gb/src/ppu.rs

1045 lines
28 KiB
Rust

use crate::bus::BusIo;
use crate::instruction::Cycle;
use crate::GB_HEIGHT;
use crate::GB_WIDTH;
use dma::DirectMemoryAccess;
use std::collections::VecDeque;
use std::convert::TryInto;
pub(crate) use types::PpuMode;
use types::{
BackgroundPalette, GrayShade, LCDControl, LCDStatus, ObjectFlags, ObjectPalette,
ObjectPaletteId, ObjectSize, Pixels, RenderPriority, TileDataAddress,
};
mod dma;
mod types;
const VRAM_SIZE: usize = 0x2000;
const OAM_SIZE: usize = 0xA0;
const PPU_START_ADDRESS: usize = 0x8000;
// OAM Scan
const OBJECT_LIMIT: usize = 10;
// // White
// const WHITE: [u8; 4] = 0xFFFFFFFFu32.to_be_bytes();
// const LIGHT_GRAY: [u8; 4] = 0xB6B6B6FFu32.to_be_bytes();
// const DARK_GRAY: [u8; 4] = 0x676767FFu32.to_be_bytes();
// const BLACK: [u8; 4] = 0x000000FFu32.to_be_bytes();
// Green
const WHITE: [u8; 4] = 0xE3EEC0FFu32.to_be_bytes();
const LIGHT_GRAY: [u8; 4] = 0xAEBA89FFu32.to_be_bytes();
const DARK_GRAY: [u8; 4] = 0x5E6745FFu32.to_be_bytes();
const BLACK: [u8; 4] = 0x202020FFu32.to_be_bytes();
#[derive(Debug, Clone)]
pub struct Ppu {
pub(crate) int: Interrupt,
/// 0xFF40 | LCDC - LCD Control
pub(crate) ctrl: LCDControl,
/// 0xFF41 | STAT - LCD Status
pub(crate) stat: LCDStatus,
pub(crate) monochrome: Monochrome,
pub(crate) pos: ScreenPosition,
vram: Box<[u8; VRAM_SIZE]>,
pub(crate) oam: ObjectAttributeTable,
pub(crate) dma: DirectMemoryAccess,
scan_state: OamScanState,
fetch: PixelFetcher,
fifo: FifoRenderer,
obj_buffer: ObjectBuffer,
frame_buf: Box<[u8; GB_WIDTH * GB_HEIGHT * 4]>,
window_stat: WindowStatus,
x_pos: u8,
cycle: Cycle,
}
impl BusIo for Ppu {
fn read_byte(&self, addr: u16) -> u8 {
self.vram[addr as usize - PPU_START_ADDRESS]
}
fn write_byte(&mut self, addr: u16, byte: u8) {
self.vram[addr as usize - PPU_START_ADDRESS] = byte;
}
}
impl Ppu {
pub(crate) fn clock(&mut self) {
if !self.ctrl.lcd_enabled() {
return;
}
self.cycle += 1;
match self.stat.mode() {
PpuMode::OamScan => {
if self.cycle >= 80.into() {
self.stat.set_mode(PpuMode::Drawing);
}
self.scan_oam();
}
PpuMode::Drawing => {
if self.ctrl.lcd_enabled() {
// Only Draw when the LCD Is Enabled
self.draw(self.cycle.into());
} else {
self.reset();
}
if self.x_pos == 160 {
if self.stat.hblank_int() {
// Enable HBlank LCDStat Interrupt
self.int.set_lcd_stat(true);
}
// Done with rendering this frame,
// we can reset the ppu x_pos and fetcher state now
// Increment Window line counter if scanline had any window pixels on it
// only increment once per scanline though
if self.window_stat.should_draw() {
self.fetch.back.window_line.increment();
}
self.x_pos = 0;
self.fetch.hblank_reset();
self.window_stat.hblank_reset();
self.obj_buffer.clear();
self.fifo.back.clear();
self.fifo.obj.clear();
self.stat.set_mode(PpuMode::HBlank);
}
}
PpuMode::HBlank => {
// This mode will always end at 456 cycles
if self.cycle >= 456.into() {
self.cycle %= 456;
self.pos.line_y += 1;
// Update LY==LYC bit
let are_equal = self.pos.line_y == self.pos.ly_compare;
