const std = @import("std"); const io = @import("bus/io.zig"); const EventKind = @import("scheduler.zig").EventKind; const Scheduler = @import("scheduler.zig").Scheduler; const Bit = @import("bitfield").Bit; const Bitfield = @import("bitfield").Bitfield; const Allocator = std.mem.Allocator; pub const width = 240; pub const height = 160; pub const framebuf_pitch = width * @sizeOf(u16); pub const Ppu = struct { const Self = @This(); // Registers bg0: Background, bg1: Background, bg2: Background, bg3: Background, dispcnt: io.DisplayControl, dispstat: io.DisplayStatus, vcount: io.VCount, vram: Vram, palette: Palette, oam: Oam, sched: *Scheduler, framebuf: []u8, alloc: Allocator, pub fn init(alloc: Allocator, sched: *Scheduler) !Self { // Queue first Hblank sched.push(.Draw, sched.tick + (240 * 4)); const framebuf = try alloc.alloc(u8, framebuf_pitch * height); std.mem.set(u8, framebuf, 0); return Self{ .vram = try Vram.init(alloc), .palette = try Palette.init(alloc), .oam = try Oam.init(alloc), .sched = sched, .framebuf = framebuf, .alloc = alloc, // Registers .bg0 = Background.init(), .bg1 = Background.init(), .bg2 = Background.init(), .bg3 = Background.init(), .dispcnt = .{ .raw = 0x0000 }, .dispstat = .{ .raw = 0x0000 }, .vcount = .{ .raw = 0x0000 }, }; } pub fn deinit(self: Self) void { self.alloc.free(self.framebuf); self.vram.deinit(); self.palette.deinit(); } pub fn drawScanline(self: *Self) void { const bg_mode = self.dispcnt.bg_mode.read(); const scanline = self.vcount.scanline.read(); switch (bg_mode) { 0x0 => { // TODO: Consider more than BG0 // TODO: Consider Scrolling // The Current Scanline which will be copied into // the Framebuffer const start = framebuf_pitch * @as(usize, scanline); var scanline_buf = std.mem.zeroes([framebuf_pitch]u8); // A Tile in a charblock is a byte, while a Screen Entry is a halfword const charblock_len: u32 = 0x4000; const screenblock_len: u32 = 0x800; const cbb: u2 = self.bg0.cnt.char_base.read(); // Char Block Base const sbb: u5 = self.bg0.cnt.screen_base.read(); // Screen Block Base const is_8bpp: bool = self.bg0.cnt.colour_mode.read(); // Colour Mode const size: u2 = self.bg0.cnt.size.read(); // Background Size // In 4bpp: 1 byte represents two pixels so the length is (8 x 8) / 2 // In 8bpp: 1 byte represents one pixel so the length is 8 x 8 const tile_len = if (is_8bpp) @as(u32, 0x40) else 0x20; const tile_row_offset = if (is_8bpp) @as(u32, 0x8) else 0x4; // 0x0600_000 is implied because we can access VRAM without the Bus const char_base: u32 = charblock_len * @as(u32, cbb); const screen_base: u32 = screenblock_len * @as(u32, sbb); const y = @as(u32, scanline); var x: u32 = 0; while (x < width) : (x += 1) { // Grab the Screen Entry from VRAM const entry_addr = screen_base + tilemapOffset(size, x, y); const entry = @bitCast(ScreenEntry, @as(u16, self.vram.buf[entry_addr + 1]) << 8 | @as(u16, self.vram.buf[entry_addr])); // Calculate the Address of the Tile in the designated Charblock // We also take this opportunity to flip tiles if necessary const tile_id: u32 = entry.tile_id.read(); const row = if (entry.h_flip.read()) 7 - (y % 8) else y % 8; // Determine on which row in a tile we're on const tile_addr = char_base + (tile_len * tile_id) + (tile_row_offset * row); // Calculate on which column in a tile we're on // Similarly to when we calculated the row, if we're in 4bpp we want to account // for 1 byte consisting of two pixels const col = if (entry.v_flip.read()) 7 - (x % 8) else x % 8; var tile = self.vram.buf[tile_addr + if (is_8bpp) col else col / 2]; // If we're in 8bpp, then the tile value is an index into the palette, // If we're in 4bpp, we have to account for a pal bank value in the Screen entry // and then we can index the palette const colour = if (!is_8bpp) blk: { tile = if (col & 1 == 1) tile >> 4 else tile & 0xF; const pal_bank: u8 = @as(u8, entry.palette_bank.read()) << 4; break :blk pal_bank | tile; } else tile; std.mem.copy(u8, scanline_buf[x * 2 ..][0..2], self.palette.buf[colour * 2 ..][0..2]); } std.mem.copy(u8, self.framebuf[start..][0..framebuf_pitch], &scanline_buf); }, 0x3 => { const start = framebuf_pitch * @as(usize, scanline); std.mem.copy(u8, self.framebuf[start..][0..framebuf_pitch], self.vram.buf[start..][0..framebuf_pitch]); }, 0x4 => { const select = self.dispcnt.frame_select.read(); const vram_start = width * @as(usize, scanline); const buf_start = vram_start * @sizeOf(u16); const start = vram_start + if (select) 0xA000 else @as(usize, 0); const end = start + width; // Each Entry is only a byte long // Render Current Scanline for (self.vram.buf[start..end]) |byte, i| { const id = byte * 2; const j = i * @sizeOf(u16); std.mem.copy(u8, self.framebuf[(buf_start + j)..][0..2], self.palette.buf[id..][0..2]); } }, else => std.debug.panic("[PPU] TODO: Implement BG Mode {}", .