zba/src/apu.zig

1193 lines
36 KiB
Zig

const std = @import("std");
const SDL = @import("sdl2");
const io = @import("bus/io.zig");
const Arm7tdmi = @import("cpu.zig").Arm7tdmi;
const Scheduler = @import("scheduler.zig").Scheduler;
const SoundFifo = std.fifo.LinearFifo(u8, .{ .Static = 0x20 });
const AudioDeviceId = SDL.SDL_AudioDeviceID;
const intToBytes = @import("util.zig").intToBytes;
const log = std.log.scoped(.APU);
pub const host_sample_rate = 1 << 15;
pub const Apu = struct {
const Self = @This();
ch1: ToneSweep,
ch2: Tone,
ch3: Wave,
ch4: Noise,
chA: DmaSound(.A),
chB: DmaSound(.B),
bias: io.SoundBias,
/// NR51
psg_cnt: io.ChannelVolumeControl,
dma_cnt: io.DmaSoundControl,
cnt: io.SoundControl,
sampling_cycle: u2,
// TODO: Research whether we can have Atomic Pointers
stream: *SDL.SDL_AudioStream,
sched: *Scheduler,
fs: FrameSequencer,
capacitor: f32,
pub fn init(sched: *Scheduler) Self {
const apu: Self = .{
.ch1 = ToneSweep.init(sched),
.ch2 = Tone.init(sched),
.ch3 = Wave.init(sched),
.ch4 = Noise.init(sched),
.chA = DmaSound(.A).init(),
.chB = DmaSound(.B).init(),
.psg_cnt = .{ .raw = 0 },
.dma_cnt = .{ .raw = 0 },
.cnt = .{ .raw = 0 },
.bias = .{ .raw = 0x0200 },
.sampling_cycle = 0b00,
.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_F32, 2, 1 << 15, SDL.AUDIO_F32, 2, host_sample_rate) orelse unreachable,
.sched = sched,
.capacitor = 0,
.fs = FrameSequencer.init(),
};
sched.push(.SampleAudio, sched.now() + apu.sampleTicks());
sched.push(.{ .ApuChannel = 0 }, sched.now() + SquareWave.ticks); // Channel 1
sched.push(.{ .ApuChannel = 1 }, sched.now() + SquareWave.ticks); // Channel 2
sched.push(.{ .ApuChannel = 2 }, sched.now() + WaveDevice.ticks); // Channel 3
sched.push(.{ .ApuChannel = 3 }, sched.now() + Noise.ticks); // Channel 4
sched.push(.FrameSequencer, sched.now() + ((1 << 24) / 512));
return apu;
}
fn reset(self: *Self) void {
self.ch1.reset();
self.ch2.reset();
self.ch3.reset();
self.ch4.reset();
}
pub fn setDmaCnt(self: *Self, value: u16) void {
const new: io.DmaSoundControl = .{ .raw = value };
// Reinitializing instead of resetting is fine because
// the FIFOs I'm using are stack allocated and 0x20 bytes big
if (new.chA_reset.read()) self.chA.fifo = SoundFifo.init();
if (new.chB_reset.read()) self.chB.fifo = SoundFifo.init();
self.dma_cnt = new;
}
/// NR52
pub fn setSoundCntX(self: *Self, value: bool) void {
self.cnt.apu_enable.write(value);
if (value) {
self.fs.step = 0; // Reset Frame Sequencer
// Reset Square Wave Offsets
self.ch1.square.pos = 0;
self.ch2.square.pos = 0;
// Reset Wave Device Offsets
self.ch3.wave_dev.offset = 0;
} else {
self.reset();
}
}
/// NR52
pub fn soundCntX(self: *const Self) u8 {
const apu_enable: u8 = @boolToInt(self.cnt.apu_enable.read());
const ch1_enable: u8 = @boolToInt(self.ch1.enabled);
const ch2_enable: u8 = @boolToInt(self.ch2.enabled);
const ch3_enable: u8 = @boolToInt(self.ch3.enabled);
const ch4_enable: u8 = @boolToInt(self.ch4.enabled);
return apu_enable << 7 | ch4_enable << 3 | ch3_enable << 2 | ch2_enable << 1 | ch1_enable;
}
/// NR50
pub fn setSoundCntLLow(self: *Self, byte: u8) void {
self.psg_cnt.raw = (self.psg_cnt.raw & 0xFF00) | byte;
}
/// NR51
pub fn setSoundCntLHigh(self: *Self, byte: u8) void {
self.psg_cnt.raw = @as(u16, byte) << 8 | (self.psg_cnt.raw & 0xFF);
}
pub fn setBiasHigh(self: *Self, byte: u8) void {
self.bias.raw = (@as(u16, byte) << 8) | (self.bias.raw & 0xFF);
}
pub fn sampleAudio(self: *Self, late: u64) void {
// zig fmt: off
const any_ch_enabled = self.ch1.enabled
or self.ch2.enabled
or self.ch3.enabled
or self.ch4.enabled;
// zig fmt: on
const ch_left: u4 = self.psg_cnt.ch_left.read();
