gb/src/ppu.rs

1017 lines
28 KiB
Rust

use crate::bus::BusIo;
use crate::Cycle;
use crate::GB_HEIGHT;
use crate::GB_WIDTH;
use dma::DirectMemoryAccess;
use std::collections::VecDeque;
pub(crate) use types::PpuMode;
use types::{
BackgroundPalette, GrayShade, LCDControl, LCDStatus, ObjectFlags, ObjectPalette,
ObjectPaletteKind, ObjectSize, Pixels, RenderPriority, TileDataAddress,
};
use once_cell::sync::Lazy;
mod dma;
mod types;
const VRAM_SIZE: usize = 0x2000;
const OAM_SIZE: usize = 0xA0;
const PPU_START_ADDRESS: usize = 0x8000;
// OAM Scan
const OBJECT_LIMIT: usize = 10;
// // White
// const WHITE: [u8; 4] = 0xFFFFFFFFu32.to_be_bytes();
// const LIGHT_GRAY: [u8; 4] = 0xB6B6B6FFu32.to_be_bytes();
// const DARK_GRAY: [u8; 4] = 0x676767FFu32.to_be_bytes();
// const BLACK: [u8; 4] = 0x000000FFu32.to_be_bytes();
// Green
const WHITE: [u8; 4] = 0xE3EEC0FFu32.to_be_bytes();
const LIGHT_GRAY: [u8; 4] = 0xAEBA89FFu32.to_be_bytes();
const DARK_GRAY: [u8; 4] = 0x5E6745FFu32.to_be_bytes();
const BLACK: [u8; 4] = 0x202020FFu32.to_be_bytes();
static BLANK_SCREEN: Lazy<Box<[u8; (GB_WIDTH * 4) * GB_HEIGHT]>> = Lazy::new(|| {
WHITE
.repeat(GB_WIDTH * GB_HEIGHT)
.into_boxed_slice()
.try_into()
.unwrap()
});
#[derive(Debug)]
pub struct Ppu {
pub(crate) int: Interrupt,
/// 0xFF40 | LCDC - LCD Control
pub(crate) ctrl: LCDControl,
/// 0xFF41 | STAT - LCD Status
pub(crate) stat: LCDStatus,
pub(crate) monochrome: Monochrome,
pub(crate) pos: ScreenPosition,
vram: Box<[u8; VRAM_SIZE]>,
pub(crate) oam: ObjectAttrTable,
pub(crate) dma: DirectMemoryAccess,
scan_dot: Cycle,
fetch: PixelFetcher,
fifo: PixelFifo,
obj_buffer: ObjectBuffer,
pub(crate) frame_buf: FrameBuffer,
win_stat: WindowStatus,
scanline_start: bool,
to_discard: u8,
x_pos: u8,
dot: Cycle,
}
impl BusIo for Ppu {
fn read_byte(&self, addr: u16) -> u8 {
self.vram[addr as usize - PPU_START_ADDRESS]
}
fn write_byte(&mut self, addr: u16, byte: u8) {
self.vram[addr as usize - PPU_START_ADDRESS] = byte;
}
}
impl Ppu {
pub(crate) fn tick(&mut self) {
if !self.ctrl.lcd_enabled() {
if self.dot > 0 {
// Check ensures this expensive operation only happens once
self.frame_buf
.get_mut(Device::Guest)
.copy_from_slice(BLANK_SCREEN.as_ref());
}
self.stat.set_mode(PpuMode::HBlank);
self.pos.line_y = 0;
self.dot = 0;
return;
}
self.dot += 1;
match self.stat.mode() {
PpuMode::OamScan => {
// Cycles 1 -> 80
if self.dot >= 80 {
self.x_pos = 0;
self.scanline_start = true;
self.fetch.back.tile_high_reset = true;
self.to_discard = 0;
self.fifo.back.clear();
self.fifo.obj.clear();
// Sort Sprites
self.obj_buffer.inner.sort_by(|left, right| {
left.zip(*right)
.map(|(left, right)| right.x.cmp(&left.x))
.unwrap_or(std::cmp::Ordering::Greater)
});
// if self.obj_buffer.len != 0 {
// dbg!(&self.obj_buffer);
// }
self.stat.set_mode(PpuMode::Drawing);
}
self.scan_oam();
}
PpuMode::Drawing => {
self.draw();
if self.x_pos == 160 {
