warn("TODO: impl DMA", .{}),
// Timers // Timers
0x0400_0100...0x0400_010C => log.warn("TODO(timer): write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), 0x0400_0100...0x0400_010C => log.warn("TODO: impl timer", .{}),
0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds7, value), 0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds7, value),
0x0400_0208 => bus.io.ime = value & 1 == 1, 0x0400_0208 => bus.io.ime = value & 1 == 1,
@ -120,13 +113,11 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }),
}, },
u16 => switch (address) { u16 => switch (address) {
0x0400_0004 => bus.io.ppu.?.nds7.dispstat.raw = value,
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DE => dma.write(T, &bus.dma, address, value), 0x0400_00B0...0x0400_00DE => log.warn("TODO: impl DMA", .{}),
// Timers // Timers
0x0400_0100...0x0400_010E => log.warn("TODO(timer): write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), 0x0400_0100...0x0400_010E => log.warn("TODO: impl timer", .{}),
0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds7, value), 0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds7, value),
0x0400_0184 => bus.io.shr.ipc.setIpcFifoCnt(.nds7, value), 0x0400_0184 => bus.io.shr.ipc.setIpcFifoCnt(.nds7, value),
@ -136,24 +127,12 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
}, },
u8 => switch (address) { u8 => switch (address) {
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DF => dma.write(T, &bus.dma, address, value), 0x0400_00B0...0x0400_00DF => log.warn("TODO: impl DMA", .{}),
// Timers // Timers
0x0400_0100...0x0400_010F => log.warn("TODO(timer): write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), 0x0400_0100...0x0400_010F => log.warn("TODO: impl timer", .{}),
// RTC
0x0400_0138 => log.warn("TODO(rtc): write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }),
0x0400_0208 => bus.io.ime = value & 1 == 1, 0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0301 => switch ((value >> 6) & 0b11) {
0b00 => bus.io.haltcnt = .execute,
0b10 => bus.io.haltcnt = .halt,
else => |val| {
const tag: Haltcnt = @enumFromInt(val);
log.err("TODO: Implement {}", .{tag});
},
},
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>2})", .{ T, address, value }), else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>2})", .{ T, address, value }),
}, },
else => @compileError(T ++ " is an unsupported bus write type"), else => @compileError(T ++ " is an unsupported bus write type"),
@ -179,14 +158,3 @@ const Haltcnt = enum(u2) {
}; };
const PostFlag = enum(u8) { in_progress = 0, completed }; const PostFlag = enum(u8) { in_progress = 0, completed };
pub const DmaCnt = extern union {
dad_adj: Bitfield(u16, 5, 2),
sad_adj: Bitfield(u16, 7, 2),
repeat: Bit(u16, 9),
transfer_type: Bit(u16, 10),
start_timing: Bitfield(u16, 12, 2),
irq: Bit(u16, 14),
enabled: Bit(u16, 15),
raw: u16,
};

View File

@ -31,6 +31,7 @@ pub fn deinit(self: @This(), allocator: Allocator) void {
// Note: Parts of 16MiB addrspace that aren't mapped to BIOS are typically undefined // Note: Parts of 16MiB addrspace that aren't mapped to BIOS are typically undefined
pub fn read(self: *const @This(), comptime T: type, address: u32) T { pub fn read(self: *const @This(), comptime T: type, address: u32) T {
const readInt = std.mem.readIntLittle;
const byte_count = @divExact(@typeInfo(T).Int.bits, 8); const byte_count = @divExact(@typeInfo(T).Int.bits, 8);
// if (address >= len) return 0x0000_0000; // TODO: What is undefined actually? // if (address >= len) return 0x0000_0000; // TODO: What is undefined actually?
@ -40,7 +41,7 @@ pub fn read(self: *const @This(), comptime T: type, address: u32) T {
@panic("TODO: ability to load in NDS9 BIOS just-in-time"); @panic("TODO: ability to load in NDS9 BIOS just-in-time");
}; };
return std.mem.readInt(T, ptr[address & (len - 1) ..][0..byte_count], .little); return readInt(T, ptr[address & (len - 1) ..][0..byte_count]);
} }
pub fn write(_: *const @This(), comptime T: type, address: u32, value: T) void { pub fn write(_: *const @This(), comptime T: type, address: u32, value: T) void {

View File

@ -8,8 +8,6 @@ const Wram = @import("../emu.zig").Wram;
const Bios = @import("Bios.zig"); const Bios = @import("Bios.zig");
const forceAlign = @import("../emu.zig").forceAlign; const forceAlign = @import("../emu.zig").forceAlign;
const Controllers = @import("dma.zig").Controllers;
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
const Mode = enum { normal, debug }; const Mode = enum { normal, debug };
@ -20,11 +18,8 @@ const log = std.log.scoped(.nds9_bus);
main: *[4 * MiB]u8, main: *[4 * MiB]u8,
wram: *Wram, wram: *Wram,
makeshift_palram: *[2 * KiB]u8,
scheduler: *Scheduler, scheduler: *Scheduler,
dma: Controllers = .{},
io: io.Io, io: io.Io,
ppu: Ppu, ppu: Ppu,
bios: Bios, bios: Bios,
@ -36,7 +31,6 @@ pub fn init(allocator: Allocator, scheduler: *Scheduler, ctx: SharedCtx) !@This(
return .{ return .{
.main = ctx.main, .main = ctx.main,
.wram = ctx.wram, .wram = ctx.wram,
.makeshift_palram = try allocator.create([2 * KiB]u8),
.ppu = try Ppu.init(allocator, ctx.vram), .ppu = try Ppu.init(allocator, ctx.vram),
.scheduler = scheduler, .scheduler = scheduler,
.io = io.Io.init(ctx.io), .io = io.Io.init(ctx.io),
@ -48,8 +42,6 @@ pub fn init(allocator: Allocator, scheduler: *Scheduler, ctx: SharedCtx) !@This(
pub fn deinit(self: *@This(), allocator: Allocator) void { pub fn deinit(self: *@This(), allocator: Allocator) void {
self.ppu.deinit(allocator); self.ppu.deinit(allocator);
self.bios.deinit(allocator); self.bios.deinit(allocator);
allocator.destroy(self.makeshift_palram);
} }
pub fn reset(_: *@This()) void { pub fn reset(_: *@This()) void {
@ -66,6 +58,8 @@ pub fn dbgRead(self: *@This(), comptime T: type, address: u32) T {
fn _read(self: *@This(), comptime T: type, comptime mode: Mode, address: u32) T { fn _read(self: *@This(), comptime T: type, comptime mode: Mode, address: u32) T {
const byte_count = @divExact(@typeInfo(T).Int.bits, 8); const byte_count = @divExact(@typeInfo(T).Int.bits, 8);
const readInt = std.mem.readIntLittle;
const aligned_addr = forceAlign(T, address); const aligned_addr = forceAlign(T, address);
switch (mode) { switch (mode) {
@ -75,13 +69,11 @@ fn _read(self: *@This(), comptime T: type, comptime mode: Mode, address: u32) T
} }
return switch (aligned_addr) { return switch (aligned_addr) {
0x0200_0000...0x02FF_FFFF => std.mem.readInt(T, self.main[aligned_addr & (4 * MiB - 1) ..][0..byte_count], .little), 0x0200_0000...0x02FF_FFFF => readInt(T, self.main[aligned_addr & 0x003F_FFFF ..][0..byte_count]),
0x0300_0000...0x03FF_FFFF => self.wram.read(T, .nds9, aligned_addr), 0x0300_0000...0x03FF_FFFF => self.wram.read(T, .nds9, aligned_addr),
0x0400_0000...0x04FF_FFFF => io.read(self, T, aligned_addr), 0x0400_0000...0x04FF_FFFF => io.read(self, T, aligned_addr),
0x0500_0000...0x05FF_FFFF => std.mem.readInt(T, self.makeshift_palram[aligned_addr & (2 * KiB - 1) ..][0..@sizeOf(T)], .little),
0x0600_0000...0x06FF_FFFF => self.ppu.vram.read(T, .nds9, aligned_addr), 0x0600_0000...0x06FF_FFFF => self.ppu.vram.read(T, .nds9, aligned_addr),
0x0700_0000...0x07FF_FFFF => std.mem.readInt(T, self.ppu.oam.buf[aligned_addr & (2 * KiB - 1) ..][0..byte_count], .little), 0xFFFF_0000...0xFFFF_FFFF => self.bios.read(T, address),
0xFFFF_0000...0xFFFF_FFFF => self.bios.read(T, aligned_addr),
else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }), else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }),
}; };
} }
@ -96,6 +88,8 @@ pub fn dbgWrite(self: *@This(), comptime T: type, address: u32, value: T) void {
fn _write(self: *@This(), comptime T: type, comptime mode: Mode, address: u32, value: T) void { fn _write(self: *@This(), comptime T: type, comptime mode: Mode, address: u32, value: T) void {
const byte_count = @divExact(@typeInfo(T).Int.bits, 8); const byte_count = @divExact(@typeInfo(T).Int.bits, 8);
const writeInt = std.mem.writeIntLittle;
const aligned_addr = forceAlign(T, address); const aligned_addr = forceAlign(T, address);
switch (mode) { switch (mode) {
@ -105,13 +99,11 @@ fn _write(self: *@This(), comptime T: type, comptime mode: Mode, address: u32, v
} }
switch (aligned_addr) { switch (aligned_addr) {
0x0200_0000...0x02FF_FFFF => std.mem.writeInt(T, self.main[aligned_addr & (4 * MiB - 1) ..][0..byte_count], value, .little), 0x0200_0000...0x02FF_FFFF => writeInt(T, self.main[aligned_addr & 0x003F_FFFF ..][0..byte_count], value),
0x0300_0000...0x03FF_FFFF => self.wram.write(T, .nds9, aligned_addr, value), 0x0300_0000...0x03FF_FFFF => self.wram.write(T, .nds9, aligned_addr, value),
0x0400_0000...0x04FF_FFFF => io.write(self, T, aligned_addr, value), 0x0400_0000...0x04FF_FFFF => io.write(self, T, aligned_addr, value),
0x0500_0000...0x05FF_FFFF => std.mem.writeInt(T, self.makeshift_palram[aligned_addr & (2 * KiB - 1) ..][0..@sizeOf(T)], value, .little),
0x0600_0000...0x06FF_FFFF => self.ppu.vram.write(T, .nds9, aligned_addr, value), 0x0600_0000...0x06FF_FFFF => self.ppu.vram.write(T, .nds9, aligned_addr, value),
0x0700_0000...0x07FF_FFFF => std.mem.writeInt(T, self.ppu.oam.buf[aligned_addr & (2 * KiB - 1) ..][0..@sizeOf(T)], value, .little), 0xFFFF_0000...0xFFFF_FFFF => self.bios.write(T, address, value),
0xFFFF_0000...0xFFFF_FFFF => self.bios.write(T, aligned_addr, value),
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }),
} }
} }