const ch_right: u4 = self.psg_cnt.ch_right.read();
// Apply SOUNDCNT_H Volume Modifications
const gba_vol: f32 = switch (self.dma_cnt.ch_vol.read()) {
0b00 => 0.25,
0b01 => 0.5,
0b10 => 0.75,
0b11 => 0.0,
};
// Sample Channel 1
const ch1_sample = self.highPass(self.ch1.amplitude(), any_ch_enabled) * gba_vol;
const ch1_left = if (ch_left & 1 == 1) ch1_sample else 0;
const ch1_right = if (ch_right & 1 == 1) ch1_sample else 0;
// Sample Channel 2
const ch2_sample = self.highPass(self.ch2.amplitude(), any_ch_enabled) * gba_vol;
const ch2_left = if (ch_left >> 1 & 1 == 1) ch2_sample else 0;
const ch2_right = if (ch_right >> 1 & 1 == 1) ch2_sample else 0;
// Sample Channel 3
const ch3_sample = self.highPass(self.ch3.amplitude(), any_ch_enabled) * gba_vol;
const ch3_left = if (ch_left >> 2 & 1 == 1) ch3_sample else 0;
const ch3_right = if (ch_right >> 2 & 1 == 1) ch3_sample else 0;
// Sample Channel 4
const ch4_sample = self.highPass(self.ch4.amplitude(), any_ch_enabled) * gba_vol;
const ch4_left = if (ch_left >> 3 == 1) ch4_sample else 0;
const ch4_right = if (ch_right >> 3 == 1) ch4_sample else 0;
const mixed_left = ch1_left + ch2_left + ch3_left + ch4_left / 4;
const mixed_right = ch1_right + ch2_right + ch3_right + ch4_right / 4;
// FIXME: Obscure behaviour?
// Apply NR50 Volume Modifications
const left_master_vol = (@intToFloat(f32, self.psg_cnt.left_vol.read()) + 1.0) / 7;
const right_master_vol = (@intToFloat(f32, self.psg_cnt.right_vol.read()) + 1.0) / 7;
const psg_left = mixed_left * left_master_vol;
const psg_right = mixed_right * right_master_vol;
// Sample Dma Channels
const chA_sample = if (self.dma_cnt.chA_vol.read()) self.chA.amplitude() * 4 else self.chA.amplitude() * 2;
const chA_left = if (self.dma_cnt.chA_left.read()) chA_sample else 0;
const chA_right = if (self.dma_cnt.chA_right.read()) chA_sample else 0;
const chB_sample = if (self.dma_cnt.chB_vol.read()) self.chB.amplitude() * 4 else self.chB.amplitude() * 2;
const chB_left = if (self.dma_cnt.chB_left.read()) chB_sample else 0;
const chB_right = if (self.dma_cnt.chB_right.read()) chB_sample else 0;
// Mix all Channels
const left = (chA_left + chB_left + psg_left) / 3;
const right = (chA_right + chB_right + psg_right) / 3;
if (self.sampling_cycle != self.bias.sampling_cycle.read()) {
log.info("Sampling Cycle changed from {} to {}", .{ self.sampling_cycle, self.bias.sampling_cycle.read() });
// Sample Rate Changed, Create a new Resampler since i can't figure out how to change
// the parameters of the old one
const old = self.stream;
defer SDL.SDL_FreeAudioStream(old);
self.sampling_cycle = self.bias.sampling_cycle.read();
self.stream = SDL.SDL_NewAudioStream(SDL.AUDIO_F32, 2, @intCast(c_int, self.sampleRate()), SDL.AUDIO_F32, 2, host_sample_rate) orelse unreachable;
}
while (SDL.SDL_AudioStreamAvailable(self.stream) > (@sizeOf(f32) * 2 * 0x800)) {}
_ = SDL.SDL_AudioStreamPut(self.stream, &[2]f32{ left, right }, 2 * @sizeOf(f32));
self.sched.push(.SampleAudio, self.sched.now() + self.sampleTicks() - late);
}
fn sampleTicks(self: *const Self) u64 {
return (1 << 24) / self.sampleRate();
}
fn sampleRate(self: *const Self) u64 {
return @as(u64, 1) << (15 + @as(u6, self.bias.sampling_cycle.read()));
}
pub fn tickFrameSequencer(self: *Self, late: u64) void {
self.fs.tick();
switch (self.fs.step) {
7 => self.tickEnvelopes(), // Clock Envelope
0, 4 => self.tickLengths(), // Clock Length
2, 6 => {
// Clock Length and Sweep
self.tickLengths();
self.ch1.tickSweep();
},
1, 3, 5 => {},
}
self.sched.push(.FrameSequencer, self.sched.now() + ((1 << 24) / 512) - late);
}
fn tickLengths(self: *Self) void {
self.ch1.tickLength();
self.ch2.tickLength();
self.ch3.tickLength();
