gb/src/bus.rs

290 lines
11 KiB
Rust

use super::cartridge::Cartridge;
use super::high_ram::HighRam;
use super::instruction::Cycles;
use super::interrupt::{Interrupt, InterruptFlag};
use super::ppu::Ppu;
use super::serial::Serial;
use super::sound::Sound;
use super::timer::Timer;
use super::work_ram::{VariableWorkRam, WorkRam};
use std::{convert::TryInto, fs::File, io::Read};
#[derive(Debug, Clone)]
pub struct Bus {
boot: Option<[u8; 256]>, // Boot ROM is 256b long
cartridge: Option<Cartridge>,
pub ppu: Ppu,
wram: WorkRam,
vwram: VariableWorkRam,
timer: Timer,
interrupt: Interrupt,
sound: Sound,
hram: HighRam,
serial: Serial,
}
impl Default for Bus {
fn default() -> Self {
Self {
boot: None,
cartridge: None,
ppu: Default::default(),
wram: Default::default(),
vwram: Default::default(),
timer: Default::default(),
interrupt: Default::default(),
sound: Default::default(),
hram: Default::default(),
serial: Default::default(),
}
}
}
impl Bus {
pub fn with_boot(path: &str) -> Self {
let mut file = File::open(path).unwrap();
let mut buf = Vec::with_capacity(256);
file.read_to_end(&mut buf).unwrap();
let boot_rom: [u8; 256] = buf.try_into().unwrap();
Self {
boot: Some(boot_rom),
..Default::default()
}
}
pub fn load_cartridge(&mut self, path: &str) {
self.cartridge = Some(Cartridge::new(path).unwrap());
}
pub fn step(&mut self, cycles: Cycles) {
self.timer.step(cycles);
self.sound.step(cycles);
self.ppu.step(cycles);
}
}
impl Bus {
pub fn read_byte(&self, addr: u16) -> u8 {
match addr {
0x0000..=0x3FFF => {
// 16KB ROM bank 00
if addr < 0x00FF {
if let Some(boot) = self.boot {
return boot[addr as usize];
}
}
match self.cartridge.as_ref() {
Some(cart) => cart.read_byte(addr),
None => panic!("Tried to read from a non-existant cartridge"),
}
}
0x4000..=0x7FFF => match self.cartridge.as_ref() {
// 16KB ROM Bank 01 -> NN (switchable via MB)
Some(cart) => cart.read_byte(addr),
None => panic!("Tried to read from a non-existant cartridge"),
},
0x8000..=0x9FFF => {
// 8KB Video RAM
self.ppu.read_byte(addr)
}
0xA000..=0xBFFF => match self.cartridge.as_ref() {
// 8KB External RAM
Some(cart) => cart.read_byte(addr),
None => panic!("Tried to read from the external RAM of a non-existant cartridge"),
},
0xC000..=0xCFFF => {
// 4KB Work RAM Bank 0
self.wram.read_byte(addr)
}
0xD000..=0xDFFF => {
// 4KB Work RAM Bank 1 -> N
self.vwram.read_byte(addr)
}
0xE000..=0xFDFF => {
// Mirror of 0xC000 to 0xDDFF
unimplemented!("Unable to read {:#06X} in Restricted Mirror", addr);
}
0xFE00..=0xFE9F => {
// Sprite Attribute Table
unimplemented!("Unable to read {:#06X} in the Sprite Attribute Table", addr);
}
0xFEA0..=0xFEFF => unimplemented!("{:#06X} is not allowed to be used", addr),
0xFF00..=0xFF7F => {
// IO Registers
match addr {
0xFF01 => self.serial.next,
0xFF02 => self.serial.control.into(),
0xFF07 => self.timer.control.into(),
0xFF0F => self.interrupt_flag().into(),
0xFF11 => self.sound.ch1.sound_duty.into(),
0xFF12 => self.sound.ch1.vol_envelope.into(),
0xFF14 => self.sound.ch1.freq_hi.into(),
0xFF24 => self.sound.control.channel.into(),
0xFF25 => self.sound.control.output.into(),
0xFF26 => self.sound.control.status.into(),
0xFF40 => self.ppu.lcd_control.into(),
0xFF41 => self.ppu.stat.into(),
0xFF42 => self.ppu.pos.scroll_y,
0xFF43 => self.ppu.pos.scroll_x,
0xFF44 => self.ppu.pos.line_y,
0xFF45 => self.ppu.pos.ly_compare as u8,
0xFF47 => self.ppu.monochrome.bg_palette.into(),
0xFF48 => self.ppu.monochrome.obj_palette_0.into(),
0xFF49 => self.ppu.monochrome.obj_palette_1.into(),
0xFF4A => self.ppu.pos.window_y,
0xFF4B => self.ppu.pos.window_x,
_ => unimplemented!("Unable to read {:#06X} in I/O Registers", addr),
}
}
0xFF80..=0xFFFE => {
// High RAM
self.hram.read_byte(addr)
}
0xFFFF => {
// Interrupts Enable Register
self.interrupt.enable.into()
}
}
}
pub fn write_byte(&mut self, addr: u16, byte: u8) {
match addr {
0x0000..=0x3FFF => {
// 16KB ROM bank 00
match self.cartridge.as_mut() {
Some(cart) => cart.write_byte(addr, byte),
