const std = @import("std"); const util = @import("util.zig"); const Bus = @import("bus.zig").Bus; const Scheduler = @import("scheduler.zig").Scheduler; const comptimeDataProcessing = @import("cpu/data_processing.zig").comptimeDataProcessing; const comptimeSingleDataTransfer = @import("cpu/single_data_transfer.zig").comptimeSingleDataTransfer; const comptimeHalfSignedDataTransfer = @import("cpu/half_signed_data_transfer.zig").comptimeHalfSignedDataTransfer; pub const InstrFn = fn (*Arm7tdmi, *Bus, u32) void; const arm_lut: [0x1000]InstrFn = populate(); pub const Arm7tdmi = struct { r: [16]u32, sch: *Scheduler, bus: *Bus, cpsr: CPSR, pub fn new(scheduler: *Scheduler, bus: *Bus) @This() { return .{ .r = [_]u32{0x00} ** 16, .sch = scheduler, .bus = bus, .cpsr = .{ .inner = 0x0000_00DF }, }; } pub inline fn step(self: *@This()) u64 { std.debug.print("PC: 0x{X:} ", .{self.r[15]}); const opcode = self.fetch(); std.debug.print("opcode: 0x{X:}\n", .{opcode}); // Debug if (checkCond(&self.cpsr, opcode)) arm_lut[armIdx(opcode)](self, self.bus, opcode); return 1; } fn fetch(self: *@This()) u32 { const word = self.bus.read32(self.r[15]); self.r[15] += 4; return word; } fn fakePC(self: *const @This()) u32 { return self.r[15] + 4; } }; fn armIdx(opcode: u32) u12 { return @truncate(u12, opcode >> 20 & 0xFF) << 4 | @truncate(u12, opcode >> 4 & 0xF); } fn checkCond(cpsr: *const CPSR, opcode: u32) bool { // TODO: Should I implement an enum? return switch (@truncate(u4, opcode >> 28)) { 0x0 => cpsr.z(), // EQ - Equal 0x1 => !cpsr.z(), // NEQ - Not equal 0x2 => cpsr.c(), // CS - Unsigned higher or same 0x3 => !cpsr.c(), // CC - Unsigned lower 0x4 => cpsr.n(), // MI - Negative 0x5 => !cpsr.n(), // PL - Positive or zero 0x6 => cpsr.v(), // VS - Overflow 0x7 => !cpsr.v(), // VC - No overflow 0x8 => cpsr.c() and !cpsr.z(), // HI - unsigned higher 0x9 => !cpsr.c() and cpsr.z(), // LS - unsigned lower or same 0xA => cpsr.n() == cpsr.v(), // GE - Greater or equal 0xB => cpsr.n() != cpsr.v(), // LT - Less than 0xC => !cpsr.z() and (cpsr.n() == cpsr.z()), // GT - Greater than 0xD => cpsr.z() or (cpsr.n() != cpsr.v()), // LE - Less than or equal 0xE => true, // AL - Always 0xF => std.debug.panic("0xF is a reserved condition field", .{}), }; } fn populate() [0x1000]InstrFn { return comptime { @setEvalBranchQuota(0x5000); // TODO: Figure out exact size var lut = [_]InstrFn{undefinedInstruction} ** 0x1000; var i: usize = 0; while (i < lut.len) : (i += 1) { if (i >> 10 & 0x3 == 0b00) { const I = i >> 9 & 1 == 1; const S = i >> 4 & 1 == 1; const instrKind = i >> 5 & 0xF; lut[i] = comptimeDataProcessing(I, S, instrKind); } if (i >> 9 & 0x7 == 0b000 and i >> 3 & 1 == 1 and i & 1 == 1) { const P = i >> 8 & 1 == 1; const U = i >> 7 & 1 == 1; const I = i >> 6 & 1 == 1; const W = i >> 5 & 1 == 1; const L = i >> 4 & 1 == 1; lut[i] = comptimeHalfSignedDataTransfer(P, U, I, W, L); } if (i >> 10 & 0x3 == 0b01) { const I = i >> 9 & 1 == 1; const P = i >> 8 & 1 == 1; const U = i >> 7 & 1 == 1; const B = i >> 6 & 1 == 1; const W = i >> 5 & 1 == 1; const L = i >> 4 & 1 == 1; lut[i] = comptimeSingleDataTransfer(I, P, U, B, W, L); } if (i >> 9 & 0x7 == 0b101) { const L = i >> 8 & 1 == 1; lut[i] = comptimeBranch(L); } } return lut; }; } const CPSR = struct { inner: u32, pub fn n(self: *const @This()) bool { return self.inner >> 31 & 1 == 1; } pub fn setN(self: *@This(), set: bool) void { self.setBit(31, set); } pub fn z(self: *const @This()) bool { return self.inner >> 30 & 1 == 1; } pub fn setZ(self: *@This(), set: bool) void { self.setBit(30, set); } pub fn c(self: *const @This()) bool { return self.inner >> 29 & 1 == 1; } pub fn setC(self: *@This(), set: bool) void { self.setBit(29, set); } pub fn v(self: *const @This()) bool { return self.inner >> 28 & 1 == 1; } pub fn setV(self: *@This(), set: bool) void { self.setBit(28, set); } pub fn i(self: *const @This()) bool { return self.inner >> 7 & 1 == 1; } pub fn setI(self: *@This(), set: bool) void { self.setBit(7, set); } pub fn f(self: *const @This()) bool { return self.inner >> 6 & 1 == 1; } pub fn setF(self: *@This(), set: bool) void { self.setBit(6, set); } pub fn t(self: *const @This()) bool { return self.inner >> 5 & 1 == 1; } pub fn setT(self: *@This(), set: bool) void { self.setBit(5, set); } pub fn mode(self: *const @This()) Mode { return self.inner & 0x1F; } pub fn setMode(_: *@This(), _: Mode) void { std.debug.panic("TODO: Implement set_mode for CPSR", .{}); } fn setBit(self: *@This(), comptime bit: usize, set: bool) void { const set_val = @as(u32, @boolToInt(set)) << bit; const mask = ~(@as(u32, 1) << bit); self.inner = (self.inner & mask) | set_val; } }; const Mode = enum(u5) { User = 0b10000, FIQ = 0b10001, IRQ = 0b10010, Supervisor = 0b10011, Abort = 0b10111, Undefined = 0b11011, System = 0b11111, }; fn undefinedInstruction(_: *Arm7tdmi, _: *Bus, opcode: u32) void { const id = armIdx(opcode); std.debug.panic("[0x{X:}] 0x{X:} is an illegal opcode", .{ id, opcode }); } fn comptimeBranch(comptime L: bool) InstrFn { return struct { fn branch(cpu: *Arm7tdmi, _: *Bus, opcode: u32) void { if (L) { cpu.r[14] = cpu.r[15] - 4; } cpu.r[15] = cpu.fakePC() +% util.u32SignExtend(24, opcode << 2); } }.branch; }