const std = @import("std"); const io = @import("bus/io.zig"); const EventKind = @import("scheduler.zig").EventKind; const Scheduler = @import("scheduler.zig").Scheduler; const Bit = @import("bitfield").Bit; const Bitfield = @import("bitfield").Bitfield; const Allocator = std.mem.Allocator; const log = std.log.scoped(.PPU); pub const width = 240; pub const height = 160; pub const framebuf_pitch = width * @sizeOf(u16); pub const Ppu = struct { const Self = @This(); // Registers bg: [4]Background, dispcnt: io.DisplayControl, dispstat: io.DisplayStatus, vcount: io.VCount, vram: Vram, palette: Palette, oam: Oam, sched: *Scheduler, framebuf: []u8, alloc: Allocator, scanline_sprites: [128]?Sprite, scanline_buf: [width]?u16, pub fn init(alloc: Allocator, sched: *Scheduler) !Self { // Queue first Hblank sched.push(.Draw, sched.tick + (240 * 4)); const framebuf = try alloc.alloc(u8, framebuf_pitch * height); std.mem.set(u8, framebuf, 0); return Self{ .vram = try Vram.init(alloc), .palette = try Palette.init(alloc), .oam = try Oam.init(alloc), .sched = sched, .framebuf = framebuf, .alloc = alloc, // Registers .bg = [_]Background{Background.init()} ** 4, .dispcnt = .{ .raw = 0x0000 }, .dispstat = .{ .raw = 0x0000 }, .vcount = .{ .raw = 0x0000 }, .scanline_buf = [_]?u16{null} ** width, .scanline_sprites = [_]?Sprite{null} ** 128, }; } pub fn deinit(self: Self) void { self.alloc.free(self.framebuf); self.vram.deinit(); self.palette.deinit(); } pub fn setBgOffsets(self: *Self, comptime n: u3, word: u32) void { self.bg[n].hofs.raw = @truncate(u16, word); self.bg[n].vofs.raw = @truncate(u16, word >> 16); } pub fn setAdjCnts(self: *Self, comptime n: u3, word: u32) void { self.bg[n].cnt.raw = @truncate(u16, word); self.bg[n + 1].cnt.raw = @truncate(u16, word >> 16); } /// Search OAM for Sprites that might be rendered on this scanline fn fetchSprites(self: *Self) void { const y = self.vcount.scanline.read(); var i: usize = 0; search: while (i < self.oam.buf.len) : (i += 8) { // Attributes in OAM are 6 bytes long, with 2 bytes of padding // Grab Attributes from OAM const attr0 = @bitCast(Attr0, self.oam.get16(i)); const attr1 = @bitCast(Attr1, self.oam.get16(i + 2)); const attr2 = @bitCast(Attr2, self.oam.get16(i + 4)); const sprite = Sprite.init(attr0, attr1, attr2); // Only consider enabled sprites if (sprite.isDisabled()) continue; // When fetching sprites we only care about ones that could be rendered // on this scanline const iy = @bitCast(i8, y); const start = sprite.y(); const istart = @bitCast(i8, start); const end = start +% sprite.height; const iend = @bitCast(i8, end); // Sprites are expected to be able to wraparound, we perform the same check // for unsigned and signed values so that we handle all valid sprite positions if ((start <= y and y < end) or (istart <= iy and iy < iend)) { for (self.scanline_sprites) |*maybe_sprite| { if (maybe_sprite.* == null) { maybe_sprite.* = sprite; continue :search; } } log.err("Found more than 128 sprites in OAM Search", .