feat: improve colours in mandelbrot set

This commit is contained in:
Rekai Nyangadzayi Musuka 2021-02-20 23:18:22 -06:00
parent a831cb44ef
commit baa6b340fd
2 changed files with 112 additions and 136 deletions

View File

@ -18,6 +18,7 @@ struct SpriteScale {
horiz: f64,
verti: f64,
step: f64,
iterations: u32,
}
impl Default for SpriteScale {
@ -27,6 +28,7 @@ impl Default for SpriteScale {
horiz: 0.0,
verti: 0.0,
step: 0.01,
iterations: 64,
}
}
}
@ -40,12 +42,30 @@ fn transform_mandelbrot_system(
let horizontal = input.pressed(KeyCode::D) as i8 - input.pressed(KeyCode::A) as i8;
let vertical = input.pressed(KeyCode::W) as i8 - input.pressed(KeyCode::S) as i8;
let step_mod = input.pressed(KeyCode::R) as i8 - input.pressed(KeyCode::F) as i8;
let iter_mod = input.pressed(KeyCode::T) as i8 - input.pressed(KeyCode::G) as i8;
scale.step += (scale.step / 10.0) * step_mod as f64;
scale.verti += scale.step * vertical as f64;
scale.horiz += scale.step * horizontal as f64;
scale.zoom += scale.step * zoom as f64;
if iter_mod == 1 {
scale.iterations += (scale.step * 100.0) as u32;
if scale.iterations > 512 {
scale.iterations = 512;
}
} else if iter_mod == -1 {
let step = (scale.step * 100.0) as u32;
let diff = scale.iterations as i64 - step as i64;
if diff < 32 {
scale.iterations = 32;
} else {
scale.iterations -= step;
}
}
if scale.zoom < 0.0 {
// We can't go below 0
scale.zoom -= scale.step * zoom as f64;
@ -68,18 +88,15 @@ fn mandelbrot_render_system(
let z = scale.zoom;
let h = scale.horiz;
let v = scale.verti;
let iters = scale.iterations;
let start = Instant::now();
texture.data = fractal.generate_scaled_image(
texture.data.copy_from_slice(fractal.generate_scaled_image(
((-2.5 * z) + h, (1.0 * z) + h),
((-1.0 * z) - v, (1.0 * z) - v),
);
let diff = Instant::now() - start;
println!(
"Frametime: {:?} Framerate: {:.2}",
diff,
1.0 / diff.as_secs_f32()
);
iters,
));
let _diff = Instant::now() - start;
}
}
}