if self.stat.hblank_int() {
// Enable HBlank LCDStat Interrupt
self.int.set_lcd_stat(true);
}
// Done with rendering this frame,
// we can reset the ppu x_pos and fetcher state now
// Increment Window line counter if scanline had any window pixels on it
// only increment once per scanline though
if self.win_stat.enabled {
self.fetch.back.wl_count += 1;
}
self.fetch.hblank_reset();
self.win_stat.enabled = false;
self.obj_buffer.clear();
self.stat.set_mode(PpuMode::HBlank);
}
}
PpuMode::HBlank => {
// This mode will always end at 456 cycles
if self.dot >= 456 {
self.dot %= 456;
self.pos.line_y += 1;
// Update LY==LYC bit
let are_equal = self.pos.line_y == self.pos.ly_compare;
self.stat.set_coincidence(are_equal);
// Request LCD STAT interrupt if conditions met
if self.stat.coincidence_int() && are_equal {
self.int.set_lcd_stat(true);
}
let next_mode = if self.pos.line_y >= 144 {
// Request VBlank Interrupt
self.int.set_vblank(true);
// Reset Window Line Counter in Fetcher
self.fetch.back.wl_count = 0;
// Reset WY=LY coincidence flag
self.win_stat.coincidence = false;
if self.stat.vblank_int() {
// Enable Vblank LCDStat Interrupt
self.int.set_lcd_stat(true);
}
// Screen is done drawing
self.frame_buf.swap();
PpuMode::VBlank
} else {
if self.stat.oam_int() {
// Enable OAM LCDStat Interrupt
self.int.set_lcd_stat(true);
}
self.scan_dot = Default::default();
PpuMode::OamScan
};
self.stat.set_mode(next_mode);
}
}
PpuMode::VBlank => {
if self.dot >= 456 {
self.dot %= 456;
self.pos.line_y += 1;
// Update LY==LYC bit
let are_equal = self.pos.line_y == self.pos.ly_compare;
self.stat.set_coincidence(are_equal);
// Request LCD STAT interrupt if conditions met
if self.stat.coincidence_int() && are_equal {
self.int.set_lcd_stat(true);
}
if self.pos.line_y == 154 {
self.pos.line_y = 0;
if self.stat.oam_int() {
// Enable OAM LCDStat Interrupt
self.int.set_lcd_stat(true);
}
self.scan_dot = Default::default();
self.stat.set_mode(PpuMode::OamScan);
}
}
}
}
}
fn scan_oam(&mut self) {
if self.scan_dot % 2 == 0 {
if self.dma.is_active() {
return;
}
if !self.win_stat.coincidence && self.scan_dot == 0 {
self.win_stat.coincidence = self.pos.line_y == self.pos.window_y;
}
let obj_height = self.ctrl.obj_size().size();
let attr = self.oam.attribute(self.scan_dot as usize / 2);
let line_y = self.pos.line_y + 16;
if attr.x > 0
&& line_y >= attr.y
&& line_y < (attr.y + obj_height)
&& !self.obj_buffer.is_full()
{
self.obj_buffer.add(attr);
}
}
self.scan_dot += 1;
}
fn draw(&mut self) {
use FetcherState::*;
let mut obj_attr = &mut None;
for maybe_attr in &mut self.obj_buffer.inner {
match maybe_attr {
Some(attr) if self.ctrl.obj_enabled() => {
if attr.x <= (self.x_pos + 8) {
self.fetch.back.reset();
self.fetch.back.enabled = false;
self.fifo.pause();
obj_attr = maybe_attr;
break;
}
}
_ => break,
}
}
if let Some(attr) = obj_attr {
match self.fetch.obj.state {