View File

@ -4,7 +4,7 @@ const log = std.log.scoped(.cp15);
const panic_on_unimplemented: bool = false; const panic_on_unimplemented: bool = false;
control: u32 = 0x0001_2078, control: u32 = 0x0005_2078,
dtcm_size_base: u32 = 0x0300_000A, dtcm_size_base: u32 = 0x0300_000A,
itcm_size_base: u32 = 0x0000_0020, itcm_size_base: u32 = 0x0000_0020,

View File

@ -1,411 +0,0 @@
const std = @import("std");
const System = @import("../emu.zig").System;
const DmaCnt = @import("io.zig").DmaCnt;
const rotr = std.math.rotr;
const shift = @import("../../util.zig").shift;
const subset = @import("../../util.zig").subset;
const handleInterrupt = @import("../emu.zig").handleInterrupt;
const log = std.log.scoped(.nds9_dma_transfer);
pub const Controllers = struct {
Controller(0) = Controller(0){},
Controller(1) = Controller(1){},
Controller(2) = Controller(2){},
Controller(3) = Controller(3){},
};
pub fn read(comptime T: type, dma: *const Controllers, addr: u32) ?T {
const byte_addr: u8 = @truncate(addr);
return switch (T) {
u32 => switch (byte_addr) {
0xB0, 0xB4 => null, // DMA0SAD, DMA0DAD,
0xB8 => @as(T, dma.*[0].dmacntH()) << 16, // DMA0CNT_L is write-only
0xBC, 0xC0 => null, // DMA1SAD, DMA1DAD
0xC4 => @as(T, dma.*[1].dmacntH()) << 16, // DMA1CNT_L is write-only
0xC8, 0xCC => null, // DMA2SAD, DMA2DAD
0xD0 => @as(T, dma.*[2].dmacntH()) << 16, // DMA2CNT_L is write-only
0xD4, 0xD8 => null, // DMA3SAD, DMA3DAD
0xDC => @as(T, dma.*[3].dmacntH()) << 16, // DMA3CNT_L is write-only
else => warn("unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u16 => switch (byte_addr) {
0xB0, 0xB2, 0xB4, 0xB6 => null, // DMA0SAD, DMA0DAD
0xB8 => 0x0000, // DMA0CNT_L, suite.gba expects 0x0000 instead of 0xDEAD
0xBA => dma.*[0].dmacntH(),
0xBC, 0xBE, 0xC0, 0xC2 => null, // DMA1SAD, DMA1DAD
0xC4 => 0x0000, // DMA1CNT_L
0xC6 => dma.*[1].dmacntH(),
0xC8, 0xCA, 0xCC, 0xCE => null, // DMA2SAD, DMA2DAD
0xD0 => 0x0000, // DMA2CNT_L
0xD2 => dma.*[2].dmacntH(),
0xD4, 0xD6, 0xD8, 0xDA => null, // DMA3SAD, DMA3DAD
0xDC => 0x0000, // DMA3CNT_L
0xDE => dma.*[3].dmacntH(),
else => warn("unaligned {} read from 0x{X:0>8}", .{ T, addr }),
},
u8 => switch (byte_addr) {
0xB0...0xB7 => null, // DMA0SAD, DMA0DAD
0xB8, 0xB9 => 0x00, // DMA0CNT_L
0xBA, 0xBB => @truncate(dma.*[0].dmacntH() >> shift(u16, byte_addr)),
0xBC...0xC3 => null, // DMA1SAD, DMA1DAD
0xC4, 0xC5 => 0x00, // DMA1CNT_L
0xC6, 0xC7 => @truncate(dma.*[1].dmacntH() >> shift(u16, byte_addr)),
0xC8...0xCF => null, // DMA2SAD, DMA2DAD
0xD0, 0xD1 => 0x00, // DMA2CNT_L
0xD2, 0xD3 => @truncate(dma.*[2].dmacntH() >> shift(u16, byte_addr)),
0xD4...0xDB => null, // DMA3SAD, DMA3DAD
0xDC, 0xDD => 0x00, // DMA3CNT_L
0xDE, 0xDF => @truncate(dma.*[3].dmacntH() >> shift(u16, byte_addr)),
else => warn("unexpected {} read from 0x{X:0>8}", .{ T, addr }),
},
else => @compileError("DMA: Unsupported read width"),
};
}
pub fn write(comptime T: type, dma: *Controllers, addr: u32, value: T) void {
const byte_addr: u8 = @truncate(addr);
switch (T) {
u32 => switch (byte_addr) {
0xB0 => dma.*[0].setDmasad(value),
0xB4 => dma.*[0].setDmadad(value),
0xB8 => dma.*[0].setDmacnt(value),
0xBC => dma.*[1].setDmasad(value),
0xC0 => dma.*[1].setDmadad(value),
0xC4 => dma.*[1].setDmacnt(value),
0xC8 => dma.*[2].setDmasad(value),
0xCC => dma.*[2].setDmadad(value),
0xD0 => dma.*[2].setDmacnt(value),
0xD4 => dma.*[3].setDmasad(value),
0xD8 => dma.*[3].setDmadad(value),
0xDC => dma.*[3].setDmacnt(value),
else => log.warn("Tried to write 0x{X:0>8}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u16 => switch (byte_addr) {
0xB0, 0xB2 => dma.*[0].setDmasad(subset(u32, u16, byte_addr, dma.*[0].sad, value)),
0xB4, 0xB6 => dma.*[0].setDmadad(subset(u32, u16, byte_addr, dma.*[0].dad, value)),
0xB8 => dma.*[0].setDmacntL(value),
0xBA => dma.*[0].setDmacntH(value),
0xBC, 0xBE => dma.*[1].setDmasad(subset(u32, u16, byte_addr, dma.*[1].sad, value)),
0xC0, 0xC2 => dma.*[1].setDmadad(subset(u32, u16, byte_addr, dma.*[1].dad, value)),
0xC4 => dma.*[1].setDmacntL(value),
0xC6 => dma.*[1].setDmacntH(value),
0xC8, 0xCA => dma.*[2].setDmasad(subset(u32, u16, byte_addr, dma.*[2].sad, value)),
0xCC, 0xCE => dma.*[2].setDmadad(subset(u32, u16, byte_addr, dma.*[2].dad, value)),
0xD0 => dma.*[2].setDmacntL(value),
0xD2 => dma.*[2].setDmacntH(value),
0xD4, 0xD6 => dma.*[3].setDmasad(subset(u32, u16, byte_addr, dma.*[3].sad, value)),
0xD8, 0xDA => dma.*[3].setDmadad(subset(u32, u16, byte_addr, dma.*[3].dad, value)),
0xDC => dma.*[3].setDmacntL(value),
0xDE => dma.*[3].setDmacntH(value),
else => log.warn("Tried to write 0x{X:0>4}{} to 0x{X:0>8}", .{ value, T, addr }),
},
u8 => switch (byte_addr) {
0xB0, 0xB1, 0xB2, 0xB3 => dma.*[0].setDmasad(subset(u32, u8, byte_addr, dma.*[0].sad, value)),
0xB4, 0xB5, 0xB6, 0xB7 => dma.*[0].setDmadad(subset(u32, u8, byte_addr, dma.*[0].dad, value)),
0xB8, 0xB9 => dma.*[0].setDmacntL(subset(u16, u8, byte_addr, @as(u16, @truncate(dma.*[0].word_count)), value)), // FIXME: How wrong is this? lol
0xBA, 0xBB => dma.*[0].setDmacntH(subset(u16, u8, byte_addr, dma.*[0].cnt.raw, value)),
0xBC, 0xBD, 0xBE, 0xBF => dma.*[1].setDmasad(subset(u32, u8, byte_addr, dma.*[1].sad, value)),
0xC0, 0xC1, 0xC2, 0xC3 => dma.*[1].setDmadad(subset(u32, u8, byte_addr, dma.*[1].dad, value)),
0xC4, 0xC5 => dma.*[1].setDmacntL(subset(u16, u8, byte_addr, @as(u16, @truncate(dma.*[1].word_count)), value)),
0xC6, 0xC7 => dma.*[1].setDmacntH(subset(u16, u8, byte_addr, dma.*[1].cnt.raw, value)),
0xC8, 0xC9, 0xCA, 0xCB => dma.*[2].setDmasad(subset(u32, u8, byte_addr, dma.*[2].sad, value)),
0xCC, 0xCD, 0xCE, 0xCF => dma.*[2].setDmadad(subset(u32, u8, byte_addr, dma.*[2].dad, value)),
0xD0, 0xD1 => dma.*[2].setDmacntL(subset(u16, u8, byte_addr, @as(u16, @truncate(dma.*[2].word_count)), value)),
0xD2, 0xD3 => dma.*[2].setDmacntH(subset(u16, u8, byte_addr, dma.*[2].cnt.raw, value)),
0xD4, 0xD5, 0xD6, 0xD7 => dma.*[3].setDmasad(subset(u32, u8, byte_addr, dma.*[3].sad, value)),
0xD8, 0xD9, 0xDA, 0xDB => dma.*[3].setDmadad(subset(u32, u8, byte_addr, dma.*[3].dad, value)),
0xDC, 0xDD => dma.*[3].setDmacntL(subset(u16, u8, byte_addr, @as(u16, @truncate(dma.*[3].word_count)), value)),
0xDE, 0xDF => dma.*[3].setDmacntH(subset(u16, u8, byte_addr, dma.*[3].cnt.raw, value)),
else => log.warn("Tried to write 0x{X:0>2}{} to 0x{X:0>8}", .{ value, T, addr }),
},
else => @compileError("DMA: Unsupported write width"),
}
}
fn warn(comptime format: []const u8, args: anytype) u0 {
log.warn(format, args);
return 0;
}
/// Function that creates a DMAController. Determines unique DMA Controller behaiour at compile-time
fn Controller(comptime id: u2) type {
return struct {
const Self = @This();
const sad_mask: u32 = 0x0FFF_FFFE;
const dad_mask: u32 = 0x0FFF_FFFE;
const WordCount = u21;
/// Write-only. The first address in a DMA transfer. (DMASAD)
/// Note: use writeSrc instead of manipulating src_addr directly
sad: u32 = 0x0000_0000,
/// Write-only. The final address in a DMA transffer. (DMADAD)
/// Note: Use writeDst instead of manipulatig dst_addr directly
dad: u32 = 0x0000_0000,
/// Write-only. The Word Count for the DMA Transfer (DMACNT_L)
word_count: WordCount = 0,
/// Read / Write. DMACNT_H
/// Note: Use writeControl instead of manipulating cnt directly.
cnt: DmaCnt = .{ .raw = 0x0000 },
/// Internal. The last successfully read value
data_latch: u32 = 0x0000_0000,
/// Internal. Currrent Source Address
sad_latch: u32 = 0x0000_0000,
/// Internal. Current Destination Address
dad_latch: u32 = 0x0000_0000,
/// Internal. Word Count
_word_count: WordCount = 0,
/// Some DMA Transfers are enabled during Hblank / VBlank and / or
/// have delays. Thefore bit 15 of DMACNT isn't actually something
/// we can use to control when we do or do not execute a step in a DMA Transfer
in_progress: bool = false,
pub fn reset(self: *Self) void {
self.* = Self.init();
}
pub fn setDmasad(self: *Self, addr: u32) void {
self.sad = addr & sad_mask;
}
pub fn setDmadad(self: *Self, addr: u32) void {
self.dad = addr & dad_mask;
}
pub fn setDmacntL(self: *Self, halfword: u16) void {
self.word_count = halfword;
}
pub fn dmacntH(self: *const Self) u16 {
return self.cnt.raw & if (id == 3) 0xFFE0 else 0xF7E0;
}
pub fn setDmacntH(self: *Self, halfword: u16) void {
const new = DmaCnt{ .raw = halfword };
if (!self.cnt.enabled.read() and new.enabled.read()) {
// Reload Internals on Rising Edge.
self.sad_latch = self.sad;
self.dad_latch = self.dad;
self._word_count = if (self.word_count == 0) std.math.maxInt(WordCount) else self.word_count;
// Only a Start Timing of 00 has a DMA Transfer immediately begin
self.in_progress = new.start_timing.read() == 0b00;
// this is just for debug purposes
const start_timing: Kind = @enumFromInt(new.start_timing.read());
switch (start_timing) {
.immediate, .vblank, .hblank => {},
else => log.err("TODO: Implement DMA({}) {s} mode", .{ id, @tagName(start_timing) }),
}
// Debug stuff
{
const sad_adj: Adjustment = @enumFromInt(new.sad_adj.read());
const dad_adj: Adjustment = @enumFromInt(new.dad_adj.read());
const byte_count = @as(u32, @sizeOf(u16)) << @intFromBool(new.transfer_type.read());
const sad_final = switch (sad_adj) {
.Increment, .IncrementReload => self.sad_latch +% self._word_count * byte_count,
.Decrement => self.sad_latch -% self._word_count * byte_count,
.Fixed => self.sad_latch,
};
const dad_final = switch (dad_adj) {
.Increment, .IncrementReload => self.dad_latch +% self._word_count * byte_count,
.Decrement => self.dad_latch -% self._word_count * byte_count,
.Fixed => self.dad_latch,
};
log.debug("configured {s} transfer from 0x{X:0>8} -> 0x{X:0>8} to 0x{X:0>8} -> 0x{X:0>8} ({} words) for DMA{}", .{
@tagName(start_timing),
self.sad_latch,
sad_final,
self.dad_latch,
dad_final,
self._word_count,
id,
});
}
}
self.cnt.raw = halfword;
}
pub fn setDmacnt(self: *Self, word: u32) void {
self.setDmacntL(@truncate(word));
self.setDmacntH(@truncate(word >> 16));
}
pub fn step(self: *Self, cpu: *System.Arm946es) void {
const bus_ptr: *System.Bus9 = @ptrCast(@alignCast(cpu.bus.ptr));
const is_fifo = (id == 1 or id == 2) and self.cnt.start_timing.read() == 0b11;
const sad_adj: Adjustment = @enumFromInt(self.cnt.sad_adj.read());
const dad_adj: Adjustment = if (is_fifo) .Fixed else @enumFromInt(self.cnt.dad_adj.read());
const transfer_type = is_fifo or self.cnt.transfer_type.read();
const offset: u32 = if (transfer_type) @sizeOf(u32) else @sizeOf(u16);
const mask = if (transfer_type) ~@as(u32, 3) else ~@as(u32, 1);
const sad_addr = self.sad_latch & mask;
const dad_addr = self.dad_latch & mask;
if (transfer_type) {
if (sad_addr >= 0x0200_0000) self.data_latch = cpu.bus.read(u32, sad_addr);
cpu.bus.write(u32, dad_addr, self.data_latch);
} else {
if (sad_addr >= 0x0200_0000) {
const value: u32 = cpu.bus.read(u16, sad_addr);
self.data_latch = value << 16 | value;
}
cpu.bus.write(u16, dad_addr, @as(u16, @truncate(rotr(u32, self.data_latch, 8 * (dad_addr & 3)))));
}
switch (@as(u8, @truncate(sad_addr >> 24))) {
// according to fleroviux, DMAs with a source address in ROM misbehave
// the resultant behaviour is that the source address will increment despite what DMAXCNT says
0x08...0x0D => self.sad_latch +%= offset, // obscure behaviour
else => switch (sad_adj) {
.Increment => self.sad_latch +%= offset,
.Decrement => self.sad_latch -%= offset,
.IncrementReload => log.err("{} is a prohibited adjustment on SAD", .{sad_adj}),
.Fixed => {},
},
}
switch (dad_adj) {
.Increment, .IncrementReload => self.dad_latch +%= offset,
.Decrement => self.dad_latch -%= offset,
.Fixed => {},
}
self._word_count -= 1;
if (self._word_count == 0) {
if (self.cnt.irq.read()) {
switch (id) {
0 => bus_ptr.io.irq.dma0.set(),
1 => bus_ptr.io.irq.dma1.set(),
2 => bus_ptr.io.irq.dma2.set(),
3 => bus_ptr.io.irq.dma3.set(),
}
handleInterrupt(.nds9, cpu);
}
// If we're not repeating, Fire the IRQs and disable the DMA
if (!self.cnt.repeat.read()) self.cnt.enabled.unset();
// We want to disable our internal enabled flag regardless of repeat
// because we only want to step A DMA that repeats during it's specific
// timing window
self.in_progress = false;
}
}
fn poll(self: *Self, comptime kind: Kind) void {
if (self.in_progress) return; // If there's an ongoing DMA Transfer, exit early
// No ongoing DMA Transfer, We want to check if we should repeat an existing one
// Determined by the repeat bit and whether the DMA is in the right start_timing
switch (kind) {
.vblank => self.in_progress = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b01,
.hblank => self.in_progress = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b10,
else => {},
}
// If we determined that the repeat bit is set (and now the Hblank / Vblank DMA is now in progress)
// Reload internal word count latch
// Reload internal DAD latch if we are in IncrementRelaod
if (self.in_progress) {
self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count;
if (@as(Adjustment, @enumFromInt(self.cnt.dad_adj.read())) == .IncrementReload) self.dad_latch = self.dad;
}
}
pub fn requestAudio(self: *Self, _: u32) void {
comptime std.debug.assert(id == 1 or id == 2);
if (self.in_progress) return; // APU must wait their turn
// DMA May not be configured for handling DMAs
if (self.cnt.start_timing.read() != 0b11) return;
// We Assume the Repeat Bit is Set
// We Assume that DAD is set to 0x0400_00A0 or 0x0400_00A4 (fifo_addr)
// We Assume DMACNT_L is set to 4
// FIXME: Safe to just assume whatever DAD is set to is the FIFO Address?
// self.dad_latch = fifo_addr;
self.cnt.repeat.set();
self._word_count = 4;
self.in_progress = true;
}
};
}
pub fn onVblank(bus: *System.Bus9) void {
inline for (0..4) |i| bus.dma[i].poll(.vblank);
}
pub fn onHblank(bus: *System.Bus9) void {
inline for (0..4) |i| bus.dma[i].poll(.hblank);
}
pub fn step(cpu: *System.Arm946es) bool {
const bus: *System.Bus9 = @ptrCast(@alignCast(cpu.bus.ptr));
inline for (0..4) |i| {
if (bus.dma[i].in_progress) {
bus.dma[i].step(cpu);
return true;
}
}
return false;
}
const Adjustment = enum(u2) {
Increment = 0,
Decrement = 1,
Fixed = 2,
IncrementReload = 3,
};
const Kind = enum(u3) {
immediate = 0,
vblank,
hblank,
display_start_sync,
main_mem_display,
cartridge_slot,
pak_slot,
geo_cmd_fifo,
};