self.ch4.tickLength();
}
fn tickEnvelopes(self: *Self) void {
self.ch1.tickEnvelope();
self.ch2.tickEnvelope();
self.ch4.tickEnvelope();
}
pub fn handleTimerOverflow(self: *Self, cpu: *Arm7tdmi, tim_id: u3) void {
if (!self.cnt.apu_enable.read()) return;
if (@boolToInt(self.dma_cnt.chA_timer.read()) == tim_id) {
self.chA.updateSample();
if (self.chA.len() <= 15) cpu.bus.dma[1].requestSoundDma(0x0400_00A0);
}
if (@boolToInt(self.dma_cnt.chB_timer.read()) == tim_id) {
self.chB.updateSample();
if (self.chB.len() <= 15) cpu.bus.dma[2].requestSoundDma(0x0400_00A4);
}
}
fn highPass(self: *Self, sample: f32, enabled: bool) f32 {
return if (enabled) blk: {
const out = sample - self.capacitor;
const charge_factor =
std.math.pow(f32, 0.999958, @intToFloat(f32, (1 << 22) / self.sampleRate()));
self.capacitor = sample - out * charge_factor;
break :blk out;
} else 0.0;
}
};
const ToneSweep = struct {
const Self = @This();
/// NR10
sweep: io.Sweep,
/// NR11
duty: io.Duty,
/// NR12
envelope: io.Envelope,
/// NR13, NR14
freq: io.Frequency,
/// Length Functionality
len_dev: LengthDevice,
/// Sweep Functionality
sweep_dev: SweepDevice,
/// Envelope Functionality
env_dev: EnvelopeDevice,
/// Frequency Timer Functionality
square: SquareWave,
enabled: bool,
sample: u8,
const SweepDevice = struct {
const This = @This();
timer: u8,
enabled: bool,
shadow: u11,
pub fn init() This {
return .{
.timer = 0,
.enabled = false,
.shadow = 0,
};
}
pub fn tick(this: *This, ch1: *Self) void {
if (this.timer != 0) this.timer -= 1;
if (this.timer == 0) {
const period = ch1.sweep.period.read();
this.timer = if (period == 0) 8 else period;
if (this.enabled and period != 0) {
const new_freq = this.calcFrequency(ch1);
if (new_freq <= 0x7FF and ch1.sweep.shift.read() != 0) {
ch1.freq.frequency.write(@truncate(u11, new_freq));
this.shadow = @truncate(u11, new_freq);
_ = this.calcFrequency(ch1);
}
}
}
}
fn calcFrequency(this: *This, ch1: *Self) u12 {
const shadow = @as(u12, this.shadow);
const shadow_shifted = shadow >> ch1.sweep.shift.read();
const decrease = ch1.sweep.direction.read();
const freq = if (decrease) shadow - shadow_shifted else shadow + shadow_shifted;
if (freq > 0x7FF) ch1.enabled = false;
return freq;
}
};
fn init(sched: *Scheduler) Self {
return .{
.sweep = .{ .raw = 0 },
.duty = .{ .raw = 0 },
.envelope = .{ .raw = 0 },
.freq = .{ .raw = 0 },
.sample = 0,
.enabled = false,
.square = SquareWave.init(sched),
.len_dev = LengthDevice.init(),
.sweep_dev = SweepDevice.init(),
.env_dev = EnvelopeDevice.init(),
};
}
fn reset(self: *Self) void {
self.sweep.raw = 0;
self.duty.raw = 0;
self.envelope.raw = 0;
self.freq.raw = 0;
self.sample = 0;
self.enabled = false;
}
fn tickSweep(self: *Self) void {
self.sweep_dev.tick(self);
}
pub fn tickLength(self: *Self) void {
self.len_dev.tick(self.freq.length_enable.read(), &self.enabled);
}
pub fn tickEnvelope(self: *Self) void {
self.env_dev.tick(self.envelope);
}
pub fn channelTimerOverflow(self: *Self, late: u64) void {
self.square.handleTimerOverflow(.Ch1, self.freq, late);
self.sample = 0;
if (!self.isDacEnabled()) return;
self.sample = if (self.enabled) self.square.sample(self.duty) * self.env_dev.vol else 0;
}
fn amplitude(self: *const Self) f32 {
return (@intToFloat(f32, self.sample) / 7.5) - 1.0;
}
/// NR11, NR12
pub fn setSoundCntH(self: *Self, value: u16) void {
self.setDuty(@truncate(u8, value));
self.setEnvelope(@truncate(u8, value >> 8));
}
/// NR11
pub fn setDuty(self: *Self, value: u8) void {
self.duty.raw = value;
self.len_dev.timer = @as(u7, 64) - @truncate(u6, value);
}
/// NR12
pub fn setEnvelope(self: *Self, value: u8) void {
self.envelope.raw = value;
