gb/src/apu.rs
Rekai Musuka a1eadc0bc4
All checks were successful
continuous-integration/drone/push Build is passing
chore(apu): rename sound/snd to apu
2021-07-14 23:45:01 -05:00

700 lines
20 KiB
Rust

use crate::emu::SM83_CLOCK_SPEED;
use gen::{AudioBuffer, AudioSender};
use types::ch1::{Sweep, SweepDirection};
use types::ch3::Volume as Ch3Volume;
use types::ch4::{CounterWidth, Frequency as Ch4Frequency, PolynomialCounter};
use types::common::{EnvelopeDirection, FrequencyHigh, SoundDuty, VolumeEnvelope};
use types::{ChannelControl, FrameSequencerState, SoundOutput};
pub mod gen;
mod types;
const WAVE_PATTERN_RAM_LEN: usize = 0x10;
const SAMPLE_RATE: u32 = 48000; // Hz
const AUDIO_BUFFER_LEN: usize = 512;
const CHANNEL_COUNT: usize = 2;
const SAMPLE_INCREMENT: u64 = SAMPLE_RATE as u64;
#[derive(Default, Debug, Clone)]
pub(crate) struct Apu {
pub(crate) ctrl: SoundControl,
/// Tone & Sweep
pub(crate) ch1: Channel1,
/// Tone
pub(crate) ch2: Channel2,
/// Wave
pub(crate) ch3: Channel3,
/// Noise
pub(crate) ch4: Channel4,
// Frame Sequencer
frame_seq_state: FrameSequencerState,
div_prev: Option<u8>,
sender: Option<AudioSender<f32>>,
sample_counter: u64,
buffer: AudioBuffer<(f32, f32)>,
}
impl Apu {
pub(crate) fn clock(&mut self, div: u16) {
use FrameSequencerState::*;
self.sample_counter += SAMPLE_INCREMENT;
// the 5th bit of the high byte
let bit_5 = (div >> 13 & 0x01) as u8;
if let Some(0x01) = self.div_prev {
if bit_5 == 0x00 {
// Falling Edge, step the Frame Sequencer
self.frame_seq_state.step();
match self.frame_seq_state {
Step0Length => self.handle_length(),
Step2LengthAndSweep => {
self.handle_length();
self.handle_sweep();
}
Step4Length => self.handle_length(),
Step6LengthAndSweep => {
self.handle_length();
self.handle_sweep();
}
Step7VolumeEnvelope => self.handle_volume(),
Step1Nothing | Step3Nothing | Step5Nothing => {}
};
}
}
self.ch1.clock();
self.ch2.clock();
self.ch3.clock();
self.ch4.clock();
self.div_prev = Some(bit_5);
if self.sender.is_some() && self.sample_counter >= SM83_CLOCK_SPEED {
self.sample_counter %= SM83_CLOCK_SPEED;
// Sample the APU
let ch1_amplitude = self.ch1.amplitude();
let ch1_left = self.ctrl.output.ch1_left() as u8 as f32 * ch1_amplitude;
let ch1_right = self.ctrl.output.ch1_right() as u8 as f32 * ch1_amplitude;
let ch2_amplitude = self.ch2.amplitude();
let ch2_left = self.ctrl.output.ch2_left() as u8 as f32 * ch2_amplitude;
let ch2_right = self.ctrl.output.ch2_right() as u8 as f32 * ch2_amplitude;
let ch3_amplitude = self.ch3.amplitude();
let ch3_left = self.ctrl.output.ch3_left() as u8 as f32 * ch3_amplitude;
let ch3_right = self.ctrl.output.ch3_right() as u8 as f32 * ch3_amplitude;
let ch4_amplitude = self.ch4.amplitude();
let ch4_left = self.ctrl.output.ch4_left() as u8 as f32 * ch4_amplitude;
let ch4_right = self.ctrl.output.ch4_right() as u8 as f32 * ch4_amplitude;
let left = (ch1_left + ch2_left + ch3_left + ch4_left) / 4.0;
let right = (ch1_right + ch2_right + ch3_right + ch4_right) / 4.0;
self.buffer.push_back((left, right));
}
}
pub(crate) fn set_audio_src(&mut self, sender: AudioSender<f32>) {
self.sender = Some(sender);
}
pub(crate) fn is_full(&self) -> bool {
self.buffer.len() >= AUDIO_BUFFER_LEN * CHANNEL_COUNT
}
pub(crate) fn flush_samples(&mut self) {
