gb/src/cpu.rs

527 lines
13 KiB
Rust

use crate::bus::{Bus, BusIo};
use crate::instruction::{Cycle, Instruction};
use crate::interrupt::{InterruptEnable, InterruptFlag};
use crate::joypad::Joypad;
use crate::ppu::Ppu;
use crate::sound::AudioSender;
use crate::timer::Timer;
use bitfield::bitfield;
use std::fmt::{Display, Formatter, Result as FmtResult};
#[derive(Debug, Clone, Default)]
pub struct Cpu {
pub bus: Bus,
reg: Registers,
flags: Flags,
ime: ImeState,
// TODO: Merge halted and state properties
halted: Option<HaltState>,
state: State,
}
impl Cpu {
pub fn new() -> Self {
Self {
reg: Registers {
a: 0x01,
b: 0x00,
c: 0x13,
d: 0x00,
e: 0xD8,
h: 0x01,
l: 0x4D,
sp: 0xFFFE,
pc: 0x0100,
},
flags: 0xb0.into(),
..Default::default()
}
}
pub fn boot_new(path: &str) -> anyhow::Result<Self> {
Ok(Self {
bus: Bus::with_boot(path)?,
..Default::default()
})
}
pub fn set_audio_src(&mut self, sender: AudioSender) {
self.bus.pass_audio_src(sender)
}
pub(crate) fn ime(&self) -> ImeState {
self.ime
}
pub(crate) fn set_ime(&mut self, state: ImeState) {
self.ime = state;
}
pub(crate) fn halt(&mut self, state: HaltState) {
self.halted = Some(state);
}
fn resume(&mut self) {
self.halted = None;
}
pub(crate) fn halted(&self) -> Option<HaltState> {
self.halted
}
fn inc_pc(&mut self) {
self.reg.pc += 1;
}
pub fn load_cartridge(&mut self, path: &str) -> std::io::Result<()> {
self.bus.load_cartridge(path)
}
pub fn rom_title(&self) -> Option<&str> {
self.bus.rom_title()
}
}
impl Cpu {
fn fetch(&self) -> u8 {
self.bus.read_byte(self.reg.pc)
}
pub(crate) fn decode(&mut self, opcode: u8) -> Instruction {
Instruction::from_byte(self, opcode)
}
fn execute(&mut self, instruction: Instruction) -> Cycle {
Instruction::execute(self, instruction)
}
pub fn step(&mut self) -> Cycle {
let cycles = match self.halted() {
Some(state) => {
use HaltState::*;
match state {
ImeEnabled | NonePending => Cycle::new(4),
SomePending => todo!("Implement HALT bug"),
}
}
None => {
let opcode = self.fetch();
self.inc_pc();
let instr = self.decode(opcode);
// let out = std::io::stdout();
// let _ = self._debug_log(out.lock(), &instr);
let cycles = self.execute(instr);
self.check_ime();
cycles
}
};
// TODO: With how we currently handle audio
// this --while being correct-- incurs a performance penalty
// as our emu is audio-bound.
let mut elapsed = 0x00;
let pending: u32 = cycles.into();
while elapsed < pending {
if !self.bus.is_mpsc_still_full() {
self.bus.clock();
elapsed += 1;
}
}
self.handle_interrupts();
cycles
}
}
impl BusIo for Cpu {
fn read_byte(&self, addr: u16) -> u8 {
self.bus.read_byte(addr)
}
fn write_byte(&mut self, addr: u16, byte: u8) {
self.bus.write_byte(addr, byte);
}
}
impl Cpu {
pub(crate) fn read_imm_byte(&mut self, addr: u16) -> u8 {
self.inc_pc(); // NB: the addr read in the line below will be equal to PC - 1 after this function call
self.bus.read_byte(addr)
}
pub(crate) fn read_imm_word(&mut self, addr: u16) -> u16 {
self.inc_pc();
self.inc_pc(); // NB: the addr read in the line below will be equal to PC - 2 after this function call
self.bus.read_word(addr)
}
pub(crate) fn write_word(&mut self, addr: u16, word: u16) {
self.bus.write_word(addr, word)
}
}
impl Cpu {
pub fn ppu(&mut self) -> &Ppu {
&self.bus.ppu
}
pub(crate) fn joypad_mut(&mut self) -> &mut Joypad {
&mut self.bus.joypad
}
pub(crate) fn timer(&self) -> &Timer {