View File

@ -10,16 +10,12 @@ const masks = @import("../io.zig").masks;
const IntEnable = @import("../io.zig").IntEnable; const IntEnable = @import("../io.zig").IntEnable;
const IntRequest = @import("../io.zig").IntEnable; const IntRequest = @import("../io.zig").IntEnable;
const dma = @import("dma.zig");
const sext = @import("../../util.zig").sext; const sext = @import("../../util.zig").sext;
const shift = @import("../../util.zig").shift; const shift = @import("../../util.zig").shift;
const log = std.log.scoped(.nds9_io); const log = std.log.scoped(.nds9_io);
pub const Io = struct { pub const Io = struct {
const fill_len = 0x10 * @sizeOf(u32);
shr: *SharedCtx.Io, shr: *SharedCtx.Io,
/// Interrupt Master Enable /// Interrupt Master Enable
@ -42,9 +38,6 @@ pub const Io = struct {
div: Divisor = .{}, div: Divisor = .{},
sqrt: SquareRootUnit = .{}, sqrt: SquareRootUnit = .{},
// TODO: move somewhere else?
dma_fill: [fill_len]u8 = [_]u8{0} ** fill_len,
pub fn init(io: *SharedCtx.Io) @This() { pub fn init(io: *SharedCtx.Io) @This() {
return .{ .shr = io }; return .{ .shr = io };
} }
@ -54,48 +47,36 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) T {
return switch (T) { return switch (T) {
u32 => switch (address) { u32 => switch (address) {
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DC => dma.read(T, &bus.dma, address) orelse 0x0000_0000, 0x0400_00B0...0x0400_00DC => warn("TODO: impl DMA", .{}),
0x0400_00E0...0x0400_00EC => std.mem.readInt(T, bus.io.dma_fill[address & 0xF ..][0..@sizeOf(T)], .little), 0x0400_00E0...0x0400_00EC => warn("TODO: impl DMA fill", .{}),
// Timers // Timers
0x0400_0100...0x0400_010C => warn("TODO(timer): read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }), 0x0400_0100...0x0400_010C => warn("TODO: impl timer", .{}),
0x0400_0180 => bus.io.shr.ipc._nds9.sync.raw, 0x0400_0180 => bus.io.shr.ipc._nds9.sync.raw,
0x0400_0208 => @intFromBool(bus.io.ime), 0x0400_0208 => @intFromBool(bus.io.ime),
0x0400_0210 => bus.io.ie.raw, 0x0400_0210 => bus.io.ie.raw,
0x0400_0214 => bus.io.irq.raw, 0x0400_0214 => bus.io.irq.raw,
// zig fmt: off
0x0400_0240 => @as(u32, bus.ppu.vram.io.cnt_d.raw) << 24
| @as(u32, bus.ppu.vram.io.cnt_c.raw) << 16
| @as(u32, bus.ppu.vram.io.cnt_b.raw) << 8
| bus.ppu.vram.io.cnt_a.raw << 0,
// zig fmt: on
0x0400_0280 => bus.io.div.cnt.raw,
0x0400_02A0, 0x0400_02A4 => @truncate(bus.io.div.result >> shift(u64, address)), 0x0400_02A0, 0x0400_02A4 => @truncate(bus.io.div.result >> shift(u64, address)),
0x0400_02A8, 0x0400_02AC => @truncate(bus.io.div.remainder >> shift(u64, address)), 0x0400_02A8, 0x0400_02AC => @truncate(bus.io.div.remainder >> shift(u64, address)),
0x0400_02B4 => @truncate(bus.io.sqrt.result), 0x0400_02B4 => @truncate(bus.io.sqrt.result),
0x0400_1000 => bus.ppu.engines[1].dispcnt.raw,
0x0410_0000 => bus.io.shr.ipc.recv(.nds9), 0x0410_0000 => bus.io.shr.ipc.recv(.nds9),
0x0400_4000, 0x0400_4008 => 0x0000_0000, // Lets software know this is NOT a DSi 0x0400_4000, 0x0400_4008 => 0x0000_0000, // Lets software know this is NOT a DSi
else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }), else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }),
}, },
u16 => switch (address) { u16 => switch (address) {
0x0400_0006 => bus.ppu.io.nds9.vcount.raw,
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DE => dma.read(T, &bus.dma, address) orelse 0x0000, 0x0400_00B0...0x0400_00DE => warn("TODO: impl DMA", .{}),
0x0400_00E0...0x0400_00EE => std.mem.readInt(T, bus.io.dma_fill[address & 0xF ..][0..@sizeOf(T)], .little), 0x0400_00E0...0x0400_00EE => warn("TODO: impl DMA fill", .{}),
// Timers // Timers
0x0400_0100...0x0400_010E => warn("TODO(timer): read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }), 0x0400_0100...0x0400_010E => warn("TODO: impl timer", .{}),
0x0400_0004 => bus.ppu.io.nds9.dispstat.raw, 0x0400_0004 => bus.ppu.io.nds9.dispstat.raw,
0x0400_0130 => bus.io.shr.input.keyinput().raw, 0x0400_0130 => bus.io.shr.keyinput.load(.Monotonic),
0x0400_0180 => @truncate(bus.io.shr.ipc._nds9.sync.raw), 0x0400_0180 => @truncate(bus.io.shr.ipc._nds9.sync.raw),
0x0400_0184 => @truncate(bus.io.shr.ipc._nds9.cnt.raw), 0x0400_0184 => @truncate(bus.io.shr.ipc._nds9.cnt.raw),
@ -103,29 +84,15 @@ pub fn read(bus: *const Bus, comptime T: type, address: u32) T {
0x0400_0280 => @truncate(bus.io.div.cnt.raw), 0x0400_0280 => @truncate(bus.io.div.cnt.raw),
0x0400_02B0 => @truncate(bus.io.sqrt.cnt.raw), 0x0400_02B0 => @truncate(bus.io.sqrt.cnt.raw),
0x0400_1008 => bus.ppu.engines[1].bg[0].cnt.raw,
0x0400_100A => bus.ppu.engines[1].bg[1].cnt.raw,
0x0400_100C => bus.ppu.engines[1].bg[2].cnt.raw,
0x0400_100E => bus.ppu.engines[1].bg[3].cnt.raw,
0x0400_1010 => bus.ppu.engines[1].bg[0].hofs.raw,
0x0400_1012 => bus.ppu.engines[1].bg[0].vofs.raw,
0x0400_1014 => bus.ppu.engines[1].bg[1].hofs.raw,
0x0400_1016 => bus.ppu.engines[1].bg[1].vofs.raw,
0x0400_1018 => bus.ppu.engines[1].bg[2].hofs.raw,
0x0400_101A => bus.ppu.engines[1].bg[2].vofs.raw,
0x0400_101C => bus.ppu.engines[1].bg[3].hofs.raw,
0x0400_101E => bus.ppu.engines[1].bg[3].vofs.raw,
else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }), else => warn("unexpected: read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }),
}, },
u8 => switch (address) { u8 => switch (address) {
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DF => dma.read(T, &bus.dma, address) orelse 0x00, 0x0400_00B0...0x0400_00DF => warn("TODO: impl DMA", .{}),
0x0400_00E0...0x0400_00EF => std.mem.readInt(T, bus.io.dma_fill[address & 0xF ..][0..@sizeOf(T)], .little), 0x0400_00E0...0x0400_00EF => warn("TODO: impl DMA fill", .{}),
// Timers // Timers
0x0400_0100...0x0400_010F => warn("TODO(timer): read(T: {}, addr: 0x{X:0>8}) {} ", .{ T, address, T }), 0x0400_0100...0x0400_010F => warn("TODO: impl timer", .{}),
0x0400_0208 => @intFromBool(bus.io.ime), 0x0400_0208 => @intFromBool(bus.io.ime),
@ -141,70 +108,28 @@ const subset = @import("../../util.zig").subset;
pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void { pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
switch (T) { switch (T) {
u32 => switch (address) { u32 => switch (address) {
0x0400_0000 => bus.ppu.engines[0].dispcnt.raw = value,
0x0400_0004 => bus.ppu.io.nds9.dispstat.raw = @truncate(value),
0x0400_0008 => {
bus.ppu.engines[0].bg[0].cnt.raw = @truncate(value >> 0); // 0x0400_0008
bus.ppu.engines[0].bg[1].cnt.raw = @truncate(value >> 16); // 0x0400_000A
},
0x0400_000C => {
bus.ppu.engines[0].bg[2].cnt.raw = @truncate(value >> 0); // 0x0400_000A
bus.ppu.engines[0].bg[3].cnt.raw = @truncate(value >> 16); // 0x0400_000C
},
0x00400_0010 => {
bus.ppu.engines[0].bg[0].hofs.raw = @truncate(value >> 0); // 0x0400_0010
bus.ppu.engines[0].bg[0].vofs.raw = @truncate(value >> 16); // 0x0400_0012
},
0x00400_0014 => {
bus.ppu.engines[0].bg[1].hofs.raw = @truncate(value >> 0); // 0x0400_0014
bus.ppu.engines[0].bg[1].vofs.raw = @truncate(value >> 16); // 0x0400_0016
},
0x00400_0018 => {
bus.ppu.engines[0].bg[2].hofs.raw = @truncate(value >> 0); // 0x0400_0018
bus.ppu.engines[0].bg[2].vofs.raw = @truncate(value >> 16); // 0x0400_001A
},
0x00400_001C => {
bus.ppu.engines[0].bg[3].hofs.raw = @truncate(value >> 0); // 0x0400_001C
bus.ppu.engines[0].bg[3].vofs.raw = @truncate(value >> 16); // 0x0400_001E
},
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DC => dma.write(T, &bus.dma, address, value), 0x0400_00B0...0x0400_00DC => log.warn("TODO: impl DMA", .{}),
0x0400_00E0...0x0400_00EC => std.mem.writeInt(T, bus.io.dma_fill[address & 0xF ..][0..@sizeOf(T)], value, .little), 0x0400_00E0...0x0400_00EC => log.warn("TODO: impl DMA fill", .{}),
// Timers // Timers
0x0400_0100...0x0400_010C => log.warn("TODO(timer): write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), 0x0400_0100...0x0400_010C => log.warn("TODO: impl timer", .{}),