if let Some(sender) = self.sender.as_ref() {
while self.buffer.len() >= CHANNEL_COUNT {
match self.buffer.pop_front() {
Some((left, right)) => {
sender
.send_samples(left, right)
.expect("Successfully sent samples across threads");
}
None => unreachable!(
"While loop ensures that there are at least two items in AudioBuffer"
),
}
}
}
}
fn clock_length(freq_hi: &FrequencyHigh, length_timer: &mut u16, enabled: &mut bool) {
if freq_hi.idk() && *length_timer > 0 {
*length_timer -= 1;
// Check in this scope ensures (only) the above subtraction
// made length_timer 0
if *length_timer == 0 {
*enabled = false;
}
}
}
fn clock_length_ch4(freq_data: &Ch4Frequency, length_timer: &mut u16, enabled: &mut bool) {
if freq_data.idk() && *length_timer > 0 {
*length_timer -= 1;
// Check in this scope ensures (only) the above subtraction
// made length_timer 0
if *length_timer == 0 {
*enabled = false;
}
}
}
fn handle_length(&mut self) {
Self::clock_length(
&self.ch1.freq_hi,
&mut self.ch1.length_timer,
&mut self.ch1.enabled,
);
Self::clock_length(
&self.ch2.freq_hi,
&mut self.ch2.length_timer,
&mut self.ch2.enabled,
);
Self::clock_length(
&self.ch3.freq_hi,
&mut self.ch3.length_timer,
&mut self.ch3.enabled,
);
Self::clock_length_ch4(
&self.ch4.freq,
&mut self.ch4.length_timer,
&mut self.ch4.enabled,
);
}
fn handle_sweep(&mut self) {
if self.ch1.sweep_timer > 0 {
self.ch1.sweep_timer -= 1;
}
if self.ch1.sweep_timer == 0 {
self.ch1.sweep_timer = if self.ch1.sweep.period() != 0 {
self.ch1.sweep.period()
} else {
8
};
if self.ch1.sweep_enabled && self.ch1.sweep.period() != 0 {
let new_freq = self.ch1.calc_sweep_freq();
if new_freq <= 2047 && self.ch1.sweep.shift_count() != 0 {
self.ch1.set_frequency(new_freq);
self.ch1.shadow_freq = new_freq & 0x07FF;
let _ = self.ch1.calc_sweep_freq();
}
}
}
}
fn clock_envelope(envelope: &VolumeEnvelope, period_timer: &mut u8, current_volume: &mut u8) {
use EnvelopeDirection::*;
if envelope.period() != 0 {
if *period_timer != 0 {
*period_timer -= 1;
}
if *period_timer == 0 {
*period_timer = envelope.period();
match envelope.direction() {
Decrease if *current_volume > 0x00 => *current_volume -= 1,
Increase if *current_volume < 0x0F => *current_volume += 1,
_ => {}
}
}
}
}
fn handle_volume(&mut self) {
// Channels 1, 2 and 4 have Volume Envelopes
Self::clock_envelope(
&self.ch1.envelope,
&mut self.ch1.period_timer,
&mut self.ch1.current_volume,
);
Self::clock_envelope(
&self.ch2.envelope,
&mut self.ch2.period_timer,
&mut self.ch2.current_volume,
);
Self::clock_envelope(
&self.ch4.envelope,
&mut self.ch4.period_timer,
&mut self.ch4.current_volume,
);
}
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct SoundControl {
/// 0xFF24 | NR50 - Channel Control
pub(crate) channel: ChannelControl,
/// 0xFF25 | NR51 - Selection of Sound output terminal
pub(crate) output: SoundOutput,
enabled: bool,
}
impl SoundControl {
/// 0xFF26 | NR52 - Sound On/Off
pub(crate) fn status(&self, snd: &Apu) -> u8 {
(self.enabled as u8) << 7
| (snd.ch4.enabled as u8) << 3
| (snd.ch3.enabled as u8) << 2
| (snd.ch2.enabled as u8) << 1
| snd.ch1.enabled as u8
}
/// 0xFF26 | NR52 - Sound On/Off
pub(crate) fn set_status(&mut self, byte: u8) {
// TODO: Should all channel enabled fields be disabled when this is reset?