&self.bus.timer
}
fn check_ime(&mut self) {
match self.ime {
ImeState::Pending => {
// This is within the context of the EI instruction, we need to not update EI until the end of the
// next executed Instruction
self.ime = ImeState::PendingEnd;
}
ImeState::PendingEnd => {
// The Instruction after EI has now been executed, so we want to enable the IME flag here
self.ime = ImeState::Enabled;
}
ImeState::Disabled | ImeState::Enabled => {} // Do Nothing
}
}
fn handle_interrupts(&mut self) {
let req = self.read_byte(0xFF0F);
let enabled = self.read_byte(0xFFFF);
if self.halted.is_some() {
// When we're here either a HALT with IME set or
// a HALT with IME not set and No pending Interrupts was called
if req & enabled != 0 {
// The if self.ime() below correctly follows the "resuming from HALT" behaviour so
// nothing actually needs to be added here. This is just documentation
// since it's a bit weird why nothing is being done
self.resume()
}
}
if let ImeState::Enabled = self.ime() {
let mut req: InterruptFlag = req.into();
let enabled: InterruptEnable = enabled.into();
let vector = if req.vblank() && enabled.vblank() {
// Handle VBlank Interrupt
req.set_vblank(false);
// INT 40h
Some(0x40)
} else if req.lcd_stat() && enabled.lcd_stat() {
// Handle LCD STAT Interrupt
req.set_lcd_stat(false);
// INT 48h
Some(0x48)
} else if req.timer() && enabled.timer() {
// Handle Timer Interrupt
req.set_timer(false);
// INT 50h
Some(0x50)
} else if req.serial() && enabled.serial() {
// Handle Serial Interrupt
req.set_serial(false);
// INT 58h
Some(0x58)
} else if req.joypad() && enabled.joypad() {
// Handle Joypad Interrupt
req.set_joypad(false);
// INT 60h
Some(0x60)
} else {
None
};
let _ = match vector {
Some(address) => {
// Write the Changes to 0xFF0F and 0xFFFF registers
self.write_byte(0xFF0F, req.into());
// Disable all future interrupts
self.set_ime(ImeState::Disabled);
Instruction::reset(self, address)
}
None => Cycle::new(0), // NO Interrupts were enabled and / or requested
};
}
}
}
#[derive(Debug, Copy, Clone)]
enum State {
Execute,
// Halt,
// Stop,
}
impl Default for State {
fn default() -> Self {
Self::Execute
}
}
impl Cpu {
pub(crate) fn set_register(&mut self, register: Register, value: u8) {
use Register::*;
match register {
A => self.reg.a = value,
B => self.reg.b = value,
C => self.reg.c = value,
D => self.reg.d = value,
E => self.reg.e = value,
H => self.reg.h = value,
L => self.reg.l = value,
Flag => self.flags = value.into(),
}
}
pub(crate) fn register(&self, register: Register) -> u8 {
use Register::*;
match register {
A => self.reg.a,
B => self.reg.b,
C => self.reg.c,
D => self.reg.d,
E => self.reg.e,
H => self.reg.h,
L => self.reg.l,
Flag => self.flags.into(),
}
}
pub(crate) fn register_pair(&self, pair: RegisterPair) -> u16 {
use RegisterPair::*;
match pair {
AF => (self.reg.a as u16) << 8 | u8::from(self.flags) as u16,
BC => (self.reg.b as u16) << 8 | self.reg.c as u16,
DE => (self.reg.d as u16) << 8 | self.reg.e as u16,
HL => (self.reg.h as u16) << 8 | self.reg.l as u16,
SP => self.reg.sp,
PC => self.reg.pc,
}
}
pub(crate) fn set_register_pair(&mut self, pair: RegisterPair, value: u16) {
use RegisterPair::*;
let high = (value >> 8) as u8;
let low = value as u8;
match pair {
AF => {
self.reg.a = high;
self.flags = low.into();
}
BC => {
self.reg.b = high;
self.reg.c = low;
}
DE => {