TileNumberA => self.fetch.obj.state = TileNumberB,
TileNumberB => {
self.fetch.obj.tile.with_id(attr.tile_index);
self.fetch.obj.state = TileLowA;
}
TileLowA => self.fetch.obj.state = TileLowB,
TileLowB => {
let obj_size = self.ctrl.obj_size();
let addr = PixelFetcher::obj_addr(attr, &self.pos, obj_size);
let byte = self.read_byte(addr);
self.fetch.obj.tile.with_low(byte);
self.fetch.obj.state = TileHighA;
}
TileHighA => self.fetch.obj.state = TileHighB,
TileHighB => {
let obj_size = self.ctrl.obj_size();
let addr = PixelFetcher::obj_addr(attr, &self.pos, obj_size);
let byte = self.read_byte(addr + 1);
self.fetch.obj.tile.with_high(byte);
self.fetch.obj.state = ToFifoA;
}
ToFifoA => {
// Load into Fifo
let (high, low) = self
.fetch
.obj
.tile
.bytes()
.expect("Tile high & low bytes are present");
let tbpp = Pixels::from_bytes(high, low);
let palette_kind = attr.flags.palette();
let x_flip = attr.flags.x_flip();
let pixel_count = (attr.x - self.x_pos) as usize;
let start = self.fifo.obj.len();
for i in start..pixel_count {
let x = if x_flip { 7 - i } else { i };
let priority = attr.flags.priority();
let shade_id = tbpp.shade_id(x);
let fifo_info = ObjPixelProperty {
shade_id,
palette_kind,
priority,
};
self.fifo.obj.push_back(fifo_info);
}
self.fetch.back.enabled = true;
self.fifo.resume();
let _ = std::mem::take(obj_attr);
self.fetch.obj.state = ToFifoB;
}
ToFifoB => self.fetch.obj.reset(),
}
}
if self.fetch.back.enabled {
match self.fetch.back.state {
TileNumberA => self.fetch.back.state = TileNumberB,
TileNumberB => {
// Are we rendering the Window currently?
self.fetch.back.draw_window = self.win_stat.enabled;
let addr =
self.fetch
.back
.tile_id_addr(&self.ctrl, &self.pos, self.fetch.x_pos);
let id = self.read_byte(addr);
self.fetch.back.tile.with_id(id);
self.fetch.back.state = TileLowA;
}
TileLowA => self.fetch.back.state = TileLowB,
TileLowB => {
let id = self.fetch.back.tile.id.expect("Tile ID present");
let addr = self.fetch.back.tile_addr(&self.ctrl, &self.pos, id);
let byte = self.read_byte(addr);
self.fetch.back.tile.with_low(byte);
self.fetch.back.state = TileHighA;
}
TileHighA => self.fetch.back.state = TileHighB,
TileHighB => {
let id = self.fetch.back.tile.id.expect("Tile ID present");
let addr = self.fetch.back.tile_addr(&self.ctrl, &self.pos, id);
let byte = self.read_byte(addr + 1);
self.fetch.back.tile.with_high(byte);
if self.fetch.back.tile_high_reset {
self.fetch.back.reset();
self.fetch.back.tile_high_reset = false;
} else {
self.fetch.back.state = ToFifoA;
}
}
ToFifoA => {
if self.fetch.send_to_fifo(&mut self.fifo).is_ok() {
self.fetch.x_pos += 1;
self.fetch.back.state = ToFifoB;
}
}
ToFifoB => self.fetch.back.reset(),
}
}
if self.fifo.is_enabled() {
if self.x_pos == 0 && self.scanline_start {
self.to_discard = self.pos.scroll_x % 8;
self.scanline_start = false;
}
if !self.win_stat.enabled && self.to_discard > 0 && !self.fifo.back.is_empty() {