None => panic!("Tried to write into non-existent Cartridge"),
}
}
0x4000..=0x7FFF => {
// 16KB ROM Bank 01 -> NN (switchable via MB)
match self.cartridge.as_mut() {
Some(cart) => cart.write_byte(addr, byte),
None => panic!("Tried to write into non-existent Cartridge"),
}
}
0x8000..=0x9FFF => {
// 8KB Video RAM
self.ppu.write_byte(addr, byte);
}
0xA000..=0xBFFF => {
// 8KB External RAM
match self.cartridge.as_mut() {
Some(cart) => cart.write_byte(addr, byte),
None => panic!("Tried to write into non-existent Cartridge"),
}
}
0xC000..=0xCFFF => {
// 4KB Work RAM Bank 0
self.wram.write_byte(addr, byte);
}
0xD000..=0xDFFF => {
// 4KB Work RAM Bank 1 -> N
self.vwram.write_byte(addr, byte);
}
0xE000..=0xFDFF => {
// Mirror of 0xC000 to 0xDDFF
unimplemented!("Unable to write to {:#06X} in Restricted Mirror", addr);
}
0xFE00..=0xFE9F => {
// Sprite Attribute Table
unimplemented!(
"Unable to write to {:#06X} in the Sprite Attribute Table",
addr
);
}
0xFEA0..=0xFEFF => unimplemented!("{:#06X} is not allowed to be used", addr),
0xFF00..=0xFF7F => {
// IO Registers
match addr {
0xFF01 => self.serial.next = byte,
0xFF02 => self.serial.control = byte.into(),
0xFF07 => self.timer.control = byte.into(),
0xFF0F => self.set_interrupt_flag(byte),
0xFF11 => self.sound.ch1.sound_duty = byte.into(),
0xFF12 => self.sound.ch1.vol_envelope = byte.into(),
0xFF13 => self.sound.ch1.freq_lo = byte.into(),
0xFF14 => self.sound.ch1.freq_hi = byte.into(),
0xFF24 => self.sound.control.channel = byte.into(),
0xFF25 => self.sound.control.output = byte.into(),
0xFF26 => self.sound.control.status = byte.into(), // FIXME: Should we control which bytes are written to here?
0xFF40 => self.ppu.lcd_control = byte.into(),
0xFF41 => self.ppu.stat = byte.into(),
0xFF42 => self.ppu.pos.scroll_y = byte,
0xFF43 => self.ppu.pos.scroll_x = byte,
0xFF44 => self.ppu.pos.line_y = byte,
0xFF45 => self.ppu.pos.ly_compare = byte == 0x01, // FIXME: We don't consider the possibility of a byte being different form 0x00 or 0x01
0xFF47 => self.ppu.monochrome.bg_palette = byte.into(),
0xFF48 => self.ppu.monochrome.obj_palette_0 = byte.into(),
0xFF49 => self.ppu.monochrome.obj_palette_1 = byte.into(),
0xFF4A => self.ppu.pos.window_y = byte,
0xFF4B => self.ppu.pos.window_x = byte,
0xFF50 => {
// Disable Boot ROM
if byte != 0 {
self.boot = None;
}
}
_ => unimplemented!("Unable to write to {:#06X} in I/O Registers", addr),
};
}
0xFF80..=0xFFFE => {
// High RAM
self.hram.write_byte(addr, byte);
}
0xFFFF => {
// Interrupts Enable Register
self.interrupt.enable = byte.into();
}
}
}
pub fn read_word(&self, addr: u16) -> u16 {
(self.read_byte(addr + 1) as u16) << 8 | self.read_byte(addr) as u16
}
pub fn write_word(&mut self, addr: u16, word: u16) {
self.write_byte(addr + 1, (word >> 8) as u8);
self.write_byte(addr, (word & 0x00FF) as u8);
}
}
impl Bus {
fn interrupt_flag(&self) -> InterruptFlag {
// Read the current Interrupt status from the PPU
let ppu_vblank = self.ppu.interrupt.vblank();
let ppu_lcd_stat = self.ppu.interrupt.lcd_stat();
// We actually don't care about what the InterruptFlag currently says
// about vblank and lcd_stat, because the PPU has the more accurate
// knowledge about what state these interrupt flags are in.
// In order to have the PPU be the source of truth
// (and accounting for the fact that we aren't able to update)
// the interrupt flag register 0xFF0F in the method, we can
// mask over those two interruptss
// Copy the Interrupt Flag register 0xFF0F
let mut flag = self.interrupt.flag;
flag.set_vblank(ppu_vblank);
flag.set_lcd_stat(ppu_lcd_stat);
flag
}
fn set_interrupt_flag(&mut self, byte: u8) {
// Update the Interrupt register 0xFF0F
self.interrupt.flag = byte.into();
let vblank = self.interrupt.flag.vblank();
let lcd_stat = self.interrupt.flag.lcd_stat();
// Update the PPU's internal tracking of the interrupt register 0xFF0F
self.ppu.interrupt.set_vblank(vblank);
self.ppu.interrupt.set_lcd_stat(lcd_stat);
}
}