if (!self.isDacEnabled()) self.enabled = false;
}
/// NR13, NR14
pub fn setFreq(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setFreqLow(@truncate(u8, value));
self.setFreqHigh(fs, @truncate(u8, value >> 8));
}
/// NR13
pub fn setFreqLow(self: *Self, byte: u8) void {
self.freq.raw = (self.freq.raw & 0xFF00) | byte;
}
/// NR14
pub fn setFreqHigh(self: *Self, fs: *const FrameSequencer, byte: u8) void {
var new: io.Frequency = .{ .raw = (@as(u16, byte) << 8) | (self.freq.raw & 0xFF) };
if (new.trigger.read()) {
self.enabled = true;
if (self.len_dev.timer == 0) {
self.len_dev.timer =
if (!fs.isLengthNext() and new.length_enable.read()) 63 else 64;
}
self.square.reloadTimer(.Ch1, self.freq.frequency.read());
// Reload Envelope period and timer
self.env_dev.timer = self.envelope.period.read();
if (fs.isEnvelopeNext() and self.env_dev.timer != 0b111) self.env_dev.timer += 1;
self.env_dev.vol = self.envelope.init_vol.read();
// Sweep Trigger Behaviour
const sw_period = self.sweep.period.read();
const sw_shift = self.sweep.shift.read();
self.sweep_dev.shadow = self.freq.frequency.read();
self.sweep_dev.timer = if (sw_period == 0) 8 else sw_period;
self.sweep_dev.enabled = sw_period != 0 or sw_shift != 0;
if (sw_shift != 0) _ = self.sweep_dev.calcFrequency(self);
self.enabled = self.isDacEnabled();
}
self.square.updateToneSweepLength(fs, self, new);
self.freq = new;
}
fn isDacEnabled(self: *const Self) bool {
return self.envelope.raw & 0xF8 != 0;
}
};
const Tone = struct {
const Self = @This();
/// NR21
duty: io.Duty,
/// NR22
envelope: io.Envelope,
/// NR23, NR24
freq: io.Frequency,
/// Length Functionarlity
len_dev: LengthDevice,
/// Envelope Functionality
env_dev: EnvelopeDevice,
/// FrequencyTimer Functionality
square: SquareWave,
enabled: bool,
sample: u8,
fn init(sched: *Scheduler) Self {
return .{
.duty = .{ .raw = 0 },
.envelope = .{ .raw = 0 },
.freq = .{ .raw = 0 },
.enabled = false,
.square = SquareWave.init(sched),
.len_dev = LengthDevice.init(),
.env_dev = EnvelopeDevice.init(),
.sample = 0,
};
}
fn reset(self: *Self) void {
self.duty.raw = 0;
self.envelope.raw = 0;
self.freq.raw = 0;
self.sample = 0;
self.enabled = false;
}
pub fn tickLength(self: *Self) void {
self.len_dev.tick(self.freq.length_enable.read(), &self.enabled);
}
pub fn tickEnvelope(self: *Self) void {
self.env_dev.tick(self.envelope);
}
pub fn channelTimerOverflow(self: *Self, late: u64) void {
self.square.handleTimerOverflow(.Ch2, self.freq, late);
self.sample = 0;
if (!self.isDacEnabled()) return;
self.sample = if (self.enabled) self.square.sample(self.duty) * self.env_dev.vol else 0;
}
fn amplitude(self: *const Self) f32 {
return (@intToFloat(f32, self.sample) / 7.5) - 1.0;
}
/// NR21, NR22
pub fn setSoundCntH(self: *Self, value: u16) void {
self.setDuty(@truncate(u8, value));
self.setEnvelope(@truncate(u8, value >> 8));
}
/// NR21
pub fn setDuty(self: *Self, value: u8) void {
self.duty.raw = value;
self.len_dev.timer = @as(u7, 64) - @truncate(u6, value);
}
/// NR22
pub fn setEnvelope(self: *Self, value: u8) void {
self.envelope.raw = value;
if (!self.isDacEnabled()) self.enabled = false;
}
/// NR23, NR24
pub fn setFreq(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setFreqLow(@truncate(u8, value));
self.setFreqHigh(fs, @truncate(u8, value >> 8));
}
/// NR23
pub fn setFreqLow(self: *Self, byte: u8) void {
self.freq.raw = (self.freq.raw & 0xFF00) | byte;
}
/// NR24
pub fn setFreqHigh(self: *Self, fs: *const FrameSequencer, byte: u8) void {
var new: io.Frequency = .{ .raw = (@as(u16, byte) << 8) | (self.freq.raw & 0xFF) };
if (new.trigger.read()) {
self.enabled = true;
if (self.len_dev.timer == 0) {
self.len_dev.timer =