0x0400_0000 => bus.ppu.engines[0].dispcnt.raw = value,
0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds9, value), 0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds9, value),
0x0400_0184 => bus.io.shr.ipc.setIpcFifoCnt(.nds9, value), 0x0400_0184 => bus.io.shr.ipc.setIpcFifoCnt(.nds9, value),
0x0400_0188 => bus.io.shr.ipc.send(.nds9, value), 0x0400_0188 => bus.io.shr.ipc.send(.nds9, value),
0x0400_0208 => bus.io.ime = value & 1 == 1,
0x0400_0210 => bus.io.ie.raw = value,
0x0400_0214 => bus.io.irq.raw &= ~value,
0x0400_0240 => { 0x0400_0240 => {
bus.ppu.vram.io.cnt_a.raw = @truncate(value >> 0); // 0x0400_0240 bus.ppu.vram.io.cnt_a.raw = @truncate(value >> 0); // 0x0400_0240
bus.ppu.vram.io.cnt_b.raw = @truncate(value >> 8); // 0x0400_0241 bus.ppu.vram.io.cnt_b.raw = @truncate(value >> 8); // 0x0400_0241
bus.ppu.vram.io.cnt_c.raw = @truncate(value >> 16); // 0x0400_0242 bus.ppu.vram.io.cnt_c.raw = @truncate(value >> 16); // 0x0400_0242
bus.ppu.vram.io.cnt_d.raw = @truncate(value >> 24); // 0x0400_0243 bus.ppu.vram.io.cnt_d.raw = @truncate(value >> 24); // 0x0400_0243
bus.ppu.vram.update();
},
0x0400_0244 => {
bus.ppu.vram.io.cnt_e.raw = @truncate(value >> 0); // 0x0400_0244
bus.ppu.vram.io.cnt_f.raw = @truncate(value >> 8); // 0x0400_0245
bus.ppu.vram.io.cnt_g.raw = @truncate(value >> 16); // 0x0400_0246
bus.io.shr.wramcnt.raw = @truncate(value >> 24); // 0x0400_0247
bus.ppu.vram.update();
bus.wram.update(bus.io.shr.wramcnt);
}, },
0x0400_0280 => { 0x0400_0208 => bus.io.ime = value & 1 == 1,
bus.io.div.cnt.raw = value; 0x0400_0210 => bus.io.ie.raw = value,
bus.io.div.schedule(bus.scheduler); 0x0400_0214 => bus.io.irq.raw &= ~value,
},
0x0400_0290, 0x0400_0294 => { 0x0400_0290, 0x0400_0294 => {
bus.io.div.numerator = subset(u64, u32, address, bus.io.div.numerator, value); bus.io.div.numerator = subset(u64, u32, address, bus.io.div.numerator, value);
@ -216,11 +141,6 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
bus.io.div.schedule(bus.scheduler); bus.io.div.schedule(bus.scheduler);
}, },
0x0400_02B0 => {
bus.io.sqrt.cnt.raw = value;
bus.io.sqrt.schedule(bus.scheduler);
},
0x0400_02B8, 0x0400_02BC => { 0x0400_02B8, 0x0400_02BC => {
bus.io.sqrt.param = subset(u64, u32, address, bus.io.sqrt.param, value); bus.io.sqrt.param = subset(u64, u32, address, bus.io.sqrt.param, value);
bus.io.sqrt.schedule(bus.scheduler); bus.io.sqrt.schedule(bus.scheduler);
@ -230,30 +150,6 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
0x0400_0304 => bus.ppu.io.powcnt.raw = value, 0x0400_0304 => bus.ppu.io.powcnt.raw = value,
0x0400_1000 => bus.ppu.engines[1].dispcnt.raw = value, 0x0400_1000 => bus.ppu.engines[1].dispcnt.raw = value,
0x0400_1008 => {
bus.ppu.engines[1].bg[0].cnt.raw = @truncate(value >> 0); // 0x0400_1008
bus.ppu.engines[1].bg[1].cnt.raw = @truncate(value >> 16); // 0x0400_100A
},
0x0400_100C => {
bus.ppu.engines[1].bg[2].cnt.raw = @truncate(value >> 0); // 0x0400_100A
bus.ppu.engines[1].bg[3].cnt.raw = @truncate(value >> 16); // 0x0400_100C
},
0x00400_1010 => {
bus.ppu.engines[1].bg[0].hofs.raw = @truncate(value >> 0); // 0x0400_1010
bus.ppu.engines[1].bg[0].vofs.raw = @truncate(value >> 16); // 0x0400_1012
},
0x00400_1014 => {
bus.ppu.engines[1].bg[1].hofs.raw = @truncate(value >> 0); // 0x0400_1014
bus.ppu.engines[1].bg[1].vofs.raw = @truncate(value >> 16); // 0x0400_1016
},
0x00400_1018 => {
bus.ppu.engines[1].bg[2].hofs.raw = @truncate(value >> 0); // 0x0400_1018
bus.ppu.engines[1].bg[2].vofs.raw = @truncate(value >> 16); // 0x0400_101A
},
0x00400_101C => {
bus.ppu.engines[1].bg[3].hofs.raw = @truncate(value >> 0); // 0x0400_101C
bus.ppu.engines[1].bg[3].vofs.raw = @truncate(value >> 16); // 0x0400_101E
},
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }),
}, },
@ -261,11 +157,11 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
0x0400_0004 => bus.ppu.io.nds9.dispstat.raw = value, 0x0400_0004 => bus.ppu.io.nds9.dispstat.raw = value,
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DE => dma.write(T, &bus.dma, address, value), 0x0400_00B0...0x0400_00DE => log.warn("TODO: impl DMA", .{}),
0x0400_00E0...0x0400_00EE => std.mem.writeInt(T, bus.io.dma_fill[address & 0xF ..][0..@sizeOf(T)], value, .little), 0x0400_00E0...0x0400_00EE => log.warn("TODO: impl DMA fill", .{}),
// Timers // Timers
0x0400_0100...0x0400_010E => log.warn("TODO(timer): write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), 0x0400_0100...0x0400_010E => log.warn("TODO: impl timer", .{}),
0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds9, value), 0x0400_0180 => bus.io.shr.ipc.setIpcSync(.nds9, value),
0x0400_0184 => bus.io.shr.ipc.setIpcFifoCnt(.nds9, value), 0x0400_0184 => bus.io.shr.ipc.setIpcFifoCnt(.nds9, value),
@ -283,29 +179,15 @@ pub fn write(bus: *Bus, comptime T: type, address: u32, value: T) void {
0x0400_0304 => bus.ppu.io.powcnt.raw = value, 0x0400_0304 => bus.ppu.io.powcnt.raw = value,
0x0400_1008 => bus.ppu.engines[1].bg[0].cnt.raw = value,
0x0400_100A => bus.ppu.engines[1].bg[1].cnt.raw = value,
0x0400_100C => bus.ppu.engines[1].bg[2].cnt.raw = value,
0x0400_100E => bus.ppu.engines[1].bg[3].cnt.raw = value,
0x0400_1010 => bus.ppu.engines[1].bg[0].hofs.raw = value,
0x0400_1012 => bus.ppu.engines[1].bg[0].vofs.raw = value,
0x0400_1014 => bus.ppu.engines[1].bg[1].hofs.raw = value,
0x0400_1016 => bus.ppu.engines[1].bg[1].vofs.raw = value,
0x0400_1018 => bus.ppu.engines[1].bg[2].hofs.raw = value,
0x0400_101A => bus.ppu.engines[1].bg[2].vofs.raw = value,
0x0400_101C => bus.ppu.engines[1].bg[3].hofs.raw = value,
0x0400_101E => bus.ppu.engines[1].bg[3].vofs.raw = value,
else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>4})", .{ T, address, value }), else => log.warn("unexpected: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>4})", .{ T, address, value }),
}, },
u8 => switch (address) { u8 => switch (address) {
// DMA Transfers // DMA Transfers
0x0400_00B0...0x0400_00DF => dma.write(T, &bus.dma, address, value), 0x0400_00B0...0x0400_00DF => log.warn("TODO: impl DMA", .{}),
0x0400_00E0...0x0400_00EF => std.mem.writeInt(T, bus.io.dma_fill[address & 0xF ..][0..@sizeOf(T)], value, .little), 0x0400_00E0...0x0400_00EF => log.warn("TODO: impl DMA fill", .{}),
// Timers // Timers
0x0400_0100...0x0400_010F => log.warn("TODO(timer): write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8})", .{ T, address, value }), 0x0400_0100...0x0400_010F => log.warn("TODO: impl timer", .{}),
0x0400_0208 => bus.io.ime = value & 1 == 1, 0x0400_0208 => bus.io.ime = value & 1 == 1,
@ -518,7 +400,7 @@ pub const DispcntA = extern union {
tile_obj_1d_boundary: Bitfield(u32, 20, 2), tile_obj_1d_boundary: Bitfield(u32, 20, 2),
bitmap_obj_1d_boundary: Bit(u32, 22), bitmap_obj_1d_boundary: Bit(u32, 22),
obj_during_hblank: Bit(u32, 23), obj_during_hblank: Bit(u32, 23),
char_base: Bitfield(u32, 24, 3), character_base: Bitfield(u32, 24, 3),
screen_base: Bitfield(u32, 27, 3), screen_base: Bitfield(u32, 27, 3),
bg_ext_pal_enable: Bit(u32, 30), bg_ext_pal_enable: Bit(u32, 30),
obj_ext_pal_enable: Bit(u32, 31), obj_ext_pal_enable: Bit(u32, 31),
@ -594,34 +476,3 @@ pub const Dispstat = extern union {
lyc: Bitfield(u16, 7, 9), lyc: Bitfield(u16, 7, 9),
raw: u16, raw: u16,
}; };
pub const Bgcnt = extern union {
priority: Bitfield(u16, 0, 2),
char_base: Bitfield(u16, 2, 4),
mosaic_enable: Bit(u16, 6),
colour_mode: Bit(u16, 7),
screen_base: Bitfield(u16, 8, 5),
display_overflow: Bit(u16, 13),
size: Bitfield(u16, 14, 2),
raw: u16,
};
/// Write Only
const BackgroundOffset = extern union {
offset: Bitfield(u16, 0, 9),
raw: u16,
};
pub const Hofs = BackgroundOffset;
pub const Vofs = BackgroundOffset;
pub const DmaCnt = extern union {
dad_adj: Bitfield(u16, 5, 2),
sad_adj: Bitfield(u16, 7, 2),
repeat: Bit(u16, 9),
transfer_type: Bit(u16, 10),
start_timing: Bitfield(u16, 11, 3),
irq: Bit(u16, 14),
enabled: Bit(u16, 15),
raw: u16,
};