self.stat.set_coincidence(are_equal);
// Request LCD STAT interrupt if conditions met
if self.stat.coincidence_int() && are_equal {
self.int.set_lcd_stat(true);
}
let next_mode = if self.pos.line_y >= 144 {
// Request VBlank Interrupt
self.int.set_vblank(true);
// Reset Window Line Counter in Fetcher
self.fetch.vblank_reset();
// Reset WY=LY coincidence flag
self.window_stat.vblank_reset();
if self.stat.vblank_int() {
// Enable Vblank LCDStat Interrupt
self.int.set_lcd_stat(true);
}
PpuMode::VBlank
} else {
if self.stat.oam_int() {
// Enable OAM LCDStat Interrupt
self.int.set_lcd_stat(true);
}
self.scan_state.reset();
PpuMode::OamScan
};
self.stat.set_mode(next_mode);
}
}
PpuMode::VBlank => {
if self.cycle > 456.into() {
self.cycle %= 456;
self.pos.line_y += 1;
// Update LY==LYC bit
let are_equal = self.pos.line_y == self.pos.ly_compare;
self.stat.set_coincidence(are_equal);
// Request LCD STAT interrupt if conditions met
if self.stat.coincidence_int() && are_equal {
self.int.set_lcd_stat(true);
}
if self.pos.line_y == 154 {
self.pos.line_y = 0;
if self.stat.oam_int() {
// Enable OAM LCDStat Interrupt
self.int.set_lcd_stat(true);
}
self.scan_state.reset();
self.stat.set_mode(PpuMode::OamScan);
}
}
}
}
}
fn scan_oam(&mut self) {
match self.scan_state.mode() {
OamScanMode::Scan if !self.dma.is_active() => {
if !self.window_stat.coincidence() && self.scan_state.count() == 0 {
// Determine whether we should draw the window next frame
self.window_stat
.set_coincidence(self.pos.line_y == self.pos.window_y);
}
let sprite_height = self.ctrl.obj_size().as_u8();
let index = self.scan_state.count();
let attr = self.oam.attribute(index as usize);
let line_y = self.pos.line_y + 16;
if attr.x > 0
&& line_y >= attr.y
&& line_y < (attr.y + sprite_height)
&& !self.obj_buffer.is_full()
{
self.obj_buffer.add(attr);
}
self.scan_state.increase();
}
_ => {}
}
self.scan_state.next();
}
fn draw(&mut self, _cycle: u32) {
use FetcherState::*;
let iter = &mut self.obj_buffer.iter();
let obj_attr = loop {
match iter.flatten().next() {
Some(attr) => {
if attr.x <= (self.x_pos + 8) {
self.fetch.back.reset();
self.fetch.back.pause();
self.fifo.pause();
break Some(*attr);
}
}
None => break None,
}
};
if let Some(attr) = obj_attr {
match self.fetch.obj.state {
TileNumber => {
self.fetch.obj.tile.with_id(attr.tile_index);
self.fetch.obj.next(ToLowByteSleep);
}
ToLowByteSleep => self.fetch.obj.next(TileLowByte),
TileLowByte => {
let obj_size = self.ctrl.obj_size();
let addr = PixelFetcher::get_obj_addr(&attr, &self.pos, obj_size);
let byte = self.read_byte(addr);
self.fetch.obj.tile.with_low_byte(byte);
self.fetch.obj.next(ToHighByteSleep);
}
ToHighByteSleep => self.fetch.obj.next(TileHighByte),
TileHighByte => {
let obj_size = self.ctrl.obj_size();
let addr = PixelFetcher::get_obj_addr(&attr, &self.pos, obj_size);
let byte = self.read_byte(addr + 1);
self.fetch.obj.tile.with_high_byte(byte);
self.fetch.obj.next(ToFifoSleep);
}
ToFifoSleep => self.fetch.obj.next(SendToFifoOne),
