gb/src/cpu.rs

529 lines
13 KiB
Rust

use crate::bus::{Bus, BusIo, BOOT_SIZE};
use crate::instruction::Instruction;
use crate::interrupt::{InterruptEnable, InterruptFlag};
use crate::Cycle;
use bitfield::bitfield;
use std::fmt::{Display, Formatter, Result as FmtResult};
#[derive(Debug, Default)]
pub struct Cpu {
pub bus: Bus,
reg: Registers,
flags: Flags,
ime: ImeState,
state: State,
}
impl Cpu {
#[allow(dead_code)]
pub(crate) fn without_boot() -> Self {
Self {
reg: Registers {
a: 0x01,
b: 0x00,
c: 0x13,
d: 0x00,
e: 0xD8,
h: 0x01,
l: 0x4D,
sp: 0xFFFE,
pc: 0x0100,
},
flags: 0xb0.into(),
..Default::default()
}
}
pub(crate) fn with_boot(rom: [u8; BOOT_SIZE]) -> Self {
Self {
bus: Bus::with_boot(rom),
..Default::default()
}
}
pub(crate) fn ime(&self) -> ImeState {
self.ime
}
pub(crate) fn set_ime(&mut self, state: ImeState) {
self.ime = state;
}
pub(crate) fn halt_cpu(&mut self, kind: HaltKind) {
self.state = State::Halt(kind);
}
fn resume_execution(&mut self) {
self.state = State::Execute;
}
pub(crate) fn is_halted(&self) -> bool {
matches!(self.state, State::Halt(_))
}
pub(crate) fn halt_kind(&self) -> Option<HaltKind> {
match self.state {
State::Halt(kind) => Some(kind),
_ => None,
}
}
}
impl Cpu {
/// Fetch an [Instruction] from the memory bus
/// (4 cycles)
fn fetch(&mut self) -> u8 {
let byte = self.read_byte(self.reg.pc);
self.bus.clock();
self.reg.pc += 1;
byte
}
/// Decode a byte into an [SM83](Cpu) [Instruction]
///
/// If opcode == 0xCB, then decoding costs 4 cycles.
/// Otherwise, decoding is free
pub(crate) fn decode(&mut self, opcode: u8) -> Instruction {
if opcode == 0xCB {
Instruction::decode(self.fetch(), true)
} else {
Instruction::decode(opcode, false)
}
}
/// Execute an [Instruction].
///
/// The amount of cycles necessary to execute an instruction range from
/// 0 to 20 T-cycles
fn execute(&mut self, instruction: Instruction) -> Cycle {
Instruction::execute(self, instruction)
}
/// Perform the [`Cpu::fetch()`] [`Cpu::decode()`] [`Cpu::execute()`]
/// routine.
///
/// Handle HALT and interrupts.
pub fn step(&mut self) -> Cycle {
// Log instructions
// if self.reg.pc > 0xFF {
// let out = std::io::stdout();
// let _ = self._print_logs(out.lock());
// }
if let Some(elapsed) = self.handle_interrupt() {
return elapsed;
}
if let Some(kind) = self.halt_kind() {
use HaltKind::*;
self.bus.clock();
let elapsed = match kind {
ImeEnabled | NonePending => 4,
SomePending => todo!("Implement HALT bug"),
};
return elapsed;
}
let opcode = self.fetch();
let instr = self.decode(opcode);
let elapsed = self.execute(instr);
self.handle_ei();
// For use in Blargg's Test ROMs
if self.read_byte(0xFF02) == 0x81 {
let c = self.read_byte(0xFF01) as char;
self.write_byte(0xFF02, 0x00);
eprint!("{}", c);
}
elapsed
}
}
impl BusIo for Cpu {
fn read_byte(&self, addr: u16) -> u8 {
self.bus.read_byte(addr)
}
fn write_byte(&mut self, addr: u16, byte: u8) {
self.bus.write_byte(addr, byte);
}
}
impl Cpu {
#[inline]
pub(crate) fn bus(&self) -> &Bus {
&self.bus
}
#[inline]
pub(crate) fn bus_mut(&mut self) -> &mut Bus {
&mut self.bus
}
fn handle_ei(&mut self) {
match self.ime {
ImeState::EiExecuted => self.ime = ImeState::Pending,
ImeState::Pending => self.ime = ImeState::Enabled,
ImeState::Disabled | ImeState::Enabled => {}
}
}
