const std = @import("std"); const Bus = @import("Bus.zig"); const Scheduler = @import("scheduler.zig").Scheduler; const Arm7tdmi = @import("cpu.zig").Arm7tdmi; const Timer = std.time.Timer; const Thread = std.Thread; const Atomic = std.atomic.Atomic; const cycles_per_frame: u64 = 228 * (308 * 4); const clock_rate: u64 = 1 << 24; const clock_period: u64 = std.time.ns_per_s / clock_rate; const frame_period = (clock_period * cycles_per_frame); const sync_to_video: bool = true; // One frame operates at 59.7275005696Hz const log = std.log.scoped(.Emulation); pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { var cycles: u64 = 0; while (cycles < cycles_per_frame) : (cycles += 1) { sched.tick += 1; _ = cpu.step(); while (sched.tick >= sched.nextTimestamp()) { sched.handleEvent(cpu, bus); } } } pub fn runEmuThread(quit: *Atomic(bool), pause: *Atomic(bool), fps: *Atomic(u64), sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { var timer = Timer.start() catch unreachable; var fps_timer = Timer.start() catch unreachable; var wake_time: u64 = frame_period; log.info("EmuThread has begun execution", .{}); while (!quit.load(.Unordered)) { if (!pause.load(.Unordered)) { runFrame(sched, cpu, bus); const timestamp = timer.read(); fps.store(emuFps(fps_timer.lap()), .Unordered); // ns_late is non zero if we are late. var ns_late = timestamp -| wake_time; // Calculate the new Thread wake time wake_time += frame_period; // If we're more than a frame late, skip the rest of this loop if (ns_late > frame_period) continue; if (sync_to_video) std.time.sleep(frame_period - ns_late); // Backup Busy Loop Routine // if (sync_to_video) spinLoop(&timer, wake_time); } } } fn spinLoop(timer: *Timer, wake_time: u64) void { while (true) { const timestamp = timer.read(); if (timestamp >= wake_time) { break; } } } fn emuFps(left: u64) u64 { @setRuntimeSafety(false); return @floatToInt(u64, @intToFloat(f64, std.time.ns_per_s) / @intToFloat(f64, left)); }