let _ = self.fifo.back.pop_front();
self.to_discard -= 1;
// Delay the PPU by one cycle
return;
}
// Handle Background Pixel and Sprite FIFO
if let Some(rgba) = self.clock_fifo().map(GrayShade::into_rgba) {
let y = self.pos.line_y as usize;
let x = self.x_pos as usize;
let i = (GB_WIDTH * 4) * y + (x * 4);
self.frame_buf.get_mut(Device::Guest)[i..(i + rgba.len())].copy_from_slice(&rgba);
self.x_pos += 1;
}
if self.ctrl.window_enabled()
&& !self.win_stat.enabled
&& self.win_stat.coincidence
&& self.x_pos as i16 >= self.pos.window_x as i16 - 7
{
self.win_stat.enabled = true;
self.fetch.back.reset();
self.fetch.x_pos = 0;
self.fifo.back.clear();
}
}
}
fn clock_fifo(&mut self) -> Option<GrayShade> {
use RenderPriority::*;
self.fifo
.back
.pop_front()
.map(|bg| match self.fifo.obj.pop_front() {
Some(obj) => match obj.priority {
_ if obj.shade_id == 0 => self.bg_pixel(bg),
BackgroundAndWindow if bg.shade_id != 0 => self.bg_pixel(bg),
_ => self.obj_pixel(obj),
},
None => self.bg_pixel(bg),
})
}
fn obj_pixel(&self, obj: ObjPixelProperty) -> GrayShade {
use ObjectPaletteKind::*;
assert_ne!(obj.shade_id, 0);
let p0 = &self.monochrome.obj_palette_0;
let p1 = &self.monochrome.obj_palette_1;
match obj.palette_kind {
Zero => p0.shade(obj.shade_id).expect("Object shade id is non-zero"),
One => p1.shade(obj.shade_id).expect("Object shade id is non-zero"),
}
}
fn bg_pixel(&self, bg: BgPixelProperty) -> GrayShade {
let bg_palette = &self.monochrome.bg_palette;
if self.ctrl.bg_win_enabled() {
bg_palette.shade(bg.shade_id)
} else {
bg_palette.shade(0)
}
}
}
impl Default for Ppu {
fn default() -> Self {
Self {
vram: Box::new([0u8; VRAM_SIZE]),
dot: Default::default(),
frame_buf: FrameBuffer::new().expect("create frame buffers"),
int: Default::default(),
ctrl: LCDControl(0),
monochrome: Default::default(),
pos: Default::default(),
stat: LCDStatus(0x80), // bit 7 is always 1
oam: Default::default(),
scan_dot: Default::default(),
fetch: Default::default(),
fifo: Default::default(),
obj_buffer: Default::default(),
win_stat: Default::default(),
dma: Default::default(),
x_pos: 0,
scanline_start: true,
to_discard: Default::default(),
}
}
}
#[derive(Debug, Default)]
pub(crate) struct Interrupt {
_vblank: bool,
_lcd_stat: bool,
}
impl Interrupt {
pub(crate) fn vblank(&self) -> bool {
self._vblank
}
pub(crate) fn set_vblank(&mut self, enabled: bool) {
self._vblank = enabled;
}
pub(crate) fn lcd_stat(&self) -> bool {
self._lcd_stat
}
pub(crate) fn set_lcd_stat(&mut self, enabled: bool) {
self._lcd_stat = enabled;
}
}
#[derive(Debug, Default)]
pub(crate) struct ScreenPosition {
/// 0xFF42 | SCY - Scroll Y
pub(crate) scroll_y: u8,
/// 0xFF43 | SCX - Scroll X
pub(crate) scroll_x: u8,
/// 0xFF44 | LY - LCD Y Coordinate
pub(crate) line_y: u8,
/// 0xFF45 | LYC - LY Compare
pub(crate) ly_compare: u8,
/// 0xFF4A | WY - Window Y Position