SendToFifoOne => {
// Load into Fifo
let (high, low) = self
.fetch
.obj
.tile
.bytes()
.expect("Tile high & low bytes are present");
let tbpp = Pixels::from_bytes(high, low);
let palette = match attr.flags.palette() {
ObjectPaletteId::Zero => self.monochrome.obj_palette_0,
ObjectPaletteId::One => self.monochrome.obj_palette_1,
};
let end = Pixels::PIXEL_COUNT - self.fifo.obj.len();
let start = Pixels::PIXEL_COUNT - end;
let x_flip = attr.flags.x_flip();
for i in start..Pixels::PIXEL_COUNT {
let x = if x_flip { 7 - i } else { i };
let priority = attr.flags.priority();
let shade = palette.shade(tbpp.shade_id(x));
let fifo_info = ObjectFifoInfo {
shade,
palette,
priority,
};
self.fifo.obj.push_back(fifo_info);
}
self.fetch.back.resume();
self.fifo.resume();
self.obj_buffer.remove(&attr);
self.fetch.obj.next(SendToFifoTwo);
}
SendToFifoTwo => self.fetch.obj.reset(),
}
}
if self.ctrl.window_enabled()
&& !self.window_stat.should_draw()
&& self.window_stat.coincidence()
&& self.x_pos as i16 >= self.pos.window_x as i16 - 7
{
self.window_stat.set_should_draw(true);
self.fetch.back.reset();
self.fetch.x_pos = 0;
self.fifo.back.clear();
}
if self.fetch.back.is_enabled() {
match self.fetch.back.state {
TileNumber => {
let x_pos = self.fetch.x_pos;
self.fetch
.back
.should_render_window(self.window_stat.should_draw());
let addr = self.fetch.bg_tile_num_addr(&self.ctrl, &self.pos, x_pos);
let id = self.read_byte(addr);
self.fetch.back.tile.with_id(id);
// Move on to the Next state in 2 T-cycles
self.fetch.back.next(ToLowByteSleep);
}
ToLowByteSleep => self.fetch.back.next(TileLowByte),
TileLowByte => {
let addr = self.fetch.bg_byte_addr(&self.ctrl, &self.pos);
let low = self.read_byte(addr);
self.fetch.back.tile.with_low_byte(low);
self.fetch.back.next(ToHighByteSleep);
}
ToHighByteSleep => self.fetch.back.next(TileHighByte),
TileHighByte => {
let addr = self.fetch.bg_byte_addr(&self.ctrl, &self.pos);
let high = self.read_byte(addr + 1);
self.fetch.back.tile.with_high_byte(high);
self.fetch.back.next(ToFifoSleep);
}
ToFifoSleep => self.fetch.back.next(SendToFifoOne),
SendToFifoOne => {
self.fetch.back.next(SendToFifoTwo);
}
SendToFifoTwo => {
let palette = &self.monochrome.bg_palette;
self.fetch.send_to_fifo(&mut self.fifo, palette);
self.fetch.x_pos += 1;
self.fetch.back.next(TileNumber);
self.fetch.back.tile = Default::default();
}
}
}
if self.fifo.is_enabled() {
use RenderPriority::*;
if self.x_pos == 0 && !self.fifo.back.is_empty() {
let to_discard = self.pos.scroll_x % 8;
for _ in 0..to_discard {
let _ = self.fifo.back.pop_front();
}
}
// Handle Background Pixel and Sprite FIFO
let bg_enabled = self.ctrl.bg_win_enabled();
let obj_enabled = self.ctrl.obj_enabled();
let i0_colour = self.monochrome.bg_palette.i0_colour();
// FIXME: Is this the correct behaviour
let rgba_opt = self.fifo.back.pop_front().map(|bg_info| {
let bg_shade = if bg_enabled { bg_info.shade } else { i0_colour };
match self.fifo.obj.pop_front() {
Some(obj_info) => {