View File

@ -5,14 +5,9 @@ const Scheduler = @import("Scheduler.zig");
const System = @import("emu.zig").System; const System = @import("emu.zig").System;
const Vram = @import("ppu/Vram.zig"); const Vram = @import("ppu/Vram.zig");
const Oam = @import("ppu/Oam.zig");
const EngineA = @import("ppu/engine.zig").EngineA; const EngineA = @import("ppu/engine.zig").EngineA;
const EngineB = @import("ppu/engine.zig").EngineB; const EngineB = @import("ppu/engine.zig").EngineB;
const dma7 = @import("nds7/dma.zig");
const dma9 = @import("nds9/dma.zig");
const handleInterrupt = @import("emu.zig").handleInterrupt; const handleInterrupt = @import("emu.zig").handleInterrupt;
pub const screen_width = 256; pub const screen_width = 256;
@ -26,10 +21,7 @@ pub const Ppu = struct {
vram: *Vram, vram: *Vram,
// FIXME: do I need a pointer here? engines: struct { EngineA, EngineB } = .{ .{}, .{} },
oam: *Oam,
engines: struct { EngineA, EngineB },
io: Io = .{}, io: Io = .{},
@ -52,29 +44,20 @@ pub const Ppu = struct {
pub fn init(allocator: Allocator, vram: *Vram) !@This() { pub fn init(allocator: Allocator, vram: *Vram) !@This() {
return .{ return .{
.fb = try FrameBuffer.init(allocator), .fb = try FrameBuffer.init(allocator),
.engines = .{ try EngineA.init(allocator), try EngineB.init(allocator) },
.vram = vram, .vram = vram,
.oam = blk: {
var oam = try allocator.create(Oam);
oam.init();
break :blk oam;
},
}; };
} }
pub fn deinit(self: @This(), allocator: Allocator) void { pub fn deinit(self: @This(), allocator: Allocator) void {
self.fb.deinit(allocator); self.fb.deinit(allocator);
inline for (self.engines) |eng| eng.deinit(allocator);
allocator.destroy(self.oam);
} }
pub fn drawScanline(self: *@This(), bus: *System.Bus9) void { pub fn drawScanline(self: *@This(), bus: *System.Bus9) void {
if (self.io.powcnt.engine2d_a.read()) if (self.io.powcnt.engine2d_a.read())
self.engines[0].drawScanline(bus, &self.fb); self.engines[0].drawScanline(bus, &self.fb, &self.io);
if (self.io.powcnt.engine2d_b.read()) if (self.io.powcnt.engine2d_b.read())
self.engines[1].drawScanline(bus, &self.fb); self.engines[1].drawScanline(bus, &self.fb, &self.io);
} }
/// HDraw -> HBlank /// HDraw -> HBlank
@ -89,9 +72,7 @@ pub const Ppu = struct {
handleInterrupt(.nds7, system.arm7tdmi); handleInterrupt(.nds7, system.arm7tdmi);
} }
if (!self.io.nds9.dispstat.vblank.read()) { // ensure we aren't in VBlank // TODO: Run DMAs on HBlank
dma9.onHblank(system.bus9);
}
self.io.nds9.dispstat.hblank.set(); self.io.nds9.dispstat.hblank.set();
self.io.nds7.dispstat.hblank.set(); self.io.nds7.dispstat.hblank.set();
@ -178,11 +159,7 @@ pub const Ppu = struct {
self.io.nds7.dispstat.vblank.set(); self.io.nds7.dispstat.vblank.set();
// TODO: Affine BG Latches // TODO: Affine BG Latches
// TODO: VBlank DMA Transfers
dma7.onVblank(system.bus7);
dma9.onVblank(system.bus9);
// TODO: VBlank DMA9 Transfers
} }
if (scanline == 262) { if (scanline == 262) {

View File

@ -1,7 +0,0 @@
const KiB = 0x400;
buf: [2 * KiB]u8,
pub fn init(self: *@This()) void {
@memset(self.buf[0..], 0);
}