if (!fs.isLengthNext() and new.length_enable.read()) 63 else 64;
}
self.square.reloadTimer(.Ch2, self.freq.frequency.read());
// Reload Envelope period and timer
self.env_dev.timer = self.envelope.period.read();
if (fs.isEnvelopeNext() and self.env_dev.timer != 0b111) self.env_dev.timer += 1;
self.env_dev.vol = self.envelope.init_vol.read();
self.enabled = self.isDacEnabled();
}
self.square.updateToneLength(fs, self, new);
self.freq = new;
}
fn isDacEnabled(self: *const Self) bool {
return self.envelope.raw & 0xF8 != 0;
}
};
const Wave = struct {
const Self = @This();
/// Write-only
/// NR30
select: io.WaveSelect,
/// NR31
length: u8,
/// NR32
vol: io.WaveVolume,
/// NR33, NR34
freq: io.Frequency,
/// Length Functionarlity
len_dev: LengthDevice,
wave_dev: WaveDevice,
enabled: bool,
sample: u8,
fn init(sched: *Scheduler) Self {
return .{
.select = .{ .raw = 0 },
.vol = .{ .raw = 0 },
.freq = .{ .raw = 0 },
.length = 0,
.len_dev = LengthDevice.init(),
.wave_dev = WaveDevice.init(sched),
.enabled = false,
.sample = 0,
};
}
fn reset(self: *Self) void {
self.select.raw = 0;
self.length = 0;
self.vol.raw = 0;
self.freq.raw = 0;
self.sample = 0;
self.enabled = false;
}
pub fn tickLength(self: *Self) void {
self.len_dev.tick(self.freq.length_enable.read(), &self.enabled);
}
/// NR30
pub fn setWaveSelect(self: *Self, value: u8) void {
self.select.raw = value;
if (!self.select.enabled.read()) self.enabled = false;
}
/// NR31, NR32
pub fn setSoundCntH(self: *Self, value: u16) void {
self.setLength(@truncate(u8, value));
self.vol.raw = (@truncate(u8, value >> 8));
}
/// NR31
pub fn setLength(self: *Self, len: u8) void {
self.length = len;
self.len_dev.timer = 256 - @as(u9, len);
}
/// NR33, NR34
pub fn setFreq(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.setFreqLow(@truncate(u8, value));
self.setFreqHigh(fs, @truncate(u8, value >> 8));
}
/// NR33
pub fn setFreqLow(self: *Self, byte: u8) void {
self.freq.raw = (self.freq.raw & 0xFF00) | byte;
}
/// NR34
pub fn setFreqHigh(self: *Self, fs: *const FrameSequencer, byte: u8) void {
var new: io.Frequency = .{ .raw = (@as(u16, byte) << 8) | (self.freq.raw & 0xFF) };
if (new.trigger.read()) {
self.enabled = true;
if (self.len_dev.timer == 0) {
self.len_dev.timer =
if (!fs.isLengthNext() and new.length_enable.read()) 255 else 256;
}
// Update The Frequency Timer
self.wave_dev.reloadTimer(self.freq.frequency.read());
self.wave_dev.offset = 0;
self.enabled = self.select.enabled.read();
}
self.wave_dev.updateLength(fs, self, new);
self.freq = new;
}
pub fn channelTimerOverflow(self: *Self, late: u64) void {
self.wave_dev.handleTimerOverflow(self.freq, self.select, late);
self.sample = 0;
if (!self.select.enabled.read()) return;
self.sample = if (self.enabled) self.wave_dev.sample(self.select) >> self.wave_dev.shift(self.vol) else 0;
}
fn amplitude(self: *const Self) f32 {
return (@intToFloat(f32, self.sample) / 7.5) - 1.0;
}
};
const Noise = struct {
const Self = @This();
const ticks = (1 << 24) / (1 << 22);
/// Write-only
/// NR41
len: u6,
/// NR42
envelope: io.Envelope,
/// NR43
poly: io.PolyCounter,
/// NR44
cnt: io.NoiseControl,
/// Length Functionarlity
len_dev: LengthDevice,
/// Envelope Functionality
env_dev: EnvelopeDevice,
// Linear Feedback Shift Register
lfsr: Lfsr,
enabled: bool,
sample: u8,
fn init(sched: *Scheduler) Self {
return .{
.len = 0,
.envelope = .{ .raw = 0 },
.poly = .{ .raw = 0 },
.cnt = .{ .raw = 0 },
.enabled = false,
.len_dev = LengthDevice.init(),
.env_dev = EnvelopeDevice.init(),
.lfsr = Lfsr.init(sched),
.sample = 0,
};
}
fn reset(self: *Self) void {
self.len = 0;
self.envelope.raw = 0;
self.poly.raw = 0;
self.cnt.raw = 0;
self.sample = 0;
self.enabled = false;