self.enabled = (byte >> 7) & 0x01 == 0x01;
}
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct Channel1 {
/// 0xFF10 | NR10 - Channel 1 Sweep Register
pub(crate) sweep: Sweep,
/// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty
duty: SoundDuty,
/// 0xFF12 | NR12 - Channel 1 Volume Envelope
pub(crate) envelope: VolumeEnvelope,
/// 0xFF13 | NR13 - Channel 1 Frequency low (lower 8 bits only)
freq_lo: u8,
/// 0xFF14 | NR14 - Channel 1 Frequency high
freq_hi: FrequencyHigh,
// Envelope Functionality
period_timer: u8,
current_volume: u8,
// Sweep Functionality
sweep_timer: u8,
shadow_freq: u16,
sweep_enabled: bool,
// Length Functionality
length_timer: u16,
freq_timer: u16,
duty_pos: u8,
enabled: bool,
}
impl Channel1 {
fn amplitude(&self) -> f32 {
let dac_input = self.duty.wave_pattern().amplitude(self.duty_pos) * self.current_volume;
(dac_input as f32 / 7.5) - 1.0
}
fn clock(&mut self) {
if self.freq_timer != 0 {
self.freq_timer -= 1;
}
if self.freq_timer == 0 {
// TODO: Why is this 2048?
self.freq_timer = (2048 - self.frequency()) * 4;
self.duty_pos = (self.duty_pos + 1) % 8;
}
}
/// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty
pub(crate) fn duty(&self) -> u8 {
u8::from(self.duty) & 0xC0 // Only bits 7 and 6 can be read
}
/// 0xFF11 | NR11 - Channel 1 Sound length / Wave pattern duty
pub(crate) fn set_duty(&mut self, byte: u8) {
self.duty = byte.into();
self.length_timer = 64 - self.duty.sound_length() as u16;
}
/// 0xFF13 | NR13 - Channel 1 Frequency low (lower 8 bits only)
pub(crate) fn set_freq_lo(&mut self, byte: u8) {
self.freq_lo = byte;
}
/// 0xFF14 | NR14 - Channel 1 Frequency high
pub(crate) fn freq_hi(&self) -> u8 {
u8::from(self.freq_hi) & 0x40 // Only bit 6 is readable
}
/// 0xFF14 | NR14 - Channel 1 Frequency high
pub(crate) fn set_freq_hi(&mut self, byte: u8) {
self.freq_hi = byte.into();
// If this bit is set, a trigger event occurs
if self.freq_hi.initial() {
// Envelope Behaviour during trigger event
self.period_timer = self.envelope.period();
self.current_volume = self.envelope.init_vol();
// Sweep behaviour during trigger event
self.shadow_freq = self.frequency() & 0x07FF; // Mask should be redundant
self.sweep_timer = if self.sweep.period() != 0 {
self.sweep.period()
} else {
8
};
if self.sweep.period() != 0 || self.sweep.shift_count() != 0 {
self.sweep_enabled = true;
}
if self.sweep.shift_count() != 0 {
let _ = self.calc_sweep_freq();
}
// Length behaviour during trigger event
if self.length_timer == 0 {
self.length_timer = 64;
}
}
}
fn calc_sweep_freq(&mut self) -> u16 {
use SweepDirection::*;
let shifted_shadow_freq = self.shadow_freq >> self.sweep.shift_count();
let new_freq = match self.sweep.direction() {
Increase => self.shadow_freq + shifted_shadow_freq,
Decrease => self.shadow_freq - shifted_shadow_freq,
};
// Overflow check
if new_freq > 2047 {
self.enabled = false;
}
new_freq
}
fn set_frequency(&mut self, word: u16) {
let freq_bits = word & 0x07FF;
self.freq_lo = (freq_bits & 0x00FF) as u8;
self.freq_hi
.set_freq_bits(((freq_bits & 0x0700) >> 8) as u8);
}
fn frequency(&self) -> u16 {
(self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16
}
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct Channel2 {
/// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty
duty: SoundDuty,
/// 0xFF17 | NR22 - Channel 2 Volume ENvelope
pub(crate) envelope: VolumeEnvelope,
/// 0xFF18 | NR23 - Channel 2 Frequency low (lower 8 bits only)
freq_lo: u8,
/// 0xFF19 | NR24 - Channel 2 Frequency high
freq_hi: FrequencyHigh,
// Envelope Functionality
period_timer: u8,
current_volume: u8,
// Length Functionality
length_timer: u16,
freq_timer: u16,
duty_pos: u8,
enabled: bool,
}
impl Channel2 {
fn amplitude(&self) -> f32 {
let dac_input = self.duty.wave_pattern().amplitude(self.duty_pos) * self.current_volume;
(dac_input as f32 / 7.5) - 1.0
}
fn clock(&mut self) {
if self.freq_timer != 0 {
self.freq_timer -= 1;
}
if self.freq_timer == 0 {
// TODO: Why is this 2048?