if obj_enabled {
match (obj_info.shade, obj_info.priority) {
(Some(obj_shade), BackgroundAndWindow) => match bg_info.shade {
GrayShade::White => obj_shade.into_rgba(),
_ => bg_shade.into_rgba(),
},
(Some(obj_shade), Object) => obj_shade.into_rgba(),
(None, _) => bg_shade.into_rgba(),
}
} else {
bg_shade.into_rgba()
}
}
None => bg_shade.into_rgba(),
}
});
if let Some(rgba) = rgba_opt.as_ref() {
let y = self.pos.line_y as usize;
let x = self.x_pos as usize;
let i = (GB_WIDTH * 4) * y + (x * 4);
self.frame_buf[i..(i + rgba.len())].copy_from_slice(rgba);
self.x_pos += 1;
}
}
}
fn reset(&mut self) {
self.pos.line_y = 0;
self.stat.set_mode(PpuMode::HBlank);
// TODO: Is this an unnecessary performance hit?
let mut blank = WHITE.repeat(self.frame_buf.len() / 4);
self.frame_buf.swap_with_slice(&mut blank);
}
pub fn copy_to_gui(&self, frame: &mut [u8]) {
frame.copy_from_slice(self.frame_buf.as_ref());
}
}
impl Default for Ppu {
fn default() -> Self {
Self {
vram: Box::new([0u8; VRAM_SIZE]),
cycle: Cycle::new(0),
frame_buf: Box::new([0; GB_WIDTH * GB_HEIGHT * 4]),
int: Default::default(),
ctrl: Default::default(),
monochrome: Default::default(),
pos: Default::default(),
stat: Default::default(),
oam: Default::default(),
scan_state: Default::default(),
fetch: Default::default(),
fifo: Default::default(),
obj_buffer: Default::default(),
window_stat: Default::default(),
dma: Default::default(),
x_pos: 0,
}
}
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct Interrupt {
_vblank: bool,
_lcd_stat: bool,
}
impl Interrupt {
pub(crate) fn vblank(&self) -> bool {
self._vblank
}
pub(crate) fn set_vblank(&mut self, enabled: bool) {
self._vblank = enabled;
}
pub(crate) fn lcd_stat(&self) -> bool {
self._lcd_stat
}
pub(crate) fn set_lcd_stat(&mut self, enabled: bool) {
self._lcd_stat = enabled;
}
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct ScreenPosition {
/// 0xFF42 | SCY - Scroll Y
pub(crate) scroll_y: u8,
/// 0xFF43 | SCX - Scroll X
pub(crate) scroll_x: u8,
/// 0xFF44 | LY - LCD Y Coordinate
pub(crate) line_y: u8,
/// 0xFF45 | LYC - LY Compare
pub(crate) ly_compare: u8,
/// 0xFF4A | WY - Window Y Position
pub(crate) window_y: u8,
/// 0xFF4B | WX - Window X Position
pub(crate) window_x: u8,
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct Monochrome {
/// 0xFF47 | BGP - Background Palette Data
pub(crate) bg_palette: BackgroundPalette,
/// 0xFF48 | OBP0 - Object Palette 0 Data
pub(crate) obj_palette_0: ObjectPalette,
/// 0xFF49 | OBP1 - Object Palette 1 Data
pub(crate) obj_palette_1: ObjectPalette,
}
#[derive(Debug, Clone)]
pub(crate) struct ObjectAttributeTable {
buf: Box<[u8; OAM_SIZE]>,
}
impl BusIo for ObjectAttributeTable {
fn read_byte(&self, addr: u16) -> u8 {
let index = (addr - 0xFE00) as usize;
self.buf[index]
}
fn write_byte(&mut self, addr: u16, byte: u8) {
let index = (addr - 0xFE00) as usize;
self.buf[index] = byte;
}
}
impl ObjectAttributeTable {
fn attribute(&self, index: usize) -> ObjectAttribute {
let start = index * 4;