}
pub fn tickLength(self: *Self) void {
self.len_dev.tick(self.cnt.length_enable.read(), &self.enabled);
}
pub fn tickEnvelope(self: *Self) void {
self.env_dev.tick(self.envelope);
}
/// NR41
pub fn setLength(self: *Self, len: u8) void {
self.len = @truncate(u6, len);
self.len_dev.timer = @as(u7, 64) - @truncate(u6, len);
}
/// NR42
pub fn setEnvelope(self: *Self, value: u8) void {
self.envelope.raw = value;
if (!self.isDacEnabled()) self.enabled = false;
}
/// NR41, NR42
pub fn setSoundCntL(self: *Self, value: u16) void {
self.setLength(@truncate(u8, value));
self.setEnvelope(@truncate(u8, value >> 8));
}
/// NR43, NR44
pub fn setSoundCntH(self: *Self, fs: *const FrameSequencer, value: u16) void {
self.poly.raw = @truncate(u8, value);
self.setCnt(fs, @truncate(u8, value >> 8));
}
/// NR44
pub fn setCnt(self: *Self, fs: *const FrameSequencer, byte: u8) void {
var new: io.NoiseControl = .{ .raw = byte };
if (new.trigger.read()) {
self.enabled = true;
if (self.len_dev.timer == 0) {
self.len_dev.timer =
if (!fs.isLengthNext() and new.length_enable.read()) 63 else 64;
}
// Update The Frequency Timer
self.lfsr.reloadTimer(self.poly);
self.lfsr.shift = 0x7FFF;
// Update Envelope and Volume
self.env_dev.timer = self.envelope.period.read();
if (fs.isEnvelopeNext() and self.env_dev.timer != 0b111) self.env_dev.timer += 1;
self.env_dev.vol = self.envelope.init_vol.read();
self.enabled = self.isDacEnabled();
}
self.lfsr.updateLength(fs, self, new);
self.cnt = new;
}
pub fn channelTimerOverflow(self: *Self, late: u64) void {
self.lfsr.handleTimerOverflow(self.poly, late);
self.sample = 0;
if (!self.isDacEnabled()) return;
self.sample = if (self.enabled) self.lfsr.sample() * self.env_dev.vol else 0;
}
fn amplitude(self: *const Self) f32 {
return (@intToFloat(f32, self.sample) / 7.5) - 1.0;
}
fn isDacEnabled(self: *const Self) bool {
return self.envelope.raw & 0xF8 != 0x00;
}
};
pub fn DmaSound(comptime kind: DmaSoundKind) type {
return struct {
const Self = @This();
fifo: SoundFifo,
kind: DmaSoundKind,
sample: i8,
fn init() Self {
return .{
.fifo = SoundFifo.init(),
.kind = kind,
.sample = 0,
};
}
pub fn push(self: *Self, value: u32) void {
self.fifo.write(&intToBytes(u32, value)) catch {};
}
pub fn len(self: *const Self) usize {
return self.fifo.readableLength();
}
pub fn updateSample(self: *Self) void {
if (self.fifo.readItem()) |sample| self.sample = @bitCast(i8, sample);
}
pub fn amplitude(self: *const Self) f32 {
return @intToFloat(f32, self.sample) / 127.5 - (1 / 255);
}
};
}
const DmaSoundKind = enum {
A,
B,
};
const FrameSequencer = struct {
const Self = @This();
step: u3,
pub fn init() Self {
return .{ .step = 0 };
}
pub fn tick(self: *Self) void {
self.step +%= 1;
}
fn isLengthNext(self: *const Self) bool {
return (self.step +% 1) & 1 == 0; // Steps, 0, 2, 4, and 6 clock length
}
fn isEnvelopeNext(self: *const Self) bool {
return (self.step +% 1) == 7;
}
};
const LengthDevice = struct {
const Self = @This();
timer: u9,
pub fn init() Self {
return .{ .timer = 0 };
}
fn tick(self: *Self, length_enable: bool, ch_enabled: *bool) void {
if (length_enable) {
if (self.timer == 0) return;
self.timer -= 1;
// By returning early if timer == 0, this is only
// true if timer == 0 because of the decrement we just did
if (self.timer == 0) ch_enabled.* = false;
}
}
};
const EnvelopeDevice = struct {
const Self = @This();
/// Period Timer
timer: u3,
/// Current Volume
vol: u4,
pub fn init() Self {
return .{ .timer = 0, .vol = 0 };
}
pub fn tick(self: *Self, cnt: io.Envelope) void {
if (cnt.period.read() != 0) {
if (self.timer != 0) self.timer -= 1;
if (self.timer == 0) {
self.timer = cnt.period.read();
