const std = @import("std"); const Bios = @import("bus/Bios.zig"); const Ewram = @import("bus/Ewram.zig"); const GamePak = @import("bus/GamePak.zig"); const Io = @import("bus/io.zig").Io; const Iwram = @import("bus/Iwram.zig"); const Ppu = @import("ppu.zig").Ppu; const Apu = @import("apu.zig").Apu; const DmaControllers = @import("bus/dma.zig").DmaControllers; const Timers = @import("bus/timer.zig").Timers; const Scheduler = @import("scheduler.zig").Scheduler; const io = @import("bus/io.zig"); const Allocator = std.mem.Allocator; const log = std.log.scoped(.Bus); const rotr = @import("util.zig").rotr; const Self = @This(); const panic_on_und_bus: bool = false; pak: GamePak, bios: Bios, ppu: Ppu, apu: Apu, dma: DmaControllers, tim: Timers, iwram: Iwram, ewram: Ewram, io: Io, pub fn init(alloc: Allocator, sched: *Scheduler, rom_path: []const u8, bios_path: ?[]const u8, save_path: ?[]const u8) !Self { return Self{ .pak = try GamePak.init(alloc, rom_path, save_path), .bios = try Bios.init(alloc, bios_path), .ppu = try Ppu.init(alloc, sched), .apu = Apu.init(), .iwram = try Iwram.init(alloc), .ewram = try Ewram.init(alloc), .dma = DmaControllers.init(), .tim = Timers.init(sched), .io = Io.init(), }; } pub fn deinit(self: Self) void { self.iwram.deinit(); self.ewram.deinit(); self.pak.deinit(); self.bios.deinit(); self.ppu.deinit(); } pub fn read(self: *const Self, comptime T: type, address: u32) T { const page = @truncate(u8, address >> 24); const align_addr = alignAddress(T, address); return switch (page) { // General Internal Memory 0x00 => self.bios.read(T, align_addr), 0x02 => self.ewram.read(T, align_addr), 0x03 => self.iwram.read(T, align_addr), 0x04 => switch (T) { u32 => io.read32(self, align_addr), u16 => io.read16(self, align_addr), u8 => io.read8(self, align_addr), else => @compileError("I/O: Unsupported read width"), }, // Internal Display Memory 0x05 => self.ppu.palette.read(T, align_addr), 0x06 => self.ppu.vram.read(T, align_addr), 0x07 => self.ppu.oam.read(T, align_addr), // External Memory (Game Pak) 0x08...0x0D => self.pak.read(T, align_addr), 0x0E...0x0F => blk: { const value = self.pak.backup.read(address); const multiplier = switch (T) { u32 => 0x01010101, u16 => 0x0101, u8 => 1, else => @compileError("Backup: Unsupported read width"), }; break :blk @as(T, value) * multiplier; }, else => undRead("Tried to read {} from 0x{X:0>8}", .{ T, address }), }; } pub fn write(self: *Self, comptime T: type, address: u32, value: T) void { const page = @truncate(u8, address >> 24); const align_addr = alignAddress(T, address); switch (page) { // General Internal Memory 0x00 => self.bios.write(T, align_addr, value), 0x02 => self.ewram.write(T, align_addr, value), 0x03 => self.iwram.write(T, align_addr, value), 0x04 => switch (T) { u32 => io.write32(self, align_addr, value), u16 => io.write16(self, align_addr, value), u8 => io.write8(self, align_addr, value), else => @compileError("I/O: Unsupported write width"), }, // Internal Display Memory 0x05 => self.ppu.palette.write(T, align_addr, value), 0x06 => self.ppu.vram.write(T, align_addr, value), 0x07 => self.ppu.oam.write(T, align_addr, value), // External Memory (Game Pak) 0x08...0x0D => {}, 0x0E...0x0F => { const rotate_by = switch (T) { u32 => address & 3, u16 => address & 1, u8 => 0, else => @compileError("Backup: Unsupported write width"), }; self.pak.backup.write(address, @truncate(u8, rotr(T, value, 8 * rotate_by))); }, else => undWrite("Tried to write {} 0x{X:} to 0x{X:0>8}", .{ T, value, address }), } } fn alignAddress(comptime T: type, address: u32) u32 { return switch (T) { u32 => address & 0xFFFF_FFFC, u16 => address & 0xFFFF_FFFE, u8 => address, else => @compileError("Bus: Invalid read/write type"), }; } fn undRead(comptime format: []const u8, args: anytype) u8 { if (panic_on_und_bus) std.debug.panic(format, args) else log.warn(format, args); return 0; } fn undWrite(comptime format: []const u8, args: anytype) void { if (panic_on_und_bus) std.debug.panic(format, args) else log.warn(format, args); }