let slice: &[u8; 4] = self.buf[start..(start + 4)]
.try_into()
.expect("TryInto trait called on a &[u8; 4]");
slice.into()
}
}
impl Default for ObjectAttributeTable {
fn default() -> Self {
Self {
buf: Box::new([0; OAM_SIZE]),
}
}
}
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq)]
struct ObjectAttribute {
y: u8,
x: u8,
tile_index: u8,
flags: ObjectFlags,
}
impl From<[u8; 4]> for ObjectAttribute {
fn from(bytes: [u8; 4]) -> Self {
Self {
y: bytes[0],
x: bytes[1],
tile_index: bytes[2],
flags: bytes[3].into(),
}
}
}
impl<'a> From<&'a [u8; 4]> for ObjectAttribute {
fn from(bytes: &'a [u8; 4]) -> Self {
Self {
y: bytes[0],
x: bytes[1],
tile_index: bytes[2],
flags: bytes[3].into(),
}
}
}
#[derive(Debug, Clone, Copy)]
struct ObjectBuffer {
buf: [Option<ObjectAttribute>; OBJECT_LIMIT],
len: usize,
}
impl ObjectBuffer {
fn iter(&self) -> std::slice::Iter<'_, Option<ObjectAttribute>> {
self.into_iter()
}
}
impl<'a> IntoIterator for &'a ObjectBuffer {
type Item = &'a Option<ObjectAttribute>;
type IntoIter = std::slice::Iter<'a, Option<ObjectAttribute>>;
fn into_iter(self) -> Self::IntoIter {
self.buf.iter()
}
}
impl<'a> IntoIterator for &'a mut ObjectBuffer {
type Item = &'a Option<ObjectAttribute>;
type IntoIter = std::slice::Iter<'a, Option<ObjectAttribute>>;
fn into_iter(self) -> Self::IntoIter {
self.buf.iter()
}
}
impl ObjectBuffer {
fn is_full(&self) -> bool {
self.len == OBJECT_LIMIT
}
fn clear(&mut self) {
self.buf = [Default::default(); 10];
self.len = 0;
}
fn add(&mut self, attr: ObjectAttribute) {
self.buf[self.len] = Some(attr);
self.len += 1;
}
fn remove(&mut self, attr: &ObjectAttribute) {
let maybe_index = self.buf.iter().position(|maybe_attr| match maybe_attr {
Some(other_attr) => attr == other_attr,
None => false,
});
if let Some(i) = maybe_index {
self.buf[i] = None;
}
}
}
impl Default for ObjectBuffer {
fn default() -> Self {
Self {
buf: [Default::default(); OBJECT_LIMIT],
len: Default::default(),
}
}
}
#[derive(Debug, Clone, Copy, Default)]
struct PixelFetcher {
x_pos: u8,
back: BackgroundFetcher,
obj: ObjectFetcher,
}
impl PixelFetcher {
fn hblank_reset(&mut self) {
self.back.hblank_reset();
self.obj.hblank_reset();
self.x_pos = 0;
}
fn vblank_reset(&mut self) {
self.back.vblank_reset();
}
fn bg_tile_num_addr(&self, control: &LCDControl, pos: &ScreenPosition, x_pos: u8) -> u16 {
let line_y = pos.line_y;
let scroll_y = pos.scroll_y;
let scroll_x = pos.scroll_x;
let is_window = self.back.is_window_tile();
// Determine which tile map is being used
let tile_map = if is_window {
control.win_tile_map_addr()
} else {
control.bg_tile_map_addr()
};
let tile_map_addr = tile_map.into_address();
// Both Offsets are used to offset the tile map address we found above
// Offsets are ANDed wih 0x3FF so that we stay in bounds of tile map memory
let scx_offset = if is_window { 0 } else { scroll_x / 8 };
let y_offset = if is_window {
self.back.window_line.count() as u16 / 8
} else {
((line_y as u16 + scroll_y as u16) & 0xFF) / 8
};