self.freq_timer = (2048 - self.frequency()) * 4;
self.duty_pos = (self.duty_pos + 1) % 8;
}
}
/// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty
pub(crate) fn duty(&self) -> u8 {
u8::from(self.duty) & 0xC0 // Only bits 7 & 6 are readable
}
/// 0xFF16 | NR21 - Channel 2 Sound length / Wave Pattern Duty
pub(crate) fn set_duty(&mut self, byte: u8) {
self.duty = byte.into();
self.length_timer = 64 - self.duty.sound_length() as u16;
}
/// 0xFF18 | NR23 - Channel 2 Frequency low (lower 8 bits only)
pub(crate) fn set_freq_lo(&mut self, byte: u8) {
self.freq_lo = byte;
}
/// 0xFF19 | NR24 - Channel 2 Frequency high
pub(crate) fn freq_hi(&self) -> u8 {
u8::from(self.freq_hi) & 0x40 // only bit 6 is readable
}
/// 0xFF19 | NR24 - Channel 2 Frequency high
pub(crate) fn set_freq_hi(&mut self, byte: u8) {
self.freq_hi = byte.into();
if self.freq_hi.initial() {
// Envelope behaviour during trigger event
self.period_timer = self.envelope.period();
self.current_volume = self.envelope.init_vol();
// Length behaviour during trigger event
if self.length_timer == 0 {
self.length_timer = 64;
}
}
}
fn frequency(&self) -> u16 {
(self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16
}
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct Channel3 {
/// 0xFF1A | NR30 - Channel 3 Sound on/off
enabled: bool,
/// 0xFF1B | NR31 - Sound Length
len: u8,
/// 0xFF1C | NR32 - Channel 3 Volume
volume: Ch3Volume,
/// 0xFF1D | NR33 - Channel 3 Frequency low (lower 8 bits)
freq_lo: u8,
/// 0xFF1E | NR34 - Channel 3 Frequency high
freq_hi: FrequencyHigh,
pub(crate) wave_ram: [u8; WAVE_PATTERN_RAM_LEN],
// Length Functionality
length_timer: u16,
freq_timer: u16,
offset: u8,
}
impl Channel3 {
/// 0xFF1B | NR31 - Sound Length
pub(crate) fn len(&self) -> u8 {
self.len
}
/// 0xFF1B | NR31 - Sound Length
pub(crate) fn set_len(&mut self, byte: u8) {
self.len = byte;
self.length_timer = 256 - self.len as u16;
}
/// 0xFF1D | NR33 - Channel 3 Frequency low (lower 8 bits)
pub(crate) fn set_freq_lo(&mut self, byte: u8) {
self.freq_lo = byte;
}
/// 0xFF1E | NR34 - Channel 3 Frequency high
pub(crate) fn freq_hi(&self) -> u8 {
u8::from(self.freq_hi) & 0x40 // Only bit 6 readable
}
/// 0xFF1E | NR34 - Channel 3 Frequency high
pub(crate) fn set_freq_hi(&mut self, byte: u8) {
self.freq_hi = byte.into();
if self.freq_hi.initial() {
// Length behaviour during trigger event
if self.length_timer == 0 {
self.length_timer = 256;
}
}
}
pub(crate) fn enabled(&self) -> u8 {
(self.enabled as u8) << 7
}
pub(crate) fn set_enabled(&mut self, byte: u8) {
self.enabled = (byte >> 7) & 0x01 == 0x01;
}
pub(crate) fn volume(&self) -> u8 {
(self.volume as u8) << 5
}
pub(crate) fn set_volume(&mut self, byte: u8) {
use Ch3Volume::*;
self.volume = match (byte >> 5) & 0x03 {
0b00 => Mute,
0b01 => Full,
0b10 => Half,
0b11 => Quarter,