{}); unreachable; // TODO: Is this truly unreachable? } } } /// Draw all relevant sprites on a scanline fn drawSprites(self: *Self, prio: u2) void { const char_base = 0x4000 * 4; const y = @bitCast(i8, self.vcount.scanline.read()); // Loop over every fetched sprite sprite_loop: for (self.scanline_sprites) |maybe_sprites| { if (maybe_sprites) |sprite| { // Move on to the next sprite If its of a different priority if (sprite.priority() != prio) continue :sprite_loop; var i: u9 = 0; px_loop: while (i < sprite.width) : (i += 1) { const x = (sprite.x() +% i) % 240; const ix = @bitCast(i9, x); // If We've already rendered a pixel here don't overwrite it if (self.scanline_buf[x] != null) continue :px_loop; const start = sprite.x(); const istart = @bitCast(i9, start); const end = start +% sprite.width; const iend = @bitCast(i9, end); // By comparing with both signed and unsigned values we ensure that sprites // are displayed in all valid (AFAIK) configuration if ((start <= x and x < end) or (istart <= ix and ix < iend)) { self.drawSpritePixel(char_base, sprite, ix, y); } } } else break; } } /// Draw a Pixel of a Sprite Tile fn drawSpritePixel(self: *Self, char_base: u32, sprite: Sprite, x: i9, y: i8) void { // FIXME: We branch on this condition quite a lot const is_8bpp = sprite.is_8bpp(); // std.math.absInt is branchless const x_diff = @bitCast(u9, std.math.absInt(x - @bitCast(i9, sprite.x())) catch unreachable); const y_diff = @bitCast(u8, std.math.absInt(y -% @bitCast(i8, sprite.y())) catch unreachable); // Note that we flip the tile_pos not the (tile_pos % 8) like we do for // Background Tiles. By doing this we mirror the entire sprite instead of // just a specific tile (see how sprite.width and sprite.height are involved) const tile_y = y_diff ^ if (sprite.v_flip()) (sprite.height - 1) else 0; const tile_x = x_diff ^ if (sprite.h_flip()) (sprite.width - 1) else 0; // Like in the background Tiles are 8x8 groups of pixels in 8bpp or 4bpp formats const tile_id = sprite.tile_id(); const tile_row_offset: u32 = if (is_8bpp) 8 else 4; const tile_len: u32 = if (is_8bpp) 0x40 else 0x20; const row = tile_y % 8; const col = tile_x % 8; // When calcualting the inital address, the first entry is always 0x20 * tile_id, even if it is 8bpp const tile_base = char_base + (0x20 * @as(u32, tile_id)) + (tile_row_offset * row) + if (is_8bpp) col else col / 2; // TODO: Understand more var tile_offset = (tile_x / 8) * tile_len; if (self.dispcnt.obj_mapping.read()) { tile_offset += (tile_y / 8) * tile_len * (sprite.width / 8); // 1D Mapping } else { tile_offset += (tile_y / 8) * tile_len * 0x20; // 2D Mapping } const tile = self.vram.buf[tile_base + tile_offset]; const pal_id: u16 = if (!is_8bpp) blk: { const nybble_tile = if (col & 1 == 1) tile >> 4 else tile & 0xF; if (nybble_tile == 0) break :blk 0; const pal_bank = @as(u8, sprite.pal_bank()) << 4; break :blk pal_bank | nybble_tile; } else tile; // Sprite Palette starts at 0x0500_0200 if (pal_id != 0) self.scanline_buf[@bitCast(u9, x)] = self.palette.get16(0x200 + pal_id * 2); } fn drawBackround(self: *Self, comptime n: u3) void { // A Tile in a charblock is a byte, while a Screen Entry is a halfword const charblock_len: u32 = 0x4000; const screenblock_len: u32 = 0x800; const cbb: u2 = self.bg[n].cnt.char_base.read(); // Char Block Base const sbb: u5 = self.bg[n].cnt.screen_base.read(); // Screen Block Base const is_8bpp: bool = self.bg[n].cnt.colour_mode.read(); // Colour Mode const size: u2 = self.bg[n].cnt.size.read(); // Background Size // In 4bpp: 1 byte represents two pixels so the length is (8 x 8) / 2 // In 8bpp: 1 byte represents one pixel so the length is 8 x 8 const tile_len = if (is_8bpp) @as(u32, 0x40) else 0x20; const tile_row_offset = if (is_8bpp) @as(u32, 0x8) else 0x4; // 0x0600_000 is implied because we can access VRAM