View File

@ -1,8 +1,6 @@
const std = @import("std"); const std = @import("std");
const KiB = 0x400; const KiB = 0x400;
const System = @import("../emu.zig").System;
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
const IntFittingRange = std.math.IntFittingRange; const IntFittingRange = std.math.IntFittingRange;
@ -255,12 +253,15 @@ pub fn update(self: *@This()) void {
} }
} }
pub fn read(self: @This(), comptime T: type, comptime proc: System.Process, address: u32) T { // TODO: Rename
const Device = enum { nds9, nds7 };
pub fn read(self: @This(), comptime T: type, comptime dev: Device, address: u32) T {
const bits = @typeInfo(IntFittingRange(0, page_size - 1)).Int.bits; const bits = @typeInfo(IntFittingRange(0, page_size - 1)).Int.bits;
const masked_addr = address & (addr_space_size - 1); const masked_addr = address & (addr_space_size - 1);
const page = masked_addr >> bits; const page = masked_addr >> bits;
const offset = masked_addr & (page_size - 1); const offset = masked_addr & (page_size - 1);
const table = if (proc == .nds9) self.nds9_table else self.nds7_table; const table = if (dev == .nds9) self.nds9_table else self.nds7_table;
if (table[page]) |some_ptr| { if (table[page]) |some_ptr| {
const ptr: [*]const T = @ptrCast(@alignCast(some_ptr)); const ptr: [*]const T = @ptrCast(@alignCast(some_ptr));
@ -268,16 +269,16 @@ pub fn read(self: @This(), comptime T: type, comptime proc: System.Process, addr
return ptr[offset / @sizeOf(T)]; return ptr[offset / @sizeOf(T)];
} }
log.err("{s}: read(T: {}, addr: 0x{X:0>8}) was in un-mapped VRAM space", .{ @tagName(proc), T, address }); log.err("{s}: read(T: {}, addr: 0x{X:0>8}) was in un-mapped VRAM space", .{ @tagName(dev), T, address });
return 0x00; return 0x00;
} }
pub fn write(self: *@This(), comptime T: type, comptime proc: System.Process, address: u32, value: T) void { pub fn write(self: *@This(), comptime T: type, comptime dev: Device, address: u32, value: T) void {
const bits = @typeInfo(IntFittingRange(0, page_size - 1)).Int.bits; const bits = @typeInfo(IntFittingRange(0, page_size - 1)).Int.bits;
const masked_addr = address & (addr_space_size - 1); const masked_addr = address & (addr_space_size - 1);
const page = masked_addr >> bits; const page = masked_addr >> bits;
const offset = masked_addr & (page_size - 1); const offset = masked_addr & (page_size - 1);
const table = if (proc == .nds9) self.nds9_table else self.nds7_table; const table = if (dev == .nds9) self.nds9_table else self.nds7_table;
if (table[page]) |some_ptr| { if (table[page]) |some_ptr| {
const ptr: [*]T = @ptrCast(@alignCast(some_ptr)); const ptr: [*]T = @ptrCast(@alignCast(some_ptr));
@ -286,5 +287,5 @@ pub fn write(self: *@This(), comptime T: type, comptime proc: System.Process, ad
return; return;
} }
log.err("{s}: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8}) was in un-mapped VRA< space", .{ @tagName(proc), T, address, value }); log.err("{s}: write(T: {}, addr: 0x{X:0>8}, value: 0x{X:0>8}) was in un-mapped VRA< space", .{ @tagName(dev), T, address, value });
} }

View File

@ -11,15 +11,14 @@ const Ppu = @import("../ppu.zig").Ppu;
const width = @import("../ppu.zig").screen_width; const width = @import("../ppu.zig").screen_width;
const height = @import("../ppu.zig").screen_height; const height = @import("../ppu.zig").screen_height;
const KiB = 0x400;
const EngineKind = enum { a, b }; const EngineKind = enum { a, b };
pub const EngineA = Engine(.a); pub const EngineA = Engine(.a);
pub const EngineB = Engine(.b); pub const EngineB = Engine(.b);
fn Engine(comptime kind: EngineKind) type { fn Engine(comptime kind: EngineKind) type {
const log = std.log.scoped(.engine2d); // TODO: specify between 2D-A and 2D-B const log = std.log.scoped(.engine2d);
_ = log; // TODO: specify between 2D-A and 2D-B
// FIXME: don't commit zig crimes // FIXME: don't commit zig crimes
const Type = struct { const Type = struct {
@ -31,76 +30,25 @@ fn Engine(comptime kind: EngineKind) type {
return struct { return struct {
dispcnt: Type(DispcntA, DispcntB) = .{ .raw = 0x0000_0000 }, dispcnt: Type(DispcntA, DispcntB) = .{ .raw = 0x0000_0000 },
bg: [4]bg.Text = .{ .{}, .{}, .{}, .{} }, pub fn drawScanline(self: *@This(), bus: *Bus, fb: *FrameBuffer, io: *Ppu.Io) void {
// TODO: Rename
scanline: Scanline,
pub fn init(allocator: std.mem.Allocator) !@This() {
return .{
.scanline = try Scanline.init(allocator),
};
}
pub fn deinit(self: @This(), allocator: std.mem.Allocator) void {
self.scanline.deinit(allocator);
}
pub fn drawScanline(self: *@This(), bus: *Bus, fb: *FrameBuffer) void {
const disp_mode = self.dispcnt.display_mode.read(); const disp_mode = self.dispcnt.display_mode.read();
switch (disp_mode) { switch (disp_mode) {
0 => { // Display Off 0 => { // Display Off
const buf = switch (kind) { const buf = switch (kind) {
.a => if (bus.ppu.io.powcnt.display_swap.read()) fb.top(.back) else fb.btm(.back), .a => if (io.powcnt.display_swap.read()) fb.top(.back) else fb.btm(.back),
.b => if (bus.ppu.io.powcnt.display_swap.read()) fb.btm(.back) else fb.top(.back), .b => if (io.powcnt.display_swap.read()) fb.btm(.back) else fb.top(.back),
}; };
@memset(buf, 0xFF); // set everything to white @memset(buf, 0xFF); // set everything to white
}, },
1 => { 1 => @panic("TODO: standard graphics display (text mode, etc)"),
const bg_mode = self.dispcnt.bg_mode.read();
const bg_enable = self.dispcnt.bg_enable.read();
const scanline: u32 = bus.ppu.io.nds9.vcount.scanline.read();
switch (bg_mode) {
// BG0 BG1 BG2 BG3
// Text/3D Text Text Text
0 => {
// TODO: Fetch Sprites
for (0..4) |layer| {
// TODO: Draw Sprites
inline for (0..4) |i| {
if (layer == self.bg[i].cnt.priority.read() and (bg_enable >> i) & 1 == 1) self.drawBackground(i, bus);
}
}
const buf = switch (kind) {
.a => if (bus.ppu.io.powcnt.display_swap.read()) fb.top(.back) else fb.btm(.back),
.b => if (bus.ppu.io.powcnt.display_swap.read()) fb.btm(.back) else fb.top(.back),
};
const scanline_buf = blk: {
const rgba_ptr: *[width * height]u32 = @ptrCast(@alignCast(buf));
break :blk rgba_ptr[width * scanline ..][0..width];
};
self.renderTextMode(bus.dbgRead(u16, 0x0500_0000), scanline_buf);
},
else => |mode| {
log.err("TODO: Implement Mode {}", .{mode});
@panic("fatal error");
},
}
},
2 => { // VRAM display 2 => { // VRAM display
if (kind == .b) return; if (kind == .b) return;
// TODO: Master Brightness can still affect this mode // TODO: Master Brightness can still affect this mode
const scanline: u32 = bus.ppu.io.nds9.vcount.scanline.read(); const scanline: u32 = io.nds9.vcount.scanline.read();
const buf = if (bus.ppu.io.powcnt.display_swap.read()) fb.top(.back) else fb.btm(.back); const buf = if (io.powcnt.display_swap.read()) fb.top(.back) else fb.btm(.back);
const scanline_buf = blk: { const scanline_buf = blk: {
const rgba_ptr: *[width * height]u32 = @ptrCast(@alignCast(buf)); const rgba_ptr: *[width * height]u32 = @ptrCast(@alignCast(buf));
@ -121,211 +69,9 @@ fn Engine(comptime kind: EngineKind) type {
}, },
} }
} }
fn drawBackground(self: *@This(), comptime layer: u2, bus: *Bus) void {
const screen_base = blk: {
const bgcnt_off: u32 = self.bg[layer].cnt.screen_base.read();
const dispcnt_off: u32 = if (kind == .a) self.dispcnt.screen_base.read() else 0;
break :blk (2 * KiB) * bgcnt_off + (64 * KiB) * dispcnt_off;
};
const char_base = blk: {
const bgcnt_off: u32 = self.bg[layer].cnt.char_base.read();
const dispcnt_off: u32 = if (kind == .a) self.dispcnt.char_base.read() else 0;
break :blk (16 * KiB) * bgcnt_off + (64 * KiB) * dispcnt_off;
};
const is_8bpp = self.bg[layer].cnt.colour_mode.read();
const size = self.bg[layer].cnt.size.read();
// In 4bpp: 1 byte represents two pixels so the length is (8 x 8) / 2
// In 8bpp: 1 byte represents one pixel so the length is 8 x 8
const tile_len: u32 = if (is_8bpp) 0x40 else 0x20;
const tile_row_offset: u32 = if (is_8bpp) 0x8 else 0x4;
const vofs: u32 = self.bg[layer].vofs.offset.read();
const hofs: u32 = self.bg[layer].hofs.offset.read();
const y: u32 = vofs + bus.ppu.io.nds9.vcount.scanline.read();
for (0..width) |idx| {
const i: u32 = @intCast(idx);
const x = hofs + i;
// TODO: Windowing
// Grab the Screen Entry from VRAM
const entry_addr = screen_base + tilemapOffset(size, x, y);
const entry: bg.Screen.Entry = @bitCast(bus.read(u16, 0x0600_0000 + entry_addr));
// Calculate the Address of the Tile in the designated Charblock
// We also take this opportunity to flip tiles if necessary
const tile_id: u32 = entry.tile_id.read();
// Calculate row and column offsets. Understand that
// `tile_len`, `tile_row_offset` and `col` are subject to different
// values depending on whether we are in 4bpp or 8bpp mode.
const row = @as(u3, @truncate(y)) ^ if (entry.v_flip.read()) 7 else @as(u3, 0);
const col = @as(u3, @truncate(x)) ^ if (entry.h_flip.read()) 7 else @as(u3, 0);
const tile_addr = char_base + (tile_id * tile_len) + (row * tile_row_offset) + if (is_8bpp) col else col >> 1;
const tile = bus.read(u8, 0x0600_0000 + tile_addr);
// If we're in 8bpp, then the tile value is an index into the palette,
// If we're in 4bpp, we have to account for a pal bank value in the Screen entry
// and then we can index the palette
const pal_addr: u32 = if (!is_8bpp) get4bppTilePalette(entry.pal_bank.read(), col, tile) else tile;
if (pal_addr != 0) {
self.drawBackgroundPixel(layer, i, bus.read(u16, 0x0500_0000 + pal_addr * 2));
}
}
}
inline fn get4bppTilePalette(pal_bank: u4, col: u3, tile: u8) u8 {
const nybble_tile = tile >> ((col & 1) << 2) & 0xF;
if (nybble_tile == 0) return 0;
return (@as(u8, pal_bank) << 4) | nybble_tile;
}
fn renderTextMode(self: *@This(), backdrop: u16, frame_buf: []u32) void {
for (self.scanline.top(), self.scanline.btm(), frame_buf) |maybe_top, maybe_btm, *rgba| {
_ = maybe_btm;
const bgr555 = switch (maybe_top) {
.set => |px| px,
else => backdrop,
};
rgba.* = rgba888(bgr555);
}
self.scanline.reset();
}
// TODO: Comment this + get a better understanding
fn tilemapOffset(size: u2, x: u32, y: u32) u32 {
// Current Row: (y % PIXEL_COUNT) / 8
// Current COlumn: (x % PIXEL_COUNT) / 8
// Length of 1 row of Screen Entries: 0x40
// Length of 1 Screen Entry: 0x2 is the size of a screen entry
@setRuntimeSafety(false);
return switch (size) {
0 => (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40, // 256 x 256
1 => blk: {
// 512 x 256
const offset: u32 = if (x & 0x1FF > 0xFF) 0x800 else 0;
break :blk offset + (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40;
},
2 => blk: {
// 256 x 512
const offset: u32 = if (y & 0x1FF > 0xFF) 0x800 else 0;
break :blk offset + (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40;
},
3 => blk: {
// 512 x 512
const offset: u32 = if (x & 0x1FF > 0xFF) 0x800 else 0;
const offset_2: u32 = if (y & 0x1FF > 0xFF) 0x800 else 0;
break :blk offset + offset_2 + (x % 256 / 8) * 2 + (y % 512 / 8) * 0x40;
},
};
}
fn drawBackgroundPixel(self: *@This(), comptime layer: u2, i: u32, bgr555: u16) void {
_ = layer;
self.scanline.top()[i] = Scanline.Pixel.from(.Background, bgr555);
}
}; };
} }
const Scanline = struct {
const Pixel = union(enum) {
// TODO: Rename
const Layer = enum { Background, Sprite };
set: u16,
obj_set: u16,
unset: void,
hidden: void,
fn from(comptime layer: Layer, bgr555: u16) Pixel {
return switch (layer) {
.Background => .{ .set = bgr555 },
.Sprite => .{ .obj_set = bgr555 },
};
}
pub fn isSet(self: @This()) bool {
return switch (self) {
.set, .obj_set => true,
.unset, .hidden => false,
};
}
};
layers: [2][]Pixel,
buf: []Pixel,
fn init(allocator: std.mem.Allocator) !@This() {
const buf = try allocator.alloc(Pixel, width * 2); // Top & Bottom Scanline
@memset(buf, .unset);
return .{
// Top & Bototm Layers
.layers = [_][]Pixel{ buf[0..][0..width], buf[width..][0..width] },
.buf = buf,
};
}
fn reset(self: *@This()) void {
@memset(self.buf, .unset);
}
fn deinit(self: @This(), allocator: std.mem.Allocator) void {
allocator.free(self.buf);
}
fn top(self: *@This()) []Pixel {
return self.layers[0];
}
fn btm(self: *@This()) []Pixel {
return self.layers[1];
}
};
const bg = struct {
const Text = struct {
const io = @import("../nds9/io.zig");
/// Read / Write
cnt: io.Bgcnt = .{ .raw = 0x0000 },
/// Write Only
hofs: io.Hofs = .{ .raw = 0x0000 },
/// Write Only
vofs: io.Vofs = .{ .raw = 0x0000 },
};
const Screen = struct {
const Entry = extern union {
const Bitfield = @import("bitfield").Bitfield;
const Bit = @import("bitfield").Bit;
tile_id: Bitfield(u16, 0, 10),
h_flip: Bit(u16, 10),
v_flip: Bit(u16, 11),
pal_bank: Bitfield(u16, 12, 4),
raw: u16,
};
};
const Affine = @compileError("TODO: Implement Affine Backgrounds");
};
inline fn rgba888(bgr555: u16) u32 { inline fn rgba888(bgr555: u16) u32 {
const b: u32 = bgr555 >> 10 & 0x1F; const b: u32 = bgr555 >> 10 & 0x1F;
const g: u32 = bgr555 >> 5 & 0x1F; const g: u32 = bgr555 >> 5 & 0x1F;