_ => unreachable!("{:#04X} is not a valid value for Channel3Volume", byte),
};
}
fn amplitude(&self) -> f32 {
let dac_input = self.read_sample(self.offset) >> self.volume.shift_count();
(dac_input as f32 / 7.5) - 1.0
}
fn clock(&mut self) {
if self.freq_timer != 0 {
self.freq_timer -= 1;
}
if self.freq_timer == 0 {
self.freq_timer = (2048 - self.frequency()) * 4;
self.offset = (self.offset + 1) % 8;
}
}
fn read_sample(&self, index: u8) -> u8 {
let i = index as usize / 2;
if index % 2 == 0 {
// We grab the high nibble on even indexes
self.wave_ram[i] >> 4
} else {
// We grab the low nibble on odd indexes
self.wave_ram[i] & 0x0F
}
}
fn frequency(&self) -> u16 {
(self.freq_hi.freq_bits() as u16) << 8 | self.freq_lo as u16
}
}
#[derive(Debug, Clone, Copy, Default)]
pub(crate) struct Channel4 {
/// 0xFF20 | NR41 - Channel 4 Sound Length
len: u8,
/// 0xFF21 | NR42 - Channel 4 Volume Envelope
pub(crate) envelope: VolumeEnvelope,
/// 0xFF22 | NR43 - Chanel 4 Polynomial Counter
pub(crate) poly: PolynomialCounter,
/// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart
freq: Ch4Frequency,
// Envelope Functionality
period_timer: u8,
current_volume: u8,
// Length Functionality
length_timer: u16,
/// Linear Feedback Shift Register (15-bit)
lf_shift: u16,
freq_timer: u16,
enabled: bool,
}
impl Channel4 {
/// 0xFF20 | NR41 - Channel 4 Sound Length
pub(crate) fn len(&self) -> u8 {
self.len & 0x3F
}
/// 0xFF20 | NR41 - Channel 4 Sound Length
pub(crate) fn set_len(&mut self, byte: u8) {
self.len = byte & 0x3F;
self.length_timer = 256 - self.len as u16;
}
/// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart
pub(crate) fn freq_data(&self) -> u8 {
u8::from(self.freq) & 0x40 // only bit 6 readable
}
/// 0xFF23 | NR44 - Channel 4 Counter / Consecutive Selector and Restart
pub(crate) fn set_freq_data(&mut self, byte: u8) {
self.freq = byte.into();
if self.freq.initial() {
// Envelope behaviour during trigger event
self.period_timer = self.envelope.period();
self.current_volume = self.envelope.init_vol();
// Length behaviour during trigger event
if self.length_timer == 0 {
self.length_timer = 64;
}
// LFSR behaviour during trigger event
self.lf_shift = 0x7FFF;
}
}
fn amplitude(&self) -> f32 {
let dac_input = (!self.lf_shift & 0x01) as u8 * self.current_volume;
(dac_input as f32 / 7.5) - 1.0
}
fn clock(&mut self) {
if self.freq_timer != 0 {
self.freq_timer -= 1;
}
if self.freq_timer == 0 {
let divisor = Self::divisor(self.poly.divisor_code()) as u16;
self.freq_timer = divisor << self.poly.shift_count();
let xor_result = (self.lf_shift & 0x01) ^ ((self.lf_shift & 0x02) >> 1);
self.lf_shift = (self.lf_shift >> 1) | xor_result << 14;
if let CounterWidth::Long = self.poly.counter_width() {
self.lf_shift = (self.lf_shift & !(0x01 << 6)) | xor_result << 6;
}
}
}
fn divisor(code: u8) -> u8 {
if code == 0 {
return 8;
}
code << 4
}
}