without the Bus const char_base: u32 = charblock_len * @as(u32, cbb); const screen_base: u32 = screenblock_len * @as(u32, sbb); const vofs: u32 = self.bg[n].vofs.offset.read(); const hofs: u32 = self.bg[n].hofs.offset.read(); const y = vofs + self.vcount.scanline.read(); var i: u32 = 0; while (i < width) : (i += 1) { // Exit early if a pixel is already here if (self.scanline_buf[i] != null) continue; const x = hofs + i; // Grab the Screen Entry from VRAM const entry_addr = screen_base + tilemapOffset(size, x, y); const entry = @bitCast(ScreenEntry, self.vram.get16(entry_addr)); // Calculate the Address of the Tile in the designated Charblock // We also take this opportunity to flip tiles if necessary const tile_id: u32 = entry.tile_id.read(); const row = if (entry.v_flip.read()) 7 - (y % 8) else y % 8; // Determine on which row in a tile we're on const tile_addr = char_base + (tile_len * tile_id) + (tile_row_offset * row); // Calculate on which column in a tile we're on // Similarly to when we calculated the row, if we're in 4bpp we want to account // for 1 byte consisting of two pixels const col = if (entry.h_flip.read()) 7 - (x % 8) else x % 8; const tile = self.vram.buf[tile_addr + if (is_8bpp) col else col / 2]; // If we're in 8bpp, then the tile value is an index into the palette, // If we're in 4bpp, we have to account for a pal bank value in the Screen entry // and then we can index the palette const pal_id: u16 = if (!is_8bpp) blk: { const nybble_tile = if (col & 1 == 1) tile >> 4 else tile & 0xF; if (nybble_tile == 0) break :blk 0; const pal_bank = @as(u8, entry.pal_bank.read()) << 4; break :blk pal_bank | nybble_tile; } else tile; if (pal_id != 0) self.scanline_buf[i] = self.palette.get16(pal_id * 2); } } pub fn drawScanline(self: *Self) void { const bg_mode = self.dispcnt.bg_mode.read(); const bg_enable = self.dispcnt.bg_enable.read(); const obj_enable = self.dispcnt.obj_enable.read(); const scanline = self.vcount.scanline.read(); switch (bg_mode) { 0x0 => { const start = framebuf_pitch * @as(usize, scanline); if (obj_enable) self.fetchSprites(); var i: usize = 0; while (i < 4) : (i += 1) { // Draw Sprites Here self.drawSprites(@truncate(u2, i)); if (i == self.bg[0].cnt.priority.read() and bg_enable & 1 == 1) self.drawBackround(0); if (i == self.bg[1].cnt.priority.read() and bg_enable >> 1 & 1 == 1) self.drawBackround(1); if (i == self.bg[2].cnt.priority.read() and bg_enable >> 2 & 1 == 1) self.drawBackround(2); if (i == self.bg[3].cnt.priority.read() and bg_enable >> 3 & 1 == 1) self.drawBackround(3); } // Copy Drawn Scanline to Frame Buffer // If there are any nulls present in self.scanline_buf it means that no background drew a pixel there, so draw backdrop for (self.scanline_buf) |maybe_px, j| { const bgr555 = if (maybe_px) |px| px else self.palette.getBackdrop(); self.framebuf[(start + j * 2 + 1)] = @truncate(u8, bgr555 >> 8); self.framebuf[(start + j * 2 + 0)] = @truncate(u8, bgr555); } // Reset Scanline Buffer std.mem.set(?u16, &self.scanline_buf, null); // Reset List of Sprites std.mem.set(?Sprite, &self.scanline_sprites, null); }, 0x3 => { const start = framebuf_pitch * @as(usize, scanline); std.mem.copy(u8, self.framebuf[start..][0..framebuf_pitch], self.vram.buf[start..][0..framebuf_pitch]); }, 0x4 => { const select = self.dispcnt.frame_select.read(); const vram_start = width * @as(usize, scanline); const buf_start = vram_start * @sizeOf(u16); const start = vram_start + if (select) 0xA000 else @as(usize, 0); const end = start + width; // Each Entry is only a byte long // Render Current Scanline for (self.vram.buf[start..end]) |byte, i| { const id = @as(u16, byte) * 2; const j = i * @sizeOf(u16); std.mem.copy(u8, self.framebuf[(buf_start + j)..][0..2], self.palette.buf[id..][0..2]); } }, else => std.debug.panic("[PPU] TODO: Implement BG Mode {}", .