let x_offset = (scx_offset + x_pos) & 0x1F;
let offset = (32 * y_offset) + (x_offset as u16);
tile_map_addr + (offset & 0x3FF)
}
fn bg_byte_addr(&mut self, control: &LCDControl, pos: &ScreenPosition) -> u16 {
let line_y = pos.line_y;
let scroll_y = pos.scroll_y;
let is_window = self.back.is_window_tile();
let id = self.back.tile.id.expect("Tile Number is present");
let tile_data_addr = match control.tile_data_addr() {
TileDataAddress::X8800 => 0x9000u16.wrapping_add(((id as i8) as i16 * 16) as u16),
TileDataAddress::X8000 => 0x8000 + (id as u16 * 16),
};
let offset = if is_window {
self.back.window_line.count() as u16 % 8
} else {
(line_y as u16 + scroll_y as u16) % 8
};
tile_data_addr + (offset * 2)
}
fn send_to_fifo(&self, fifo: &mut FifoRenderer, palette: &BackgroundPalette) {
let (high, low) = self
.back
.tile
.bytes()
.expect("Tile high & low bytes are present");
let tbpp = Pixels::from_bytes(high, low);
if fifo.back.is_empty() {
for x in 0..Pixels::PIXEL_COUNT {
let shade = palette.shade(tbpp.shade_id(x));
let fifo_info = BackgroundFifoInfo { shade };
fifo.back.push_back(fifo_info);
}
}
}
fn get_obj_addr(attr: &ObjectAttribute, pos: &ScreenPosition, size: ObjectSize) -> u16 {
let line_y = pos.line_y;
// TODO: Why is the offset 14 and 30 respectively?
let (id, flip_offset) = match size {
ObjectSize::Eight => (attr.tile_index, 14),
ObjectSize::Sixteen => (attr.tile_index & !0x01, 30),
};
let offset = 2 * (line_y - (attr.y - 16));
let final_offset = if attr.flags.y_flip() {
flip_offset - offset
} else {
offset
};
0x8000 + (id as u16 * 16) + final_offset as u16
}
}
trait Fetcher {
fn next(&mut self, state: FetcherState);
fn reset(&mut self);
fn hblank_reset(&mut self);
}
#[derive(Debug, Clone, Copy)]
struct BackgroundFetcher {
state: FetcherState,
tile: TileBuilder,
window_line: WindowLineCounter,
is_window_tile: bool,
enabled: bool,
}
impl BackgroundFetcher {
fn should_render_window(&mut self, value: bool) {
self.is_window_tile = value;
}
fn is_window_tile(&self) -> bool {
self.is_window_tile
}
fn pause(&mut self) {
self.enabled = false;
}
fn resume(&mut self) {
self.enabled = true;
}
fn is_enabled(&self) -> bool {
self.enabled
}
fn vblank_reset(&mut self) {
self.window_line.vblank_reset();
}
}
impl Fetcher for BackgroundFetcher {
fn next(&mut self, state: FetcherState) {
self.state = state
}
fn reset(&mut self) {
self.state = Default::default();
self.tile = Default::default();
}
fn hblank_reset(&mut self) {
self.reset();
self.is_window_tile = false;
self.enabled = true;
}
}
impl Default for BackgroundFetcher {
fn default() -> Self {
Self {
state: Default::default(),
tile: Default::default(),
is_window_tile: Default::default(),
window_line: Default::default(),
enabled: true,
}
}
}
#[derive(Debug, Clone, Copy, Default)]
struct ObjectFetcher {
state: FetcherState,
tile: TileBuilder,
}
impl Fetcher for ObjectFetcher {
fn next(&mut self, state: FetcherState) {
self.state = state
}
fn reset(&mut self) {
self.state = Default::default();
self.tile = Default::default();
