const std = @import("std"); const SDL = @import("sdl2"); const config = @import("../config.zig"); const Scheduler = @import("scheduler.zig").Scheduler; const Arm7tdmi = @import("cpu.zig").Arm7tdmi; const Tracker = @import("../util.zig").FpsTracker; const Channel = @import("zba-util").Channel(Message, 0x100); pub const Message = enum { Pause, Resume, Quit }; const Timer = std.time.Timer; /// 4 Cycles in 1 dot const cycles_per_dot = 4; /// The GBA draws 228 Horizontal which each consist 308 dots /// (note: not all lines are visible) const cycles_per_frame = 228 * (308 * cycles_per_dot); //280896 /// The GBA ARM7TDMI runs at 2^24 Hz const clock_rate = 1 << 24; // 16.78MHz /// The # of nanoseconds a frame should take const frame_period = (std.time.ns_per_s * cycles_per_frame) / clock_rate; /// Exact Value: 59.7275005696Hz /// The inverse of the frame period pub const frame_rate: f64 = @intToFloat(f64, clock_rate) / cycles_per_frame; const log = std.log.scoped(.Emulation); const RunKind = enum { Unlimited, UnlimitedFPS, Limited, LimitedFPS, }; pub fn run(cpu: *Arm7tdmi, scheduler: *Scheduler, tracker: *Tracker, rx: Channel.Receiver) void { const audio_sync = config.config().guest.audio_sync and !config.config().host.mute; if (audio_sync) log.info("Audio sync enabled", .{}); if (config.config().guest.video_sync) { inner(.LimitedFPS, audio_sync, cpu, scheduler, tracker, rx); } else { inner(.UnlimitedFPS, audio_sync, cpu, scheduler, tracker, rx); } } fn inner(comptime kind: RunKind, audio_sync: bool, cpu: *Arm7tdmi, scheduler: *Scheduler, tracker: ?*Tracker, rx: Channel.Receiver) void { if (kind == .UnlimitedFPS or kind == .LimitedFPS) { std.debug.assert(tracker != null); log.info("FPS tracking enabled", .{}); } var paused: bool = false; switch (kind) { .Unlimited, .UnlimitedFPS => { log.info("Emulation w/out video sync", .{}); while (true) { if (rx.recv()) |m| switch (m) { .Quit => break, .Resume, .Pause => paused = m == .Pause, }; if (paused) continue; runFrame(scheduler, cpu); audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); if (kind == .UnlimitedFPS) tracker.?.tick(); } }, .Limited, .LimitedFPS => { log.info("Emulation w/ video sync", .{}); var timer = Timer.start() catch @panic("failed to initalize std.timer.Timer"); var wake_time: u64 = frame_period; while (true) { if (rx.recv()) |m| switch (m) { .Quit => break, .Resume, .Pause => paused = m == .Pause, }; if (paused) continue; runFrame(scheduler, cpu); const new_wake_time = videoSync(&timer, wake_time); // Spin to make up the difference of OS scheduler innacuracies // If we happen to also be syncing to audio, we choose to spin on // the amount of time needed for audio to catch up rather than // our expected wake-up time audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); if (!audio_sync) spinLoop(&timer, wake_time); wake_time = new_wake_time; if (kind == .LimitedFPS) tracker.?.tick(); } }, } } pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void { const frame_end = sched.tick + cycles_per_frame; while (sched.tick < frame_end) { if (!cpu.stepDmaTransfer()) { if (cpu.isHalted()) { // Fast-forward to next Event sched.tick = sched.nextTimestamp(); } else { cpu.step(); } } if (sched.tick >= sched.nextTimestamp()) sched.handleEvent(cpu); } } fn audioSync(audio_sync: bool, stream: *SDL.SDL_AudioStream, is_buffer_full: *bool) void { comptime std.debug.assert(@import("../platform.zig").sample_format == SDL.AUDIO_U16); const sample_size = 2 * @sizeOf(u16); const max_buf_size: c_int = 0x400; // Determine whether the APU is busy right at this moment var still_full: bool = SDL.SDL_AudioStreamAvailable(stream) > sample_size * if (is_buffer_full.*) max_buf_size >> 1 else max_buf_size; defer is_buffer_full.* = still_full; // Update APU Busy status right before exiting scope // If Busy is false, there's no need to sync here if (!still_full) return; // TODO: Refactor!!!! // while (SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1) // std.atomic.spinLoopHint(); while (true) { still_full = SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1; if (!audio_sync or !still_full) break; } } fn videoSync(timer: *Timer, wake_time: u64) u64 { // Use the OS scheduler to put the emulation thread to sleep const recalculated = sleep(timer, wake_time); // If sleep() determined we need to adjust our wake up time, do so // otherwise predict our next wake up time according to the frame period return recalculated orelse wake_time + frame_period; } // TODO: Better sleep impl? fn sleep(timer: *Timer, wake_time: u64) ?u64 { const timestamp = timer.read(); // ns_late is non zero if we are late. var ns_late = timestamp -| wake_time; // If we're more than a frame late, skip the rest of this loop // Recalculate what our new wake time should be so that we can // get "back on track" if (ns_late > frame_period) return timestamp + frame_period; const sleep_for = frame_period - ns_late; const step = 2 * std.time.ns_per_ms; // Granularity of 2ms const times = sleep_for / step; for (0..times) |_| { std.time.sleep(step); // Upon wakeup, check to see if this particular sleep was longer than expected // if so we should exit early, but probably not skip a whole frame period ns_late = timer.read() -| wake_time; if (ns_late > frame_period) return null; } return null; } fn spinLoop(timer: *Timer, wake_time: u64) void { while (timer.read() < wake_time) std.atomic.spinLoopHint(); } pub const EmuThing = struct { const Self = @This(); const Interface = @import("gdbstub").Emulator; const Allocator = std.mem.Allocator; cpu: *Arm7tdmi, scheduler: *Scheduler, pub fn init(cpu: *Arm7tdmi, scheduler: *Scheduler) Self { return .{ .cpu = cpu, .scheduler = scheduler }; } pub fn interface(self: *Self, allocator: Allocator) Interface { return Interface.init(allocator, self); } pub fn read(self: *const Self, addr: u32) u8 { return self.cpu.bus.dbgRead(u8, addr); } pub fn write(self: *Self, addr: u32, value: u8) void { self.cpu.bus.dbgWrite(u8, addr, value); } pub fn registers(self: *const Self) *[16]u32 { return &self.cpu.r; } pub fn cpsr(self: *const Self) u32 { return self.cpu.cpsr.raw; } pub fn step(self: *Self) void { const cpu = self.cpu; const sched = self.scheduler; // Is true when we have executed one (1) instruction var did_step: bool = false; // TODO: How can I make it easier to keep this in lock-step with runFrame? while (!did_step) { if (!cpu.stepDmaTransfer()) { if (cpu.isHalted()) { // Fast-forward to next Event sched.tick = sched.queue.peek().?.tick; } else { cpu.step(); did_step = true; } } if (sched.tick >= sched.nextTimestamp()) sched.handleEvent(cpu); } } }; pub fn reset(cpu: *Arm7tdmi) void { // @breakpoint(); cpu.sched.reset(); // Yes this is order sensitive, see the PPU reset for why cpu.bus.reset(); cpu.reset(); } pub fn replaceGamepak(cpu: *Arm7tdmi, file_path: []const u8) !void { try cpu.bus.replaceGamepak(file_path); reset(cpu); }