const std = @import("std"); const AudioDeviceId = @import("sdl2").SDL_AudioDeviceID; const Arm7tdmi = @import("cpu.zig").Arm7tdmi; const Bios = @import("bus/Bios.zig"); const Ewram = @import("bus/Ewram.zig"); const GamePak = @import("bus/GamePak.zig"); const Io = @import("bus/io.zig").Io; const Iwram = @import("bus/Iwram.zig"); const Ppu = @import("ppu.zig").Ppu; const Apu = @import("apu.zig").Apu; const DmaTuple = @import("bus/dma.zig").DmaTuple; const TimerTuple = @import("bus/timer.zig").TimerTuple; const Scheduler = @import("scheduler.zig").Scheduler; const FilePaths = @import("../util.zig").FilePaths; const io = @import("bus/io.zig"); const Allocator = std.mem.Allocator; const log = std.log.scoped(.Bus); const createDmaTuple = @import("bus/dma.zig").create; const createTimerTuple = @import("bus/timer.zig").create; const rotr = @import("../util.zig").rotr; const timings: [2][0x10]u8 = [_][0x10]u8{ // BIOS, Unused, EWRAM, IWRAM, I/0, PALRAM, VRAM, OAM, ROM0, ROM0, ROM1, ROM1, ROM2, ROM2, SRAM, Unused [_]u8{ 1, 1, 3, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5 }, // 8-bit & 16-bit [_]u8{ 1, 1, 6, 1, 1, 2, 2, 1, 8, 8, 8, 8, 8, 8, 8, 8 }, // 32-bit }; pub const fetch_timings: [2][0x10]u8 = [_][0x10]u8{ // BIOS, Unused, EWRAM, IWRAM, I/0, PALRAM, VRAM, OAM, ROM0, ROM0, ROM1, ROM1, ROM2, ROM2, SRAM, Unused [_]u8{ 1, 1, 3, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 5, 5 }, // 8-bit & 16-bit [_]u8{ 1, 1, 6, 1, 1, 2, 2, 1, 4, 4, 4, 4, 4, 4, 8, 8 }, // 32-bit }; const Self = @This(); pak: GamePak, bios: Bios, ppu: Ppu, apu: Apu, dma: DmaTuple, tim: TimerTuple, iwram: Iwram, ewram: Ewram, io: Io, cpu: ?*Arm7tdmi, sched: *Scheduler, pub fn init(self: *Self, allocator: Allocator, sched: *Scheduler, cpu: *Arm7tdmi, paths: FilePaths) !void { self.* = .{ .pak = try GamePak.init(allocator, cpu, paths.rom, paths.save), .bios = try Bios.init(allocator, paths.bios), .ppu = try Ppu.init(allocator, sched), .apu = Apu.init(sched), .iwram = try Iwram.init(allocator), .ewram = try Ewram.init(allocator), .dma = createDmaTuple(), .tim = createTimerTuple(sched), .io = Io.init(), .cpu = cpu, .sched = sched, }; } pub fn deinit(self: *Self) void { self.iwram.deinit(); self.ewram.deinit(); self.pak.deinit(); self.bios.deinit(); self.ppu.deinit(); self.* = undefined; } pub fn dbgRead(self: *const Self, comptime T: type, address: u32) T { const page = @truncate(u8, address >> 24); const aligned_addr = forceAlign(T, address); return switch (page) { // General Internal Memory 0x00 => blk: { if (address < Bios.size) break :blk self.bios.dbgRead(T, self.cpu.?.r[15], aligned_addr); break :blk self.readOpenBus(T, address); }, 0x02 => self.ewram.read(T, aligned_addr), 0x03 => self.iwram.read(T, aligned_addr), 0x04 => self.readIo(T, address), // Internal Display Memory 0x05 => self.ppu.palette.read(T, aligned_addr), 0x06 => self.ppu.vram.read(T, aligned_addr), 0x07 => self.ppu.oam.read(T, aligned_addr), // External Memory (Game Pak) 0x08...0x0D => self.pak.dbgRead(T, aligned_addr), 0x0E...0x0F => blk: { const value = self.pak.backup.read(address); const multiplier = switch (T) { u32 => 0x01010101, u16 => 0x0101, u8 => 1, else => @compileError("Backup: Unsupported read width"), }; break :blk @as(T, value) * multiplier; }, else => self.readOpenBus(T, address), }; } fn readIo(self: *const Self, comptime T: type, unaligned_address: u32) T { const maybe_value = io.read(self, T, forceAlign(T, unaligned_address)); return if (maybe_value) |value| value else self.readOpenBus(T, unaligned_address); } fn readOpenBus(self: *const Self, comptime T: type, address: u32) T { const r15 = self.cpu.?.r[15]; const word = blk: { // If u32 Open Bus, read recently fetched opcode (PC + 8) if (!self.cpu.?.cpsr.t.read()) break :blk self.dbgRead(u32, r15 + 4); const page = @truncate(u8, r15 >> 24); switch (page) { // EWRAM, PALRAM, VRAM, and Game ROM (16-bit) 0x02, 0x05, 0x06, 0x08...0x0D => { // (PC + 4) const halfword = self.dbgRead(u16, r15 + 2); break :blk @as(u32, halfword) << 16 | halfword; }, // BIOS or OAM (32-bit) 0x00, 0x07 => { // Aligned: (PC + 6) | (PC + 4) // Unaligned: (PC + 4) | (PC + 2) const offset: u32 = if (address & 3 == 0b00) 2 else 0; break :blk @as(u32, self.dbgRead(u16, r15 + 2 + offset)) << 16 | self.dbgRead(u16, r15 + offset); }, // IWRAM (16-bit but special) 0x03 => { // Aligned: (PC + 2) | (PC + 4) // Unaligned: (PC + 4) | (PC + 2) const offset: u32 = if (address & 3 == 0b00) 2 else 0; break :blk @as(u32, self.dbgRead(u16, r15 + 2 - offset)) << 16 | self.dbgRead(u16, r15 + offset); }, else => unreachable, } }; return @truncate(T, rotr(u32, word, 8 * (address & 3))); } pub fn read(self: *Self, comptime T: type, address: u32) T { const page = @truncate(u8, address >> 24); const aligned_addr = forceAlign(T, address); self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, page)]; return switch (page) { // General Internal Memory 0x00 => blk: { if (address < Bios.size) break :blk self.bios.read(T, self.cpu.?.r[15], aligned_addr); break :blk self.readOpenBus(T, address); }, 0x02 => self.ewram.read(T, aligned_addr), 0x03 => self.iwram.read(T, aligned_addr), 0x04 => self.readIo(T, address), // Internal Display Memory 0x05 => self.ppu.palette.read(T, aligned_addr), 0x06 => self.ppu.vram.read(T, aligned_addr), 0x07 => self.ppu.oam.read(T, aligned_addr), // External Memory (Game Pak) 0x08...0x0D => self.pak.read(T, aligned_addr), 0x0E...0x0F => blk: { const value = self.pak.backup.read(address); const multiplier = switch (T) { u32 => 0x01010101, u16 => 0x0101, u8 => 1, else => @compileError("Backup: Unsupported read width"), }; break :blk @as(T, value) * multiplier; }, else => self.readOpenBus(T, address), }; } pub fn write(self: *Self, comptime T: type, address: u32, value: T) void { const page = @truncate(u8, address >> 24); const aligned_addr = forceAlign(T, address); self.sched.tick += timings[@boolToInt(T == u32)][@truncate(u4, page)]; switch (page) { // General Internal Memory 0x00 => self.bios.write(T, aligned_addr, value), 0x02 => self.ewram.write(T, aligned_addr, value), 0x03 => self.iwram.write(T, aligned_addr, value), 0x04 => io.write(self, T, aligned_addr, value), // Internal Display Memory 0x05 => self.ppu.palette.write(T, aligned_addr, value), 0x06 => self.ppu.vram.write(T, self.ppu.dispcnt, aligned_addr, value), 0x07 => self.ppu.oam.write(T, aligned_addr, value), // External Memory (Game Pak) 0x08...0x0D => self.pak.write(T, self.dma[3].word_count, aligned_addr, value), 0x0E...0x0F => { const rotate_by = switch (T) { u32 => address & 3, u16 => address & 1, u8 => 0, else => @compileError("Backup: Unsupported write width"), }; self.pak.backup.write(address, @truncate(u8, rotr(T, value, 8 * rotate_by))); }, else => {}, } } fn forceAlign(comptime T: type, address: u32) u32 { return switch (T) { u32 => address & 0xFFFF_FFFC, u16 => address & 0xFFFF_FFFE, u8 => address, else => @compileError("Bus: Invalid read/write type"), }; }