mandelbrot/src/mandelbrot.rs

161 lines
4.2 KiB
Rust

use num_complex::Complex;
use rayon::prelude::*;
const MAX_ITERATIONS: u16 = 512;
#[derive(Debug, Clone)]
pub struct Mandelbrot {
texture_buffer: Vec<u8>,
}
impl Mandelbrot {
const IMG_WIDTH: usize = 1280;
const IMG_HEIGHT: usize = 720;
pub fn new() -> Self {
Mandelbrot {
texture_buffer: vec![0; (Self::IMG_WIDTH * Self::IMG_HEIGHT) * 4],
}
}
pub fn width() -> usize {
Self::IMG_WIDTH
}
pub fn height() -> usize {
Self::IMG_HEIGHT
}
pub fn generate_image(&mut self) -> Vec<u8> {
self.texture_buffer
.par_chunks_mut(4)
.enumerate()
.for_each(|(i, buf)| {
let iters = Self::new_escape_time(i, (-2.5, 1.0), (-1.0, 1.0), 64);
let normalized_iters = iters / MAX_ITERATIONS as f64;
let h = 0.5 + (10.0 * normalized_iters);
buf.copy_from_slice(&Self::hsv_to_rgb(h, 0.6, 1.0));
});
self.texture_buffer.clone()
}
pub fn generate_scaled_image(
&mut self,
x_bounds: (f64, f64),
y_bounds: (f64, f64),
max_iterations: u32,
) -> &[u8] {
self.texture_buffer
.par_chunks_mut(4)
.enumerate()
.for_each(|(i, buf)| {
let max_iters = max_iterations as f64;
let iters = Self::new_escape_time(i, x_bounds, y_bounds, max_iterations);
let normalized_iters = iters / max_iters;
let h = normalized_iters * 350.0;
let v = if iters == max_iters { 0.0 } else { 1.0 };
buf.copy_from_slice(&Self::hsv_to_rgb(h, 1.0, v))
});
&self.texture_buffer
}
fn new_escape_time(
i: usize,
x_bounds: (f64, f64),
y_bounds: (f64, f64),
max_iterations: u32,
) -> f64 {
let px = i % Self::IMG_WIDTH;
let py = i / Self::IMG_WIDTH;
let c = Self::coords_to_complex(px, py, x_bounds, y_bounds);
Self::new_calc_num_iters(c, max_iterations)
}
#[inline]
fn hsv_to_rgb(h: f64, s: f64, v: f64) -> [u8; 4] {
let c = v * s;
let x = c * (1.0 - (((h / 60.0) % 2.0) - 1.0).abs());
let m = v - c;
let (r_prime, g_prime, b_prime) = {
if h < 60.0 {
(c, x, 0.0)
} else if h < 120.0 {
(x, c, 0.0)
} else if h < 180.0 {
(0.0, c, x)
} else if h < 240.0 {
(0.0, x, c)
} else if h < 300.0 {
(x, 0.0, c)
} else if h < 360.0 {
(c, 0.0, x)
} else {
unreachable!()
}
};
let r = ((r_prime + m) * 255.0) as u8;
let g = ((g_prime + m) * 255.0) as u8;
let b = ((b_prime + m) * 255.0) as u8;
let a = 0xFF;
[r, g, b, a]
}
fn new_calc_num_iters(c: Complex<f64>, max_iterations: u32) -> f64 {
let mut z: Complex<f64> = Complex::new(0.0, 0.0);
let mut num_iters: u32 = 0;
loop {
if z.norm_sqr() > 4.0 {
break;
}
if num_iters >= max_iterations {
break;
}
z = (z * z) + c;
num_iters += 1;
}
if num_iters < max_iterations {
(num_iters as f64 + 1.0) - z.norm().ln().ln() / 2f64.ln()
} else {
num_iters as f64
}
}
fn coords_to_complex(
px: usize,
py: usize,
x_bounds: (f64, f64),
y_bounds: (f64, f64),
) -> Complex<f64> {
Complex::new(
Self::scale_width(px, x_bounds),
Self::scale_height(py, y_bounds),
)
}
fn scale_width(px: usize, x_bounds: (f64, f64)) -> f64 {
// const X_MIN: f64 = -2.5;
// const X_MAX: f64 = 1.0;
x_bounds.0 + ((x_bounds.1 - x_bounds.0) * (px as f64 - 0.0)) / Self::IMG_WIDTH as f64 - 0.0
}
fn scale_height(py: usize, y_bounds: (f64, f64)) -> f64 {
// const Y_MIN: f64 = -1.0;
// const Y_MAX: f64 = 1.0;
y_bounds.0 + ((y_bounds.1 - y_bounds.0) * (py as f64 - 0.0)) / Self::IMG_HEIGHT as f64 - 0.0
}
}