if (cnt.direction.read()) {
if (self.vol < 0xF) self.vol += 1;
} else {
if (self.vol > 0x0) self.vol -= 1;
}
}
}
}
};
const WaveDevice = struct {
const Self = @This();
const wave_len = 0x20;
const ticks = (1 << 24) / (1 << 22);
buf: [wave_len]u8,
timer: u16,
offset: u12,
sched: *Scheduler,
pub fn init(sched: *Scheduler) Self {
return .{
.buf = [_]u8{0x00} ** wave_len,
.timer = 0,
.offset = 0,
.sched = sched,
};
}
fn reloadTimer(self: *Self, value: u11) void {
self.sched.removeScheduledEvent(.{ .ApuChannel = 2 });
const timer = (2048 - @as(u64, value)) * 4;
self.timer = @truncate(u11, timer);
self.sched.push(.{ .ApuChannel = 2 }, self.sched.now() + timer * ticks);
}
fn handleTimerOverflow(self: *Self, cnt_freq: io.Frequency, cnt_sel: io.WaveSelect, late: u64) void {
const timer = (2048 - @as(u64, cnt_freq.frequency.read())) * 2;
self.timer = @truncate(u12, timer);
if (cnt_sel.dimension.read()) {
self.offset = (self.offset + 1) % 0x40; // 0x20 bytes (both banks), which contain 2 samples each
} else {
self.offset = (self.offset + 1) % 0x20; // 0x10 bytes, which contain 2 samples each
}
self.sched.push(.{ .ApuChannel = 2 }, self.sched.now() + timer * ticks - late);
}
fn sample(self: *const Self, cnt: io.WaveSelect) u4 {
const base = if (cnt.bank.read()) @as(u32, 0x10) else 0;
const value = self.buf[base + self.offset / 2];
return if (self.offset & 1 == 0) @truncate(u4, value >> 4) else @truncate(u4, value);
}
fn shift(_: *const Self, cnt: io.WaveVolume) u2 {
return switch (cnt.kind.read()) {
0b00 => 3, // Mute / Zero
0b01 => 0, // 100% Volume
0b10 => 1, // 50% Volume
0b11 => 2, // 25% Volume
};
}
fn updateLength(_: *Self, fs: *const FrameSequencer, ch3: *Wave, new: io.Frequency) void {
// Write to NRx4 when FS's next step is not one that clocks the length counter
if (!fs.isLengthNext()) {
// If length_enable was disabled but is now enabled and length timer is not 0 already,
// decrement the length timer
if (!ch3.freq.length_enable.read() and new.length_enable.read() and ch3.len_dev.timer != 0) {
ch3.len_dev.timer -= 1;
// If Length Timer is now 0 and trigger is clear, disable the channel
if (ch3.len_dev.timer == 0 and !new.trigger.read()) ch3.enabled = false;
}
}
}
pub fn write(self: *Self, comptime T: type, cnt: io.WaveSelect, addr: u32, value: T) void {
// TODO: Handle writes when Channel 3 is disabled
const base = if (!cnt.bank.read()) @as(u32, 0x10) else 0; // Write to the Opposite Bank in Use
switch (T) {
u32 => {
self.buf[base + addr - 0x0400_0090 + 3] = @truncate(u8, value >> 24);
self.buf[base + addr - 0x0400_0090 + 2] = @truncate(u8, value >> 16);
self.buf[base + addr - 0x0400_0090 + 1] = @truncate(u8, value >> 8);
self.buf[base + addr - 0x0400_0090] = @truncate(u8, value);
},
u16 => {
self.buf[base + addr - 0x0400_0090 + 1] = @truncate(u8, value >> 8);
self.buf[base + addr - 0x0400_0090] = @truncate(u8, value);
},
u8 => {
self.buf[base + addr - 0x0400_0090] = value;
},
else => @compileError("Ch3 WAVERAM: Unsupported write width"),
}
}
};
const SquareWave = struct {
const Self = @This();
const ticks: u64 = (1 << 24) / (1 << 22);
pos: u3,
sched: *Scheduler,
timer: u12,
pub fn init(sched: *Scheduler) Self {
return .{
.timer = 0,
.pos = 0,
.sched = sched,
};
}
const ChannelKind = enum { Ch1, Ch2 };
fn updateToneSweepLength(_: *Self, fs: *const FrameSequencer, ch1: *ToneSweep, new: io.Frequency) void {
// Write to NRx4 when FS's next step is not one that clocks the length counter
if (!fs.isLengthNext()) {
// If length_enable was disabled but is now enabled and length timer is not 0 already,
// decrement the length timer
if (!ch1.freq.length_enable.read() and new.length_enable.read() and ch1.len_dev.timer != 0) {