View File

@ -6,7 +6,6 @@ const emu = @import("core/emu.zig");
const Ui = @import("platform.zig").Ui; const Ui = @import("platform.zig").Ui;
const SharedCtx = @import("core/emu.zig").SharedCtx; const SharedCtx = @import("core/emu.zig").SharedCtx;
const System = @import("core/emu.zig").System; const System = @import("core/emu.zig").System;
const Sync = @import("core/emu.zig").Sync;
const Scheduler = @import("core/Scheduler.zig"); const Scheduler = @import("core/Scheduler.zig");
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
@ -15,7 +14,6 @@ const ClapResult = clap.Result(clap.Help, &cli_params, clap.parsers.default);
const cli_params = clap.parseParamsComptime( const cli_params = clap.parseParamsComptime(
\\-h, --help Display this help and exit. \\-h, --help Display this help and exit.
\\-f, --firm <str> Path to NDS Firmware Directory \\-f, --firm <str> Path to NDS Firmware Directory
\\--gdb Run Turbo in GDB Mode
\\<str> Path to the NDS ROM \\<str> Path to the NDS ROM
\\ \\
); );
@ -28,7 +26,7 @@ pub fn main() !void {
const allocator = gpa.allocator(); const allocator = gpa.allocator();
const result = try clap.parse(clap.Help, &cli_params, clap.parsers.default, .{ .allocator = allocator }); const result = try clap.parse(clap.Help, &cli_params, clap.parsers.default, .{});
defer result.deinit(); defer result.deinit();
const rom_path = try handlePositional(result); const rom_path = try handlePositional(result);
@ -67,23 +65,11 @@ pub fn main() !void {
const rom_title = try emu.load(allocator, system, rom_path); const rom_title = try emu.load(allocator, system, rom_path);
if (firm_path) |path| try emu.loadFirm(allocator, system, path); if (firm_path) |path| try emu.loadFirm(allocator, system, path);
emu.fastBoot(system);
var ui = try Ui.init(allocator); var ui = try Ui.init(allocator);
defer ui.deinit(allocator); defer ui.deinit(allocator);
ui.setTitle(rom_title); ui.setTitle(rom_title);
try ui.run(&scheduler, system);
const sync = try allocator.create(Sync);
defer allocator.destroy(sync);
sync.init();
if (result.args.gdb == 0) {
try ui.run(&scheduler, system, sync);
} else {
try emu.debug.run(allocator, &ui, &scheduler, system, sync);
}
} }
fn handlePositional(result: ClapResult) ![]const u8 { fn handlePositional(result: ClapResult) ![]const u8 {