self.reg.d = high;
self.reg.e = low;
}
HL => {
self.reg.h = high;
self.reg.l = low;
}
SP => self.reg.sp = value,
PC => self.reg.pc = value,
}
}
pub(crate) fn flags(&self) -> &Flags {
&self.flags
}
pub(crate) fn set_flags(&mut self, flags: Flags) {
self.flags = flags;
}
}
impl Cpu {
fn _debug_log(&self, mut w: impl std::io::Write, instr: &Instruction) -> std::io::Result<()> {
write!(w, "A: {:02X} ", self.reg.a)?;
write!(w, "F: {:02X} ", u8::from(self.flags))?;
write!(w, "B: {:02X} ", self.reg.b)?;
write!(w, "C: {:02X} ", self.reg.c)?;
write!(w, "D: {:02X} ", self.reg.d)?;
write!(w, "E: {:02X} ", self.reg.e)?;
write!(w, "H: {:02X} ", self.reg.h)?;
write!(w, "L: {:02X} ", self.reg.l)?;
write!(w, "SP: {:04X} ", self.reg.sp)?;
write!(w, "PC: 00:{:04X} ", self.reg.pc)?;
write!(w, "({:02X} ", self.read_byte(self.reg.pc))?;
write!(w, "{:02X} ", self.read_byte(self.reg.pc + 1))?;
write!(w, "{:02X} ", self.read_byte(self.reg.pc + 2))?;
write!(w, "{:02X}) ", self.read_byte(self.reg.pc + 3))?;
writeln!(w, "| {:?}", instr)?;
w.flush()
}
fn _log_state(&self, mut writer: impl std::io::Write) -> std::io::Result<()> {
write!(writer, "A: {:02X} ", self.reg.a)?;
write!(writer, "F: {:02X} ", u8::from(self.flags))?;
write!(writer, "B: {:02X} ", self.reg.b)?;
write!(writer, "C: {:02X} ", self.reg.c)?;
write!(writer, "D: {:02X} ", self.reg.d)?;
write!(writer, "E: {:02X} ", self.reg.e)?;
write!(writer, "H: {:02X} ", self.reg.h)?;
write!(writer, "L: {:02X} ", self.reg.l)?;
write!(writer, "SP: {:04X} ", self.reg.sp)?;
write!(writer, "PC: 00:{:04X} ", self.reg.pc)?;
write!(writer, "({:02X} ", self.read_byte(self.reg.pc))?;
write!(writer, "{:02X} ", self.read_byte(self.reg.pc + 1))?;
write!(writer, "{:02X} ", self.read_byte(self.reg.pc + 2))?;
writeln!(writer, "{:02X})", self.read_byte(self.reg.pc + 3))?;
writer.flush()
}
}
#[derive(Debug, Copy, Clone)]
pub(crate) enum Register {
A,
B,
C,
D,
E,
H,
L,
Flag,
}
#[derive(Debug, Copy, Clone)]
pub(crate) enum RegisterPair {
AF,
BC,
DE,
HL,
SP,
PC,
}
#[derive(Debug, Copy, Clone, Default)]
struct Registers {
a: u8,
b: u8,
c: u8,
d: u8,
e: u8,
h: u8,
l: u8,
sp: u16,
pc: u16,
}
bitfield! {
pub struct Flags(u8);
impl Debug;
pub z, set_z: 7; // Zero Flag
pub n, set_n: 6; // Subtraction Flag
pub h, set_h: 5; // Half Carry Flag
pub c, set_c: 4; // Carry Flag
}
impl Flags {
pub(crate) fn update(&mut self, z: bool, n: bool, h: bool, c: bool) {
self.set_z(z);
self.set_n(n);
self.set_h(h);
self.set_c(c);
}
}
impl Copy for Flags {}
impl Clone for Flags {
fn clone(&self) -> Self {
*self
}
}
impl Default for Flags {
fn default() -> Self {
Self(0)
}
}
impl Display for Flags {
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
if self.z() {
f.write_str("Z")?;
} else {
f.write_str("_")?;
}
if self.n() {
f.write_str("N")?;
} else {
f.write_str("_")?;
}
if self.h() {
f.write_str("H")?;
} else {
f.write_str("_")?;
}
if self.c() {
f.write_str("C")
} else {
f.write_str("_")
}
}
}
impl From<Flags> for u8 {
fn from(flags: Flags) -> Self {
flags.0 & 0xF0
}
}
impl From<u8> for Flags {
fn from(byte: u8) -> Self {
Self(byte & 0xF0)
}
}
#[derive(Debug, Clone, Copy)]
pub(crate) enum HaltState {
ImeEnabled,
NonePending,
SomePending,
}
#[derive(Debug, Clone, Copy)]
pub(crate) enum ImeState {
Disabled,
Pending,
PendingEnd,
Enabled,
}
impl Default for ImeState {
fn default() -> Self {
Self::Disabled
}
}