const std = @import("std"); const Arm7tdmi = @import("../cpu.zig").Arm7tdmi; const CPSR = @import("../cpu.zig").PSR; const rotr = @import("../util.zig").rotr; pub fn execute(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 { var result: u32 = undefined; if (opcode >> 4 & 1 == 1) { result = registerShift(S, cpu, opcode); } else { result = immShift(S, cpu, opcode); } return result; } fn registerShift(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 { const rs_idx = opcode >> 8 & 0xF; const rs = @truncate(u8, cpu.r[rs_idx]); const rm_idx = opcode & 0xF; const rm = if (rm_idx == 0xF) cpu.fakePC() else cpu.r[rm_idx]; return switch (@truncate(u2, opcode >> 5)) { 0b00 => logicalLeft(S, &cpu.cpsr, rm, rs), 0b01 => logicalRight(S, &cpu.cpsr, rm, rs), 0b10 => arithmeticRight(S, &cpu.cpsr, rm, rs), 0b11 => rotateRight(S, &cpu.cpsr, rm, rs), }; } pub fn immShift(comptime S: bool, cpu: *Arm7tdmi, opcode: u32) u32 { const amount = @truncate(u8, opcode >> 7 & 0x1F); const rm_idx = opcode & 0xF; const rm = if (rm_idx == 0xF) cpu.fakePC() else cpu.r[rm_idx]; var result: u32 = undefined; if (amount == 0) { switch (@truncate(u2, opcode >> 5)) { 0b00 => { // LSL #0 result = rm; }, 0b01 => { // LSR #0 aka LSR #32 if (S) cpu.cpsr.c.write(rm >> 31 & 1 == 1); result = 0x0000_0000; }, 0b10 => { // ASR #0 aka ASR #32 result = @bitCast(u32, @bitCast(i32, rm) >> 31); if (S) cpu.cpsr.c.write(result >> 31 & 1 == 1); }, 0b11 => { // ROR #0 aka RRX const carry: u32 = @boolToInt(cpu.cpsr.c.read()); if (S) cpu.cpsr.c.write(rm & 1 == 1); result = (carry << 31) | (rm >> 1); }, } } else { switch (@truncate(u2, opcode >> 5)) { 0b00 => result = logicalLeft(S, &cpu.cpsr, rm, amount), 0b01 => result = logicalRight(S, &cpu.cpsr, rm, amount), 0b10 => result = arithmeticRight(S, &cpu.cpsr, rm, amount), 0b11 => result = rotateRight(S, &cpu.cpsr, rm, amount), } } return result; } pub fn logicalLeft(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 { const amount = @truncate(u5, total_amount); const bit_count: u8 = @typeInfo(u32).Int.bits; var result: u32 = 0x0000_0000; if (total_amount < bit_count) { // We can perform a well-defined shift here result = rm << amount; if (S and total_amount != 0) { const carry_bit = @truncate(u5, bit_count - amount); cpsr.c.write(rm >> carry_bit & 1 == 1); } } else { if (S) { if (total_amount == bit_count) { // Shifted all bits out, carry bit is bit 0 of rm cpsr.c.write(rm & 1 == 1); } else { cpsr.c.write(false); } } } return result; } pub fn logicalRight(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u32) u32 { const amount = @truncate(u5, total_amount); const bit_count: u8 = @typeInfo(u32).Int.bits; var result: u32 = 0x0000_0000; if (total_amount < bit_count) { // We can perform a well-defined shift result = rm >> amount; if (S and total_amount != 0) cpsr.c.write(rm >> (amount - 1) & 1 == 1); } else { if (S) { if (total_amount == bit_count) { // LSR #32 cpsr.c.write(rm >> 31 & 1 == 1); } else { // All bits have been shifted out, including carry bit cpsr.c.write(false); } } } return result; } pub fn arithmeticRight(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 { const amount = @truncate(u5, total_amount); const bit_count: u8 = @typeInfo(u32).Int.bits; var result: u32 = 0x0000_0000; if (total_amount < bit_count) { result = @bitCast(u32, @bitCast(i32, rm) >> amount); if (S and total_amount != 0) cpsr.c.write(rm >> (amount - 1) & 1 == 1); } else { // ASR #32 and ASR #>32 have the same result result = @bitCast(u32, @bitCast(i32, rm) >> 31); if (S) cpsr.c.write(result >> 31 & 1 == 1); } return result; } pub fn rotateRight(comptime S: bool, cpsr: *CPSR, rm: u32, total_amount: u8) u32 { const result = rotr(u32, rm, total_amount); if (S and total_amount != 0) { cpsr.c.write(result >> 31 & 1 == 1); } return result; }