}
fn hblank_reset(&mut self) {
self.state = Default::default();
self.tile = Default::default();
}
}
#[derive(Debug, Clone, Copy, Default)]
struct WindowLineCounter {
count: u8,
}
impl WindowLineCounter {
fn increment(&mut self) {
self.count += 1;
}
fn vblank_reset(&mut self) {
self.count = 0;
}
fn count(&self) -> u8 {
self.count
}
}
#[derive(Debug, Clone, Copy)]
enum FetcherState {
TileNumber,
ToLowByteSleep,
TileLowByte,
ToHighByteSleep,
TileHighByte,
ToFifoSleep,
SendToFifoOne,
SendToFifoTwo,
}
impl Default for FetcherState {
fn default() -> Self {
Self::TileNumber
}
}
#[derive(Debug, Clone, Copy, Default)]
struct BackgroundFifoInfo {
shade: GrayShade,
}
#[derive(Debug, Clone, Copy, Default)]
struct ObjectFifoInfo {
shade: Option<GrayShade>,
palette: ObjectPalette,
priority: RenderPriority,
}
// FIXME: Fifo Registers have a known size. Are heap allocations
// really necessary here?
#[derive(Debug, Clone)]
struct FifoRenderer {
back: VecDeque<BackgroundFifoInfo>,
obj: VecDeque<ObjectFifoInfo>,
enabled: bool,
}
impl FifoRenderer {
fn is_enabled(&self) -> bool {
self.enabled
}
fn pause(&mut self) {
self.enabled = false;
}
fn resume(&mut self) {
self.enabled = true;
}
}
impl Default for FifoRenderer {
fn default() -> Self {
Self {
back: VecDeque::with_capacity(8),
obj: VecDeque::with_capacity(8),
enabled: true,
}
}
}
#[derive(Debug, Clone, Copy, Default)]
struct TileBuilder {
id: Option<u8>,
low: Option<u8>,
high: Option<u8>,
}
impl TileBuilder {
fn with_id(&mut self, id: u8) {
self.id = Some(id);
}
fn with_low_byte(&mut self, data: u8) {
self.low = Some(data);
}
fn with_high_byte(&mut self, data: u8) {
self.high = Some(data);
}
fn bytes(&self) -> Option<(u8, u8)> {
self.high.zip(self.low)
}
}
#[derive(Debug, Clone, Copy, Default)]
struct OamScanState {
count: u8,
mode: OamScanMode,
}
impl OamScanState {
fn increase(&mut self) {
self.count += 1;
self.count %= 40;
}
fn reset(&mut self) {
self.count = Default::default();
self.mode = Default::default();
}
fn count(&self) -> u8 {
self.count
}
fn mode(&self) -> OamScanMode {
self.mode
}
fn next(&mut self) {
use OamScanMode::*;
self.mode = match self.mode {
Scan => Sleep,
Sleep => Scan,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq)]
enum OamScanMode {
Scan,
Sleep,
}
impl Default for OamScanMode {
fn default() -> Self {
Self::Scan
}
}
#[derive(Debug, Clone, Copy, Default)]
struct WindowStatus {
/// This will be true if WY == LY at any point in the frame thus far
coincidence: bool,
/// This will be true if the conditions which tell the PPU to start
/// drawing from the window tile map is true
should_draw: bool,
}
impl WindowStatus {
fn should_draw(&self) -> bool {
self.should_draw
}
fn coincidence(&self) -> bool {
self.coincidence
}
fn set_should_draw(&mut self, value: bool) {
self.should_draw = value;
}
fn set_coincidence(&mut self, value: bool) {
self.coincidence = value;
}
fn hblank_reset(&mut self) {
self.should_draw = false;
}
fn vblank_reset(&mut self) {
self.coincidence = false;
}
}