pub(crate) fn int_request(&self) -> u8 {
self.read_byte(0xFF0F)
}
pub(crate) fn int_enable(&self) -> u8 {
self.read_byte(0xFFFF)
}
fn handle_interrupt(&mut self) -> Option<Cycle> {
let irq = self.int_request();
let enable = self.int_enable();
// TODO: Ensure that this behaviour is correct
if self.is_halted() {
// When we're here either a HALT with IME set or
// a HALT with IME not set and No pending Interrupts was called
if irq & enable != 0 {
// The if self.ime() below correctly follows the "resuming from HALT" behaviour so
// nothing actually needs to be added here. This is just documentation
// since it's a bit weird why nothing is being done
self.resume_execution();
}
}
match self.ime() {
ImeState::Enabled => {
let mut irq: InterruptFlag = irq.into();
let enable: InterruptEnable = enable.into();
let rst_vector = if irq.vblank() && enable.vblank() {
// Handle VBlank Interrupt
irq.set_vblank(false);
// INT 40h
Some(0x40)
} else if irq.lcd_stat() && enable.lcd_stat() {
// Handle LCD STAT Interrupt
irq.set_lcd_stat(false);
// INT 48h
Some(0x48)
} else if irq.timer() && enable.timer() {
// Handle Timer Interrupt
irq.set_timer(false);
// INT 50h
Some(0x50)
} else if irq.serial() && enable.serial() {
// Handle Serial Interrupt
irq.set_serial(false);
// INT 58h
Some(0x58)
} else if irq.joypad() && enable.joypad() {
// Handle Joypad Interrupt
irq.set_joypad(false);
// INT 60h
Some(0x60)
} else {
None
};
match rst_vector {
Some(vector) => {
// Write the Changes to 0xFF0F and 0xFFFF registers
self.write_byte(0xFF0F, irq.into());
// Disable all future interrupts
self.set_ime(ImeState::Disabled);
Some(Instruction::reset(self, vector))
}
None => None,
}
}
_ => None,
}
}
}
#[derive(Debug, Clone, Copy)]
enum State {
Execute,
Halt(HaltKind),
// Stop,
}
impl Default for State {
fn default() -> Self {
Self::Execute
}
}
impl Cpu {
pub(crate) fn set_register(&mut self, register: Register, value: u8) {
use Register::*;
match register {
A => self.reg.a = value,
B => self.reg.b = value,
C => self.reg.c = value,
D => self.reg.d = value,
E => self.reg.e = value,
H => self.reg.h = value,
L => self.reg.l = value,
}
}
pub(crate) fn register(&self, register: Register) -> u8 {
use Register::*;
match register {
A => self.reg.a,
B => self.reg.b,
C => self.reg.c,
D => self.reg.d,
E => self.reg.e,
H => self.reg.h,
L => self.reg.l,
}
}
pub(crate) fn register_pair(&self, pair: RegisterPair) -> u16 {
use RegisterPair::*;
match pair {
AF => (self.reg.a as u16) << 8 | u8::from(self.flags) as u16,
BC => (self.reg.b as u16) << 8 | self.reg.c as u16,
DE => (self.reg.d as u16) << 8 | self.reg.e as u16,
HL => (self.reg.h as u16) << 8 | self.reg.l as u16,
SP => self.reg.sp,
PC => self.reg.pc,
}
}
pub(crate) fn set_register_pair(&mut self, pair: RegisterPair, value: u16) {
use RegisterPair::*;
let high = (value >> 8) as u8;
let low = value as u8;
match pair {
AF => {
self.reg.a = high;
self.flags = low.into();
}
BC => {
self.reg.b = high;
self.reg.c = low;
}
DE => {
self.reg.d = high;
self.reg.e = low;
}
HL => {
self.reg.h = high;
self.reg.l = low;
}
SP => self.reg.sp = value,
PC => self.reg.pc = value,
}
}
pub(crate) fn flags(&self) -> &Flags {
&self.flags
}
pub(crate) fn update_flags(&mut self, z: bool, n: bool, h: bool, c: bool) {
self.flags.set_z(z);
self.flags.set_n(n);