View File

@ -8,11 +8,8 @@ const imgui = @import("ui/imgui.zig");
const emu = @import("core/emu.zig"); const emu = @import("core/emu.zig");
const System = @import("core/emu.zig").System; const System = @import("core/emu.zig").System;
const Sync = @import("core/emu.zig").Sync;
const KeyInput = @import("core/io.zig").KeyInput; const KeyInput = @import("core/io.zig").KeyInput;
const ExtKeyIn = @import("core/io.zig").ExtKeyIn;
const Scheduler = @import("core/Scheduler.zig"); const Scheduler = @import("core/Scheduler.zig");
const FrameBuffer = @import("core/ppu.zig").FrameBuffer;
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
@ -36,7 +33,7 @@ pub const Ui = struct {
state: imgui.State, state: imgui.State,
pub fn init(allocator: Allocator) !Self { pub fn init(allocator: Allocator) !Self {
const state = imgui.State{}; var state = imgui.State{};
if (SDL.SDL_Init(SDL.SDL_INIT_VIDEO | SDL.SDL_INIT_EVENTS | SDL.SDL_INIT_AUDIO) < 0) panic(); if (SDL.SDL_Init(SDL.SDL_INIT_VIDEO | SDL.SDL_INIT_EVENTS | SDL.SDL_INIT_AUDIO) < 0) panic();
if (SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_PROFILE_MASK, SDL.SDL_GL_CONTEXT_PROFILE_CORE) < 0) panic(); if (SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_PROFILE_MASK, SDL.SDL_GL_CONTEXT_PROFILE_CORE) < 0) panic();
@ -88,162 +85,124 @@ pub const Ui = struct {
return SDL.SDL_GL_GetProcAddress(proc.ptr); return SDL.SDL_GL_GetProcAddress(proc.ptr);
} }
pub fn run(self: *Self, scheduler: *Scheduler, system: System) !void {
// TODO: Sort this out please
const vao_id = opengl_impl.vao();
defer gl.deleteVertexArrays(1, &[_]GLuint{vao_id});
const top_tex = opengl_impl.screenTex(system.bus9.ppu.fb.top(.front));
const btm_tex = opengl_impl.screenTex(system.bus9.ppu.fb.btm(.front));
const top_out_tex = opengl_impl.outTex();
const btm_out_tex = opengl_impl.outTex();
defer gl.deleteTextures(4, &[_]GLuint{ top_tex, top_out_tex, btm_tex, btm_out_tex });
const top_fbo = try opengl_impl.frameBuffer(top_out_tex);
const btm_fbo = try opengl_impl.frameBuffer(btm_out_tex);
defer gl.deleteFramebuffers(2, &[_]GLuint{ top_fbo, btm_fbo });
const prog_id = try opengl_impl.program();
defer gl.deleteProgram(prog_id);
var event: SDL.SDL_Event = undefined;
emu_loop: while (true) {
emu.runFrame(scheduler, system);
while (SDL.SDL_PollEvent(&event) != 0) {
_ = zgui.backend.processEvent(&event);
switch (event.type) {
SDL.SDL_QUIT => break :emu_loop,
SDL.SDL_WINDOWEVENT => {
if (event.window.event == SDL.SDL_WINDOWEVENT_RESIZED) {
std.log.debug("window resized to: {}x{}", .{ event.window.data1, event.window.data2 });
self.state.dim.width = @intCast(event.window.data1);
self.state.dim.height = @intCast(event.window.data2);
}
},
SDL.SDL_KEYDOWN => {
// TODO: Make use of compare_and_xor?
const key_code = event.key.keysym.sym;
var keyinput: KeyInput = .{ .raw = 0x0000 };
switch (key_code) {
SDL.SDLK_UP => keyinput.up.set(),
SDL.SDLK_DOWN => keyinput.down.set(),
SDL.SDLK_LEFT => keyinput.left.set(),
SDL.SDLK_RIGHT => keyinput.right.set(),
SDL.SDLK_x => keyinput.a.set(),
SDL.SDLK_z => keyinput.b.set(),
SDL.SDLK_a => keyinput.shoulder_l.set(),
SDL.SDLK_s => keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => keyinput.start.set(),
SDL.SDLK_RSHIFT => keyinput.select.set(),
else => {},
}
system.bus9.io.shr.keyinput.fetchAnd(~keyinput.raw, .Monotonic);
},
SDL.SDL_KEYUP => {
// TODO: Make use of compare_and_xor?
const key_code = event.key.keysym.sym;
var keyinput: KeyInput = .{ .raw = 0x0000 };
switch (key_code) {
SDL.SDLK_UP => keyinput.up.set(),
SDL.SDLK_DOWN => keyinput.down.set(),
SDL.SDLK_LEFT => keyinput.left.set(),
SDL.SDLK_RIGHT => keyinput.right.set(),
SDL.SDLK_x => keyinput.a.set(),
SDL.SDLK_z => keyinput.b.set(),
SDL.SDLK_a => keyinput.shoulder_l.set(),
SDL.SDLK_s => keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => keyinput.start.set(),
SDL.SDLK_RSHIFT => keyinput.select.set(),
else => {},
}
system.bus9.io.shr.keyinput.fetchOr(keyinput.raw, .Monotonic);
},
else => {},
}
}
{
gl.bindFramebuffer(gl.FRAMEBUFFER, top_fbo);
defer gl.bindFramebuffer(gl.FRAMEBUFFER, 0);
gl.viewport(0, 0, nds_width, nds_height);
opengl_impl.drawScreen(top_tex, prog_id, vao_id, system.bus9.ppu.fb.top(.front));
}
{
gl.bindFramebuffer(gl.FRAMEBUFFER, btm_fbo);
defer gl.bindFramebuffer(gl.FRAMEBUFFER, 0);
gl.viewport(0, 0, nds_width, nds_height);
opengl_impl.drawScreen(btm_tex, prog_id, vao_id, system.bus9.ppu.fb.btm(.front));
}
const zgui_redraw = imgui.draw(&self.state, top_out_tex, btm_out_tex, system);
if (zgui_redraw) {
// Background Colour
const size = zgui.io.getDisplaySize();
gl.viewport(0, 0, @intFromFloat(size[0]), @intFromFloat(size[1]));
gl.clearColor(0, 0, 0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);
zgui.backend.draw();
}
SDL.SDL_GL_SwapWindow(self.window);
}
}
pub fn setTitle(self: *@This(), title: [12]u8) void { pub fn setTitle(self: *@This(), title: [12]u8) void {
self.state.title = title ++ [_:0]u8{}; self.state.title = title ++ [_:0]u8{};
} }
pub fn run(self: *Self, scheduler: *Scheduler, system: System, sync: *Sync) !void {
const id = try opengl_impl.runInit(&system.bus9.ppu.fb);
defer id.deinit();
var event: SDL.SDL_Event = undefined;
while (!sync.should_quit.load(.Monotonic)) {
emu.runFrame(scheduler, system); // TODO: run emu in separate thread
while (SDL.SDL_PollEvent(&event) != 0) {
_ = zgui.backend.processEvent(&event);
handleInput(&event, system, &self.state, sync);
}
{
gl.bindFramebuffer(gl.FRAMEBUFFER, id.top_fbo);
defer gl.bindFramebuffer(gl.FRAMEBUFFER, 0);
gl.viewport(0, 0, nds_width, nds_height);
opengl_impl.drawScreen(id.top_tex, id.prog_id, id.vao_id, system.bus9.ppu.fb.top(.front));
}
{
gl.bindFramebuffer(gl.FRAMEBUFFER, id.btm_fbo);
defer gl.bindFramebuffer(gl.FRAMEBUFFER, 0);
gl.viewport(0, 0, nds_width, nds_height);
opengl_impl.drawScreen(id.btm_tex, id.prog_id, id.vao_id, system.bus9.ppu.fb.btm(.front));
}
imgui.draw(&self.state, id.top_out_tex, id.btm_out_tex, system);
// Background Colour
const size = zgui.io.getDisplaySize();
gl.viewport(0, 0, @intFromFloat(size[0]), @intFromFloat(size[1]));
gl.clearColor(0, 0, 0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);
zgui.backend.draw();
SDL.SDL_GL_SwapWindow(self.window);
}
}
pub fn debug_run(self: *Self, _: *Scheduler, system: System, sync: *Sync) !void {
const id = try opengl_impl.runInit(&system.bus9.ppu.fb);
defer id.deinit();
var event: SDL.SDL_Event = undefined;
while (!sync.should_quit.load(.Monotonic)) {
while (SDL.SDL_PollEvent(&event) != 0) {
_ = zgui.backend.processEvent(&event);
handleInput(&event, system, &self.state, sync);
}
{
gl.bindFramebuffer(gl.FRAMEBUFFER, id.top_fbo);
defer gl.bindFramebuffer(gl.FRAMEBUFFER, 0);
gl.viewport(0, 0, nds_width, nds_height);
opengl_impl.drawScreen(id.top_tex, id.prog_id, id.vao_id, system.bus9.ppu.fb.top(.front));
}
{
gl.bindFramebuffer(gl.FRAMEBUFFER, id.btm_fbo);
defer gl.bindFramebuffer(gl.FRAMEBUFFER, 0);
gl.viewport(0, 0, nds_width, nds_height);
opengl_impl.drawScreen(id.btm_tex, id.prog_id, id.vao_id, system.bus9.ppu.fb.btm(.front));
}
imgui.draw(&self.state, id.top_out_tex, id.btm_out_tex, system);
// Background Colour
const size = zgui.io.getDisplaySize();
gl.viewport(0, 0, @intFromFloat(size[0]), @intFromFloat(size[1]));
gl.clearColor(0, 0, 0, 1.0);
gl.clear(gl.COLOR_BUFFER_BIT);
zgui.backend.draw();
SDL.SDL_GL_SwapWindow(self.window);
}
}
fn handleInput(event: *SDL.SDL_Event, system: System, state: *imgui.State, sync: *Sync) void {
switch (event.type) {
SDL.SDL_QUIT => sync.should_quit.store(true, .Monotonic),
SDL.SDL_WINDOWEVENT => {
if (event.window.event == SDL.SDL_WINDOWEVENT_RESIZED) {
std.log.debug("window resized to: {}x{}", .{ event.window.data1, event.window.data2 });
state.dim.width = @intCast(event.window.data1);
state.dim.height = @intCast(event.window.data2);
zgui.io.setDisplaySize(@floatFromInt(event.window.data1), @floatFromInt(event.window.data2));
}
},
SDL.SDL_KEYDOWN => {
// TODO: Make use of compare_and_xor?
const key_code = event.key.keysym.sym;
var keyinput: KeyInput = .{ .raw = 0x0000 };
var extkeyin: ExtKeyIn = .{ .raw = 0x0000 };
switch (key_code) {
SDL.SDLK_UP => keyinput.up.set(),
SDL.SDLK_DOWN => keyinput.down.set(),
SDL.SDLK_LEFT => keyinput.left.set(),
SDL.SDLK_RIGHT => keyinput.right.set(),
SDL.SDLK_c => keyinput.a.set(),
SDL.SDLK_x => keyinput.b.set(),
SDL.SDLK_d => extkeyin.x.set(),
SDL.SDLK_s => extkeyin.y.set(),
SDL.SDLK_a => keyinput.shoulder_l.set(),
SDL.SDLK_f => keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => keyinput.start.set(),
SDL.SDLK_RSHIFT => keyinput.select.set(),
else => {},
}
const input = (@as(u32, extkeyin.raw) << 16) | keyinput.raw;
system.bus9.io.shr.input.set(.And, ~input);
},
SDL.SDL_KEYUP => {
// TODO: Make use of compare_and_xor?
const key_code = event.key.keysym.sym;
var keyinput: KeyInput = .{ .raw = 0x0000 };
var extkeyin: ExtKeyIn = .{ .raw = 0x0000 };
switch (key_code) {
SDL.SDLK_UP => keyinput.up.set(),
SDL.SDLK_DOWN => keyinput.down.set(),
SDL.SDLK_LEFT => keyinput.left.set(),
SDL.SDLK_RIGHT => keyinput.right.set(),
SDL.SDLK_c => keyinput.a.set(),
SDL.SDLK_x => keyinput.b.set(),
SDL.SDLK_d => extkeyin.x.set(),
SDL.SDLK_s => extkeyin.y.set(),
SDL.SDLK_a => keyinput.shoulder_l.set(),
SDL.SDLK_f => keyinput.shoulder_r.set(),
SDL.SDLK_RETURN => keyinput.start.set(),
SDL.SDLK_RSHIFT => keyinput.select.set(),
else => {},
}
const input = (@as(u32, extkeyin.raw) << 16) | keyinput.raw;
system.bus9.io.shr.input.set(.Or, input);
},
else => {},
}
}
}; };
fn panic() noreturn { fn panic() noreturn {
@ -252,46 +211,6 @@ fn panic() noreturn {
} }
const opengl_impl = struct { const opengl_impl = struct {
const Ids = struct {
vao_id: GLuint,
top_tex: GLuint,
btm_tex: GLuint,
top_out_tex: GLuint,
btm_out_tex: GLuint,
top_fbo: GLuint,
btm_fbo: GLuint,
prog_id: GLuint,
fn deinit(self: Ids) void {
gl.deleteProgram(self.prog_id);
gl.deleteFramebuffers(2, &[_]GLuint{ self.top_fbo, self.btm_fbo });
gl.deleteTextures(4, &[_]GLuint{ self.top_tex, self.top_out_tex, self.btm_tex, self.btm_out_tex });
gl.deleteVertexArrays(1, &[_]GLuint{self.vao_id});
}
};
fn runInit(fb: *const FrameBuffer) !Ids {
const top_out_tex = opengl_impl.outTex();
const btm_out_tex = opengl_impl.outTex();
return .{
.vao_id = opengl_impl.vao(),
.top_tex = opengl_impl.screenTex(fb.top(.front)),
.btm_tex = opengl_impl.screenTex(fb.btm(.front)),
.top_out_tex = top_out_tex,
.btm_out_tex = btm_out_tex,
.top_fbo = try opengl_impl.frameBuffer(top_out_tex),
.btm_fbo = try opengl_impl.frameBuffer(btm_out_tex),
.prog_id = try opengl_impl.program(),
};
}
fn drawScreen(tex_id: GLuint, prog_id: GLuint, vao_id: GLuint, buf: []const u8) void { fn drawScreen(tex_id: GLuint, prog_id: GLuint, vao_id: GLuint, buf: []const u8) void {
gl.bindTexture(gl.TEXTURE_2D, tex_id); gl.bindTexture(gl.TEXTURE_2D, tex_id);
defer gl.bindTexture(gl.TEXTURE_2D, 0); defer gl.bindTexture(gl.TEXTURE_2D, 0);

View File

@ -18,7 +18,7 @@ pub const State = struct {
dim: Dimensions = .{ .width = 1600, .height = 900 }, dim: Dimensions = .{ .width = 1600, .height = 900 },
}; };
pub fn draw(state: *const State, top_tex: GLuint, btm_tex: GLuint, system: System) void { pub fn draw(state: *const State, top_tex: GLuint, btm_tex: GLuint, system: System) bool {
_ = system; _ = system;
zgui.backend.newFrame(@floatFromInt(state.dim.width), @floatFromInt(state.dim.height)); zgui.backend.newFrame(@floatFromInt(state.dim.width), @floatFromInt(state.dim.height));
@ -36,4 +36,6 @@ pub fn draw(state: *const State, top_tex: GLuint, btm_tex: GLuint, system: Syste
zgui.image(@ptrFromInt(top_tex), .{ .w = w, .h = h }); zgui.image(@ptrFromInt(top_tex), .{ .w = w, .h = h });
zgui.image(@ptrFromInt(btm_tex), .{ .w = w, .h = h }); zgui.image(@ptrFromInt(btm_tex), .{ .w = w, .h = h });
} }
return true;
} }