ch1.len_dev.timer -= 1;
// If Length Timer is now 0 and trigger is clear, disable the channel
if (ch1.len_dev.timer == 0 and !new.trigger.read()) ch1.enabled = false;
}
}
}
fn updateToneLength(_: *Self, fs: *const FrameSequencer, ch2: *Tone, new: io.Frequency) void {
// Write to NRx4 when FS's next step is not one that clocks the length counter
if (!fs.isLengthNext()) {
// If length_enable was disabled but is now enabled and length timer is not 0 already,
// decrement the length timer
if (!ch2.freq.length_enable.read() and new.length_enable.read() and ch2.len_dev.timer != 0) {
ch2.len_dev.timer -= 1;
// If Length Timer is now 0 and trigger is clear, disable the channel
if (ch2.len_dev.timer == 0 and !new.trigger.read()) ch2.enabled = false;
}
}
}
fn handleTimerOverflow(self: *Self, comptime kind: ChannelKind, cnt: io.Frequency, late: u64) void {
const timer = (2048 - @as(u64, cnt.frequency.read())) * 4;
self.timer = @truncate(u12, timer);
self.pos +%= 1;
self.sched.push(.{ .ApuChannel = if (kind == .Ch1) 0 else 1 }, self.sched.now() + timer * ticks - late);
}
fn reloadTimer(self: *Self, comptime kind: ChannelKind, value: u11) void {
self.sched.removeScheduledEvent(.{ .ApuChannel = if (kind == .Ch1) 0 else 1 });
const tmp: u64 = (2048 - @as(u64, value)) * 4; // What Freq Timer should be assuming no weird behaviour
const timer = (tmp & ~@as(u64, 0x3)) | self.timer & 0x3; // Keep the last two bits from the old timer
self.timer = @truncate(u12, timer);
self.sched.push(.{ .ApuChannel = if (kind == .Ch1) 0 else 1 }, self.sched.now() + timer * ticks);
}
fn sample(self: *const Self, cnt: io.Duty) u1 {
const pattern = cnt.pattern.read();
const i = self.pos ^ 7; // index of 0 should get highest bit
const result = switch (pattern) {
0b00 => @as(u8, 0b00000001) >> i, // 12.5%
0b01 => @as(u8, 0b00000011) >> i, // 25%
0b10 => @as(u8, 0b00001111) >> i, // 50%
0b11 => @as(u8, 0b11111100) >> i, // 75%
};
return @truncate(u1, result);
}
};
// Linear Feedback Shift Register
const Lfsr = struct {
const Self = @This();
const ticks = (1 << 24) / (1 << 22);
shift: u15,
timer: u16,
sched: *Scheduler,
pub fn init(sched: *Scheduler) Self {
return .{
.shift = 0,
.timer = 0,
.sched = sched,
};
}
fn sample(self: *const Self) u1 {
return @truncate(u1, ~self.shift);
}
fn updateLength(_: *Self, fs: *const FrameSequencer, ch4: *Noise, new: io.NoiseControl) void {
// Write to NRx4 when FS's next step is not one that clocks the length counter
if (!fs.isLengthNext()) {
// If length_enable was disabled but is now enabled and length timer is not 0 already,
// decrement the length timer
if (!ch4.cnt.length_enable.read() and new.length_enable.read() and ch4.len_dev.timer != 0) {
ch4.len_dev.timer -= 1;
// If Length Timer is now 0 and trigger is clear, disable the channel
if (ch4.len_dev.timer == 0 and !new.trigger.read()) ch4.enabled = false;
}
}
}
fn reloadTimer(self: *Self, poly: io.PolyCounter) void {
self.sched.removeScheduledEvent(.{ .ApuChannel = 3 });
const div = Self.divisor(poly.div_ratio.read());
const timer = @as(u64, div << poly.shift.read());
self.sched.push(.{ .ApuChannel = 3 }, self.sched.now() + timer * ticks);
}
fn handleTimerOverflow(self: *Self, poly: io.PolyCounter, late: u64) void {
const div = Self.divisor(poly.div_ratio.read());
const timer = @as(u64, div << poly.shift.read());
const tmp = (self.shift & 1) ^ ((self.shift & 2) >> 1);
self.shift = (self.shift >> 1) | (tmp << 14);
if (poly.width.read())
self.shift = (self.shift & ~@as(u15, 0x40)) | tmp << 6;
self.sched.push(.{ .ApuChannel = 3 }, self.sched.now() + timer * ticks - late);
}
fn divisor(code: u3) u16 {
if (code == 0) return 8;
return @as(u16, code) << 4;
}
};