self.flags.set_h(h);
self.flags.set_c(c);
}
pub(crate) fn set_flags(&mut self, flags: Flags) {
self.flags = flags;
}
}
impl Cpu {
fn _print_debug(&self, mut w: impl std::io::Write) -> std::io::Result<()> {
write!(w, "A: {:02X} ", self.reg.a)?;
write!(w, "F: {:02X} ", u8::from(self.flags))?;
write!(w, "B: {:02X} ", self.reg.b)?;
write!(w, "C: {:02X} ", self.reg.c)?;
write!(w, "D: {:02X} ", self.reg.d)?;
write!(w, "E: {:02X} ", self.reg.e)?;
write!(w, "H: {:02X} ", self.reg.h)?;
write!(w, "L: {:02X} ", self.reg.l)?;
write!(w, "SP: {:04X} ", self.reg.sp)?;
write!(w, "PC: 00:{:04X} ", self.reg.pc)?;
write!(w, "({:02X} ", self.read_byte(self.reg.pc))?;
write!(w, "{:02X} ", self.read_byte(self.reg.pc + 1))?;
write!(w, "{:02X} ", self.read_byte(self.reg.pc + 2))?;
write!(w, "{:02X})", self.read_byte(self.reg.pc + 3))?;
writeln!(w, "| {:?}", self._dbg_instr())?;
w.flush()
}
fn _print_logs(&self, mut w: impl std::io::Write) -> std::io::Result<()> {
write!(w, "A: {:02X} ", self.reg.a)?;
write!(w, "F: {:02X} ", u8::from(self.flags))?;
write!(w, "B: {:02X} ", self.reg.b)?;
write!(w, "C: {:02X} ", self.reg.c)?;
write!(w, "D: {:02X} ", self.reg.d)?;
write!(w, "E: {:02X} ", self.reg.e)?;
write!(w, "H: {:02X} ", self.reg.h)?;
write!(w, "L: {:02X} ", self.reg.l)?;
write!(w, "SP: {:04X} ", self.reg.sp)?;
write!(w, "PC: 00:{:04X} ", self.reg.pc)?;
write!(w, "({:02X} ", self.read_byte(self.reg.pc))?;
write!(w, "{:02X} ", self.read_byte(self.reg.pc + 1))?;
write!(w, "{:02X} ", self.read_byte(self.reg.pc + 2))?;
writeln!(w, "{:02X})", self.read_byte(self.reg.pc + 3))?;
w.flush()
}
fn _dbg_instr(&self) -> Instruction {
let byte = self.read_byte(self.reg.pc);
if byte == 0xCB {
Instruction::decode(self.read_byte(self.reg.pc + 1), true)
} else {
Instruction::decode(byte, false)
}
}
}
#[derive(Debug, Clone, Copy)]
pub(crate) enum Register {
A,
B,
C,
D,
E,
H,
L,
}
#[derive(Debug, Clone, Copy)]
pub(crate) enum RegisterPair {
AF,
BC,
DE,
HL,
SP,
PC,
}
#[derive(Debug, Default)]
struct Registers {
a: u8,
b: u8,
c: u8,
d: u8,
e: u8,
h: u8,
l: u8,
sp: u16,
pc: u16,
}
bitfield! {
pub struct Flags(u8);
impl Debug;
pub z, set_z: 7; // Zero Flag
pub n, set_n: 6; // Subtraction Flag
pub h, set_h: 5; // Half Carry Flag
pub c, set_c: 4; // Carry Flag
}
impl Flags {
pub(crate) fn update(&mut self, z: bool, n: bool, h: bool, c: bool) {
self.set_z(z);
self.set_n(n);
self.set_h(h);
self.set_c(c);
}
}
impl Copy for Flags {}
impl Clone for Flags {
fn clone(&self) -> Self {
*self
}
}
impl Default for Flags {
fn default() -> Self {
Self(0)
}
}
impl Display for Flags {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
if self.z() {
f.write_str("Z")?;
} else {
f.write_str("_")?;
}
if self.n() {
f.write_str("N")?;
} else {
f.write_str("_")?;
}
if self.h() {
f.write_str("H")?;
} else {
f.write_str("_")?;
}
if self.c() {
f.write_str("C")
} else {
f.write_str("_")
}
}
}
impl From<Flags> for u8 {
fn from(flags: Flags) -> Self {
flags.0 & 0xF0
}
}
impl From<u8> for Flags {
fn from(byte: u8) -> Self {
Self(byte & 0xF0)
}
}
#[derive(Debug, Clone, Copy)]
pub(crate) enum HaltKind {
ImeEnabled,
NonePending,
SomePending,
}
#[derive(Debug, Clone, Copy)]
pub(crate) enum ImeState {
Disabled,
EiExecuted,
Pending,
Enabled,
}
impl Default for ImeState {
fn default() -> Self {
Self::Disabled
}
}