{bg_mode}), } } fn tilemapOffset(size: u2, x: u32, y: u32) u32 { // Current Row: (y % PIXEL_COUNT) / 8 // Current COlumn: (x % PIXEL_COUNT) / 8 // Length of 1 row of Screen Entries: 0x40 // Length of 1 Screen Entry: 0x2 is the size of a screen entry return switch (size) { 0 => (y % 256 / 8) * 0x40 + (x % 256 / 8) * 2, // 256 x 256 1 => (y % 512 / 8) * 0x40 + (x % 256 / 8) * 2, // 512 x 256 2 => (y % 256 / 8) * 0x40 + (x % 512 / 8) * 2, // 256 x 512 3 => (y % 512 / 8) * 0x40 + (x % 512 / 8) * 2, // 512 x 512 }; } }; const Palette = struct { const Self = @This(); buf: []u8, alloc: Allocator, fn init(alloc: Allocator) !Self { const buf = try alloc.alloc(u8, 0x400); std.mem.set(u8, buf, 0); return Self{ .buf = buf, .alloc = alloc, }; } fn deinit(self: Self) void { self.alloc.free(self.buf); } pub fn get32(self: *const Self, idx: usize) u32 { return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx)); } pub fn set32(self: *Self, idx: usize, word: u32) void { self.set16(idx + 2, @truncate(u16, word >> 16)); self.set16(idx, @truncate(u16, word)); } pub fn get16(self: *const Self, idx: usize) u16 { return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]); } pub fn set16(self: *Self, idx: usize, halfword: u16) void { self.buf[idx + 1] = @truncate(u8, halfword >> 8); self.buf[idx] = @truncate(u8, halfword); } pub fn get8(self: *const Self, idx: usize) u8 { return self.buf[idx]; } }; const Vram = struct { const Self = @This(); buf: []u8, alloc: Allocator, fn init(alloc: Allocator) !Self { const buf = try alloc.alloc(u8, 0x18000); std.mem.set(u8, buf, 0); return Self{ .buf = buf, .alloc = alloc, }; } fn deinit(self: Self) void { self.alloc.free(self.buf); } pub fn get32(self: *const Self, idx: usize) u32 { return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx)); } pub fn set32(self: *Self, idx: usize, word: u32) void { self.set16(idx + 2, @truncate(u16, word >> 16)); self.set16(idx, @truncate(u16, word)); } pub fn get16(self: *const Self, idx: usize) u16 { return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]); } pub fn set16(self: *Self, idx: usize, halfword: u16) void { self.buf[idx + 1] = @truncate(u8, halfword >> 8); self.buf[idx] = @truncate(u8, halfword); } pub fn get8(self: *const Self, idx: usize) u8 { return self.buf[idx]; } }; const Oam = struct { const Self = @This(); buf: []u8, alloc: Allocator, fn init(alloc: Allocator) !Self { const buf = try alloc.alloc(u8, 0x400); std.mem.set(u8, buf, 0); return Self{ .buf = buf, .alloc = alloc, }; } pub fn get32(self: *const Self, idx: usize) u32 { return (@as(u32, self.buf[idx + 3]) << 24) | (@as(u32, self.buf[idx + 2]) << 16) | (@as(u32, self.buf[idx + 1]) << 8) | (@as(u32, self.buf[idx])); } pub fn set32(self: *Self, idx: usize, word: u32) void { self.buf[idx + 3] = @truncate(u8, word >> 24); self.buf[idx + 2] = @truncate(u8, word >> 16); self.buf[idx + 1] = @truncate(u8, word >> 8); self.buf[idx] = @truncate(u8, word); } pub fn get16(self: *const Self, idx: usize) u16 { return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]); } pub fn set16(self: *Self, idx: usize, halfword: u16) void { self.buf[idx + 1] = @truncate(u8, halfword >> 8); self.buf[idx] = @truncate(u8, halfword); } pub fn get8(self: *const Self, idx: usize) u8 { return self.buf[idx]; } }; const Background = struct { const Self = @This(); /// Read / Write cnt: io.BackgroundControl, /// Write Only hofs: io.BackgroundOffset, /// Write Only vofs: io.BackgroundOffset, fn init() Self { return .{ .cnt = .{ .raw = 0x0000 }, .hofs = .{ .raw = 0x0000 }, .vofs = .{ .raw = 0x0000 }, }; } }; const ScreenEntry = extern union { tile_id: Bitfield(u16, 0, 10), h_flip: Bit(u16, 10), v_flip: Bit(u16, 11), palette_bank: Bitfield(u16, 12, 4), raw: u16, };