{bg_mode}), } } fn tilemapOffset(size: u2, x: u32, y: u32) u32 { // Current Row: (y % PIXEL_COUNT) / 8 // Current COlumn: (x % PIXEL_COUNT) / 8 // Length of 1 row of Screen Entries: 0x40 // Length of 1 Screen Entry: 0x2 is the size of a screen entry @setRuntimeSafety(false); return switch (size) { 0 => (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40, // 256 x 256 1 => blk: { // 512 x 256 const offset: u32 = if (x & 0x1FF > 0xFF) 0x800 else 0; break :blk offset + (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40; }, 2 => blk: { // 256 x 512 const offset: u32 = if (y & 0x1FF > 0xFF) 0x800 else 0; break :blk offset + (x % 256 / 8) * 2 + (y % 256 / 8) * 0x40; }, 3 => blk: { // 512 x 512 const offset: u32 = if (x & 0x1FF > 0xFF) 0x800 else 0; const offset_2: u32 = if (y & 0x1FF > 0xFF) 0x800 else 0; break :blk offset + offset_2 + (x % 256 / 8) * 2 + (y % 512 / 8) * 0x40; }, }; } }; const Palette = struct { const Self = @This(); buf: []u8, alloc: Allocator, fn init(alloc: Allocator) !Self { const buf = try alloc.alloc(u8, 0x400); std.mem.set(u8, buf, 0); return Self{ .buf = buf, .alloc = alloc, }; } fn deinit(self: Self) void { self.alloc.free(self.buf); } pub fn get32(self: *const Self, idx: usize) u32 { return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx)); } pub fn set32(self: *Self, idx: usize, word: u32) void { self.set16(idx + 2, @truncate(u16, word >> 16)); self.set16(idx, @truncate(u16, word)); } pub fn get16(self: *const Self, idx: usize) u16 { return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]); } pub fn set16(self: *Self, idx: usize, halfword: u16) void { self.buf[idx + 1] = @truncate(u8, halfword >> 8); self.buf[idx] = @truncate(u8, halfword); } pub fn get8(self: *const Self, idx: usize) u8 { return self.buf[idx]; } fn getBackdrop(self: *const Self) u16 { return self.get16(0); } }; const Vram = struct { const Self = @This(); buf: []u8, alloc: Allocator, fn init(alloc: Allocator) !Self { const buf = try alloc.alloc(u8, 0x18000); std.mem.set(u8, buf, 0); return Self{ .buf = buf, .alloc = alloc, }; } fn deinit(self: Self) void { self.alloc.free(self.buf); } pub fn get32(self: *const Self, idx: usize) u32 { return (@as(u32, self.get16(idx + 2)) << 16) | @as(u32, self.get16(idx)); } pub fn set32(self: *Self, idx: usize, word: u32) void { self.set16(idx + 2, @truncate(u16, word >> 16)); self.set16(idx, @truncate(u16, word)); } pub fn get16(self: *const Self, idx: usize) u16 { return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]); } pub fn set16(self: *Self, idx: usize, halfword: u16) void { self.buf[idx + 1] = @truncate(u8, halfword >> 8); self.buf[idx] = @truncate(u8, halfword); } pub fn get8(self: *const Self, idx: usize) u8 { return self.buf[idx]; } }; const Oam = struct { const Self = @This(); buf: []u8, alloc: Allocator, fn init(alloc: Allocator) !Self { const buf = try alloc.alloc(u8, 0x400); std.mem.set(u8, buf, 0); return Self{ .buf = buf, .alloc = alloc, }; } pub fn get32(self: *const Self, idx: usize) u32 { return (@as(u32, self.buf[idx + 3]) << 24) | (@as(u32, self.buf[idx + 2]) << 16) | (@as(u32, self.buf[idx + 1]) << 8) | (@as(u32, self.buf[idx])); } pub fn set32(self: *Self, idx: usize, word: u32) void { self.buf[idx + 3] = @truncate(u8, word >> 24); self.buf[idx + 2] = @truncate(u8, word >> 16); self.buf[idx + 1] = @truncate(u8, word >> 8); self.buf[idx] = @truncate(u8, word); } pub fn get16(self: *const Self, idx: usize) u16 { return (@as(u16, self.buf[idx + 1]) << 8) | @as(u16, self.buf[idx]); } pub fn set16(self: *Self, idx: usize, halfword: u16) void { self.buf[idx + 1] = @truncate(u8, halfword >> 8); self.buf[idx] = @truncate(u8, halfword); } pub fn get8(self: *const Self, idx: usize) u8 { return self.buf[idx]; } }; const Background = struct { const Self = @This(); /// Read / Write cnt: io.BackgroundControl, /// Write Only hofs: io.BackgroundOffset, /// Write Only vofs: io.BackgroundOffset, fn init() Self { return .{ .cnt = .{ .raw = 0x0000 }, .hofs = .{ .raw = 0x0000 }, .vofs = .{ .raw = 0x0000 }, }; } }; const ScreenEntry = extern union { tile_id: Bitfield(u16, 0, 10), h_flip: Bit(u16, 10), v_flip: Bit(u16, 11), pal_bank: Bitfield(u16, 12, 4), raw: u16, }; const Sprite = struct { const Self = @This(); attr0: Attr0, attr1: Attr1, attr2: Attr2, width: u8, height: u8, fn init(attr0: Attr0, attr1: Attr1, attr2: Attr2) Self { const d = spriteDimensions(attr0.shape.read(), attr1.size.read()); return .{ .attr0 = attr0, .attr1 = attr1, .attr2 = attr2, .width = d[0], .height = d[1], }; } inline fn x(self: *const Self) u9 { return self.attr1.x.read(); } inline fn y(self: *const Self) u8 { return self.attr0.y.read(); } inline fn is_8bpp(self: *const Self) bool { return self.attr0.is_8bpp.read(); } inline fn shape(self: *const Self) u2 { return self.attr0.shape.read(); } inline fn size(self: *const Self) u2 { return self.attr1.size.read(); } inline fn tile_id(self: *const Self) u10 { return self.attr2.tile_id.read(); } inline fn pal_bank(self: *const Self) u4 { return self.attr2.pal_bank.read(); } inline fn h_flip(self: *const Self) bool { return self.attr1.h_flip.read(); } inline fn v_flip(self: *const Self) bool { return self.attr1.v_flip.read(); } inline fn priority(self: *const Self) u2 { return self.attr2.rel_prio.read(); } inline fn isDisabled(self: *const Self) bool { return self.attr0.disabled.read(); } }; const Attr0 = extern union { y: Bitfield(u16, 0, 8), rot_scaling: Bit(u16, 8), // This SBZ disabled: Bit(u16, 9), mode: Bitfield(u16, 10, 2), mosaic: Bit(u16, 12), is_8bpp: Bit(u16, 13), shape: Bitfield(u16, 14, 2), raw: u16, }; const Attr1 = extern union { x: Bitfield(u16, 0, 9), h_flip: Bit(u16, 12), v_flip: Bit(u16, 13), size: Bitfield(u16, 14, 2), raw: u16, }; const Attr2 = extern union { tile_id: Bitfield(u16, 0, 10), rel_prio: Bitfield(u16, 10, 2), pal_bank: Bitfield(u16, 12, 4), }; fn spriteDimensions(shape: u2, size: u2) [2]u8 { @setRuntimeSafety(false); return switch (shape) { 0b00 => switch (size) { // Square 0b00 => [_]u8{ 8, 8 }, 0b01 => [_]u8{ 16, 16 }, 0b10 => [_]u8{ 32, 32 }, 0b11 => [_]u8{ 64, 64 }, }, 0b01 => switch (size) { 0b00 => [_]u8{ 16, 8 }, 0b01 => [_]u8{ 32, 8 }, 0b10 => [_]u8{ 32, 16 }, 0b11 => [_]u8{ 64, 32 }, }, 0b10 => switch (size) { 0b00 => [_]u8{ 8, 16 }, 0b01 => [_]u8{ 8, 32 }, 0b10 => [_]u8{ 16, 32 }, 0b11 => [_]u8{ 32, 64 }, }, else => std.debug.panic("{} is an invalid sprite shape", .{shape}), }; }