View File

@ -5,19 +5,7 @@ const MAX_ITERATIONS: u16 = 512;
#[derive(Debug, Clone)]
pub struct Mandelbrot {
iterations: Vec<u16>,
}
enum Colour {
Purple,
Violet,
Blue,
Green,
Yellow,
Orange,
Red,
White,
Black,
texture_buffer: Vec<u8>,
}
impl Mandelbrot {
@ -26,7 +14,7 @@ impl Mandelbrot {
pub fn new() -> Self {
Mandelbrot {
iterations: vec![0; Self::IMG_WIDTH * Self::IMG_HEIGHT],
texture_buffer: vec![0; (Self::IMG_WIDTH * Self::IMG_HEIGHT) * 4],
}
}
@ -39,138 +27,109 @@ impl Mandelbrot {
}
pub fn generate_image(&mut self) -> Vec<u8> {
self.escape_time((-2.5, 1.0), (-1.0, 1.0));
let mut texture_buffer = vec![0; (Self::IMG_WIDTH * Self::IMG_HEIGHT) * 4];
for i in 0..texture_buffer.len() {
if i % 4 == 0 {
let iter_i = i / 4;
self.assign_colour(i, iter_i, &mut texture_buffer);
}
}
texture_buffer
}
pub fn generate_scaled_image(&mut self, x_bounds: (f64, f64), y_bounds: (f64, f64)) -> Vec<u8> {
let mut texture_buffer = vec![0; (Self::IMG_WIDTH * Self::IMG_HEIGHT) * 4];
self.escape_time(x_bounds, y_bounds);
for i in 0..texture_buffer.len() {
if i % 4 == 0 {
let iter_i = i / 4;
self.assign_colour(i, iter_i, &mut texture_buffer);
}
}
texture_buffer
}
fn escape_time(&mut self, x_bounds: (f64, f64), y_bounds: (f64, f64)) {
self.iterations
.par_iter_mut()
self.texture_buffer
.par_chunks_mut(4)
.enumerate()
.for_each(|(i, value)| {
let px = i % Self::IMG_WIDTH;
let py = i / Self::IMG_WIDTH;
let c = Self::coords_to_complex(px, py, x_bounds, y_bounds);
*value = Self::calc_num_iterations(c);
.for_each(|(i, buf)| {
let iters = Self::new_escape_time(i, (-2.5, 1.0), (-1.0, 1.0), 64);
let normalized_iters = iters / MAX_ITERATIONS as f64;
let h = 0.5 + (10.0 * normalized_iters);
buf.copy_from_slice(&Self::hsv_to_rgb(h, 0.6, 1.0));
});
self.texture_buffer.clone()
}
fn find_colour(iteration: u16) -> Colour {
if iteration == 1 {
return Colour::Black;
}
pub fn generate_scaled_image(
&mut self,
x_bounds: (f64, f64),
y_bounds: (f64, f64),
max_iterations: u32,
) -> &[u8] {
self.texture_buffer
.par_chunks_mut(4)
.enumerate()
.for_each(|(i, buf)| {
let max_iters = max_iterations as f64;
match iteration % 7 {
0 => Colour::Purple,
1 => Colour::Violet,
2 => Colour::Blue,
3 => Colour::Green,
4 => Colour::Yellow,
5 => Colour::Orange,
6 => Colour::Red,
_ => unreachable!(),
}
let iters = Self::new_escape_time(i, x_bounds, y_bounds, max_iterations);
let normalized_iters = iters / max_iters;
let h = normalized_iters * 350.0;
let v = if iters == max_iters { 0.0 } else { 1.0 };
buf.copy_from_slice(&Self::hsv_to_rgb(h, 1.0, v))
});
&self.texture_buffer
}
fn assign_colour(&self, i: usize, iter_i: usize, texture_buffer: &mut [u8]) {
match Self::find_colour(self.iterations[iter_i]) {
Colour::White => {
texture_buffer[i] = 0xFF;
texture_buffer[i + 1] = 0xFF;
texture_buffer[i + 2] = 0xFF;
texture_buffer[i + 3] = 0xFF;
}
Colour::Black => {
texture_buffer[i] = 0x00;
texture_buffer[i + 1] = 0x00;
texture_buffer[i + 2] = 0x00;
texture_buffer[i + 3] = 0xFF;
}
Colour::Purple => {
texture_buffer[i] = 0x94;
texture_buffer[i + 1] = 0x00;
texture_buffer[i + 2] = 0xD3;
texture_buffer[i + 3] = 0xFF;
}
Colour::Violet => {
texture_buffer[i] = 0x4B;
texture_buffer[i + 1] = 0x00;
texture_buffer[i + 2] = 0x82;
texture_buffer[i + 3] = 0xFF;
}
Colour::Blue => {
texture_buffer[i] = 0x00;
texture_buffer[i + 1] = 0x00;
texture_buffer[i + 2] = 0xFF;
texture_buffer[i + 3] = 0xFF;
}
Colour::Green => {
texture_buffer[i] = 0x00;
texture_buffer[i + 1] = 0xFF;
texture_buffer[i + 2] = 0x00;
texture_buffer[i + 3] = 0xFF;
}
Colour::Yellow => {
texture_buffer[i] = 0xFF;
texture_buffer[i + 1] = 0xFF;
texture_buffer[i + 2] = 0x00;
texture_buffer[i + 3] = 0xFF;
}
Colour::Orange => {
texture_buffer[i] = 0xFF;
texture_buffer[i + 1] = 0x7F;
texture_buffer[i + 2] = 0x00;
texture_buffer[i + 3] = 0xFF;
}
Colour::Red => {
texture_buffer[i] = 0xFF;
texture_buffer[i + 1] = 0x00;
texture_buffer[i + 2] = 0x00;
texture_buffer[i + 3] = 0xFF;
}
}
fn new_escape_time(
i: usize,
x_bounds: (f64, f64),
y_bounds: (f64, f64),
max_iterations: u32,
) -> f64 {
let px = i % Self::IMG_WIDTH;
let py = i / Self::IMG_WIDTH;
let c = Self::coords_to_complex(px, py, x_bounds, y_bounds);
Self::new_calc_num_iters(c, max_iterations)
}
fn calc_num_iterations(c: Complex<f64>) -> u16 {
#[inline]
fn hsv_to_rgb(h: f64, s: f64, v: f64) -> [u8; 4] {
let c = v * s;
let x = c * (1.0 - (((h / 60.0) % 2.0) - 1.0).abs());
let m = v - c;
let (r_prime, g_prime, b_prime) = {
if h < 60.0 {
(c, x, 0.0)
} else if h < 120.0 {
(x, c, 0.0)
} else if h < 180.0 {
(0.0, c, x)
} else if h < 240.0 {
(0.0, x, c)
} else if h < 300.0 {
(x, 0.0, c)
} else if h < 360.0 {
(c, 0.0, x)
} else {
unreachable!()
}
};
let r = ((r_prime + m) * 255.0) as u8;
let g = ((g_prime + m) * 255.0) as u8;
let b = ((b_prime + m) * 255.0) as u8;
let a = 0xFF;
[r, g, b, a]
}
fn new_calc_num_iters(c: Complex<f64>, max_iterations: u32) -> f64 {
let mut z: Complex<f64> = Complex::new(0.0, 0.0);
let mut num_iterations: u16 = 0;
let mut num_iters: u32 = 0;
for i in 0..MAX_ITERATIONS {
loop {
if z.norm_sqr() > 4.0 {
num_iterations = i;
break;
}
if num_iters >= max_iterations {
break;
}
z = (z * z) + c;
num_iters += 1;
}
num_iterations + 1 // account for off by one error
if num_iters < max_iterations {
(num_iters as f64) - z.norm() / 2f64.ln()
} else {
num_iters as f64
}
}
fn coords_to_complex(