pub(crate) window_y: u8,
/// 0xFF4B | WX - Window X Position
pub(crate) window_x: u8,
}
#[derive(Debug)]
pub(crate) struct Monochrome {
/// 0xFF47 | BGP - Background Palette Data
pub(crate) bg_palette: BackgroundPalette,
/// 0xFF48 | OBP0 - Object Palette 0 Data
pub(crate) obj_palette_0: ObjectPalette,
/// 0xFF49 | OBP1 - Object Palette 1 Data
pub(crate) obj_palette_1: ObjectPalette,
}
impl Default for Monochrome {
fn default() -> Self {
Self {
bg_palette: BackgroundPalette(0),
obj_palette_0: ObjectPalette(0),
obj_palette_1: ObjectPalette(0),
}
}
}
#[derive(Debug)]
pub(crate) struct ObjectAttrTable {
buf: Box<[u8; OAM_SIZE]>,
}
impl BusIo for ObjectAttrTable {
fn read_byte(&self, addr: u16) -> u8 {
let index = (addr - 0xFE00) as usize;
self.buf[index]
}
fn write_byte(&mut self, addr: u16, byte: u8) {
let index = (addr - 0xFE00) as usize;
self.buf[index] = byte;
}
}
impl ObjectAttrTable {
fn attribute(&self, index: usize) -> ObjectAttr {
let start = index * 4;
let slice: &[u8; 4] = self.buf[start..(start + 4)]
.try_into()
.expect("TryInto trait called on a &[u8; 4]");
slice.into()
}
}
impl Default for ObjectAttrTable {
fn default() -> Self {
Self {
buf: Box::new([0; OAM_SIZE]),
}
}
}
#[derive(Debug, Clone, Copy)]
struct ObjectAttr {
y: u8,
x: u8,
tile_index: u8,
flags: ObjectFlags,
}
impl From<[u8; 4]> for ObjectAttr {
fn from(bytes: [u8; 4]) -> Self {
Self {
y: bytes[0],
x: bytes[1],
tile_index: bytes[2],
flags: bytes[3].into(),
}
}
}
impl<'a> From<&'a [u8; 4]> for ObjectAttr {
fn from(bytes: &'a [u8; 4]) -> Self {
Self {
y: bytes[0],
x: bytes[1],
tile_index: bytes[2],
flags: bytes[3].into(),
}
}
}
#[derive(Debug)]
struct ObjectBuffer {
inner: [Option<ObjectAttr>; OBJECT_LIMIT],
len: usize,
}
impl ObjectBuffer {
fn is_full(&self) -> bool {
self.len == OBJECT_LIMIT
}
fn clear(&mut self) {
self.inner = [Default::default(); 10];
self.len = 0;
}
fn add(&mut self, attr: ObjectAttr) {
self.inner[self.len] = Some(attr);
self.len += 1;
}
}
impl Default for ObjectBuffer {
fn default() -> Self {
Self {
inner: [Default::default(); OBJECT_LIMIT],
len: Default::default(),
}
}
}
#[derive(Debug, Default)]
struct PixelFetcher {
x_pos: u8,
back: BackgroundFetcher,
obj: ObjectFetcher,
}
impl PixelFetcher {
fn hblank_reset(&mut self) {
self.back.hblank_reset();
self.obj.hblank_reset();
self.x_pos = 0;
}
fn send_to_fifo(&self, fifo: &mut PixelFifo) -> Result<(), ()> {
if !fifo.back.is_empty() {
return Err(());
}
let (high, low) = self
.back
.tile
.bytes()
.expect("Tile high & low bytes are present");
let tbpp = Pixels::from_bytes(high, low);
for x in 0..Pixels::PIXEL_COUNT {
let shade_id = tbpp.shade_id(x);
let fifo_info = BgPixelProperty { shade_id };
fifo.back.push_back(fifo_info);
}
Ok(())
}
fn obj_addr(attr: &ObjectAttr, pos: &ScreenPosition, size: ObjectSize) -> u16 {
let line_y = pos.line_y;
// TODO: Why is the offset 14 and 30 respectively?
let (id, flip_offset) = match size {
ObjectSize::Eight => (attr.tile_index, 14),
ObjectSize::Sixteen => (attr.tile_index & !0x01, 30),
};
let offset = 2 * (line_y - (attr.y - 16));
let final_offset = if attr.flags.y_flip() {
flip_offset - offset
} else {
offset
};
0x8000 + (id as u16 * 16) + final_offset as u16
}
}
trait Fetcher {
fn reset(&mut self);
fn hblank_reset(&mut self);
}
#[derive(Debug)]
struct BackgroundFetcher {
state: FetcherState,
tile: TileBuilder,
wl_count: u8,
draw_window: bool,
enabled: bool,
tile_high_reset: bool,
}
impl BackgroundFetcher {
fn tile_id_addr(&self, control: &LCDControl, pos: &ScreenPosition, x_pos: u8) -> u16 {
let line_y = pos.line_y;
let scroll_y = pos.scroll_y;
let scroll_x = pos.scroll_x;
let is_window = self.draw_window;
// Determine which tile map is being used
let tile_map = if is_window {
control.win_tile_map_addr()
} else {
control.bg_tile_map_addr()
};
let tile_map_addr = tile_map.into_address();
// Both Offsets are used to offset the tile map address we found above
// Offsets are ANDed wih 0x3FF so that we stay in bounds of tile map memory
let scx_offset = if is_window { 0 } else { scroll_x / 8 };
let y_offset = if is_window {
self.wl_count as u16 / 8
} else {
((line_y as u16 + scroll_y as u16) & 0xFF) / 8
};
let x_offset = (scx_offset + x_pos) & 0x1F;
let offset = (32 * y_offset) + (x_offset as u16);
tile_map_addr + (offset & 0x3FF)
}
fn tile_addr(&mut self, control: &LCDControl, pos: &ScreenPosition, id: u8) -> u16 {
let line_y = pos.line_y;
let scroll_y = pos.scroll_y;
let tile_data_addr = match control.tile_data_addr() {
TileDataAddress::X8800 => 0x9000u16.wrapping_add((id as i8 as i16 * 16) as u16),
TileDataAddress::X8000 => 0x8000 + (id as u16 * 16),
};
let offset = if self.draw_window {
self.wl_count as u16 % 8
} else {
(line_y as u16 + scroll_y as u16) % 8
};
tile_data_addr + (offset * 2)
}
}
impl Fetcher for BackgroundFetcher {
fn reset(&mut self) {
self.state = Default::default();
self.tile = Default::default();
}
fn hblank_reset(&mut self) {
self.reset();
self.draw_window = false;
self.enabled = true;
}
}
impl Default for BackgroundFetcher {
fn default() -> Self {
Self {
state: Default::default(),
tile: Default::default(),
draw_window: Default::default(),
wl_count: Default::default(),
enabled: true,
tile_high_reset: true,
}
}
}
#[derive(Debug, Default)]
struct ObjectFetcher {
state: FetcherState,
tile: TileBuilder,
}
impl Fetcher for ObjectFetcher {
fn reset(&mut self) {
self.state = Default::default();
self.tile = Default::default();
}
fn hblank_reset(&mut self) {
self.reset()
}
}
#[derive(Debug, Clone, Copy)]
enum FetcherState {
TileNumberA,
TileNumberB,
TileLowA,
TileLowB,
TileHighA,
TileHighB,
ToFifoA,
ToFifoB,
}
impl Default for FetcherState {
fn default() -> Self {
Self::TileNumberA
}
}
#[derive(Debug, Default)]
struct BgPixelProperty {
shade_id: u8,
}
#[derive(Debug)]
struct ObjPixelProperty {
shade_id: u8,
palette_kind: ObjectPaletteKind,
priority: RenderPriority,
}
// FIXME: Fifo Registers have a known size. Are heap allocations
// really necessary here?
#[derive(Debug)]
struct PixelFifo {
back: VecDeque<BgPixelProperty>,
obj: VecDeque<ObjPixelProperty>,
enabled: bool,
}
impl PixelFifo {
fn is_enabled(&self) -> bool {
self.enabled
}
fn pause(&mut self) {
self.enabled = false;
}
fn resume(&mut self) {
self.enabled = true;
}
}
impl Default for PixelFifo {
fn default() -> Self {
Self {
back: VecDeque::with_capacity(8),
obj: VecDeque::with_capacity(8),
enabled: true,
}
}
}
#[derive(Debug, Default)]
struct TileBuilder {
id: Option<u8>,
low: Option<u8>,
high: Option<u8>,
}
impl TileBuilder {
fn with_id(&mut self, id: u8) {
self.id = Some(id);
}
fn with_low(&mut self, data: u8) {
self.low = Some(data);
}
fn with_high(&mut self, data: u8) {
self.high = Some(data);
}
fn bytes(&self) -> Option<(u8, u8)> {
self.high.zip(self.low)
}
}
#[derive(Debug, Default)]
struct WindowStatus {
/// This will be true if WY == LY at any point in the frame thus far
coincidence: bool,
/// This will be true if the conditions which tell the PPU to start
/// drawing from the window tile map is true
enabled: bool,
}
pub(crate) mod dbg {
use super::{Ppu, PpuMode};
use crate::Cycle;
pub(crate) fn ly(ppu: &Ppu) -> u8 {
ppu.pos.line_y
}
pub(crate) fn scx(ppu: &Ppu) -> u8 {
ppu.pos.scroll_x
}
pub(crate) fn scy(ppu: &Ppu) -> u8 {
ppu.pos.scroll_y
}
pub(crate) fn mode(ppu: &Ppu) -> PpuMode {
ppu.stat.mode()
}
pub(crate) fn wx(ppu: &Ppu) -> i16 {
ppu.pos.window_x as i16
}
pub(crate) fn wy(ppu: &Ppu) -> i16 {
ppu.pos.window_y as i16
}
pub(crate) fn dot(ppu: &Ppu) -> Cycle {
ppu.dot
}
}
#[derive(Debug)]
pub struct FrameBuffer {
buf: [Box<[u8; Self::FRAME_LEN]>; 2],
current: bool,
}
#[derive(PartialEq)]
pub enum Device {
Guest,
Host,
}
impl FrameBuffer {
const FRAME_LEN: usize = GB_WIDTH * std::mem::size_of::<u32>() * GB_HEIGHT;
pub fn new() -> Result<Self, FrameBufferError> {
Ok(Self {
buf: [
vec![0; Self::FRAME_LEN]
.into_boxed_slice()
.try_into()
.map_err(|_| FrameBufferError::TryFrom)?,
vec![0; Self::FRAME_LEN]
.into_boxed_slice()
.try_into()
.map_err(|_| FrameBufferError::TryFrom)?,
],
current: false,
})
}
pub fn swap(&mut self) {
self.current = !self.current;
}
pub fn get_mut(&mut self, device: Device) -> &mut [u8; Self::FRAME_LEN] {
let idx = match device {
Device::Guest => self.current,
Device::Host => !self.current,
};
&mut *self.buf[idx as usize]
}
pub fn get(&self, device: Device) -> &[u8; Self::FRAME_LEN] {
let idx = match device {
Device::Guest => self.current,
Device::Host => !self.current,
};
&*self.buf[idx as usize]
}
}
#[derive(Debug, thiserror::Error)]
pub enum FrameBufferError {
#[error("Failed to coerce boxed slice to boxed array")]
TryFrom,
}