const std = @import("std"); const Bus = @import("Bus.zig"); const Scheduler = @import("scheduler.zig").Scheduler; const Arm7tdmi = @import("cpu.zig").Arm7tdmi; const FpsAverage = @import("util.zig").FpsAverage; const Timer = std.time.Timer; const Thread = std.Thread; const Atomic = std.atomic.Atomic; // One frame operates at 59.7275005696Hz const cycles_per_frame: u64 = 228 * (308 * 4); const clock_rate: u64 = 1 << 24; const clock_period: u64 = std.time.ns_per_s / clock_rate; const frame_period = (clock_period * cycles_per_frame); const log = std.log.scoped(.Emulation); const RunKind = enum { Unlimited, UnlimitedFPS, Limited, LimitedFPS, LimitedBusy, }; pub fn run(kind: RunKind, quit: *Atomic(bool), fps: *FpsAverage, sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { switch (kind) { .Unlimited => runUnSync(quit, sched, cpu, bus), .Limited => runSync(quit, sched, cpu, bus), .UnlimitedFPS => runUnSyncFps(quit, fps, sched, cpu, bus), .LimitedFPS => runSyncFps(quit, fps, sched, cpu, bus), .LimitedBusy => runBusyLoop(quit, sched, cpu, bus), } } pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { var cycles: u64 = 0; while (cycles < cycles_per_frame) : (cycles += 1) { sched.tick += 1; _ = cpu.step(); while (sched.tick >= sched.nextTimestamp()) { sched.handleEvent(cpu, bus); } } } pub fn runUnSync(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { log.info("Unsynchronized EmuThread has begun", .{}); while (!quit.load(.Unordered)) runFrame(sched, cpu, bus); } pub fn runSync(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { log.info("Synchronized EmuThread has begun", .{}); var timer = Timer.start() catch unreachable; var wake_time: u64 = frame_period; while (!quit.load(.Unordered)) { runFrame(sched, cpu, bus); // Put the Thread to Sleep + Backup Spin Loop // This saves on resource usage when frame limiting sleep(&timer, &wake_time); // Update to the new wake time wake_time += frame_period; } } pub fn runUnSyncFps(quit: *Atomic(bool), fps: *FpsAverage, sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { log.info("Unsynchronized EmuThread with FPS Tracking has begun", .{}); var fps_timer = Timer.start() catch unreachable; while (!quit.load(.Unordered)) { runFrame(sched, cpu, bus); fps.add(emuFps(fps_timer.lap())); } } pub fn runSyncFps(quit: *Atomic(bool), fps: *FpsAverage, sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { log.info("Synchronized EmuThread has begun", .{}); var timer = Timer.start() catch unreachable; var fps_timer = Timer.start() catch unreachable; var wake_time: u64 = frame_period; while (!quit.load(.Unordered)) { runFrame(sched, cpu, bus); // Put the Thread to Sleep + Backup Spin Loop // This saves on resource usage when frame limiting sleep(&timer, &wake_time); // Determine FPS fps.add(emuFps(fps_timer.lap())); // Update to the new wake time wake_time += frame_period; } } pub fn runBusyLoop(quit: *Atomic(bool), sched: *Scheduler, cpu: *Arm7tdmi, bus: *Bus) void { log.info("Run EmuThread with spin-loop sync", .{}); var timer = Timer.start() catch unreachable; var wake_time: u64 = frame_period; while (!quit.load(.Unordered)) { runFrame(sched, cpu, bus); spinLoop(&timer, wake_time); // Update to the new wake time wake_time += frame_period; } } fn sleep(timer: *Timer, wake_time: *u64) void { // const step = std.time.ns_per_ms * 10; // 10ms const timestamp = timer.read(); // ns_late is non zero if we are late. const ns_late = timestamp -| wake_time.*; // If we're more than a frame late, skip the rest of this loop // Recalculate what our new wake time should be so that we can // get "back on track" if (ns_late > frame_period) { wake_time.* = timestamp + frame_period; return; } const sleep_for = frame_period - ns_late; // // Employ several sleep calls in periods of 10ms // // By doing this the behaviour should average out to be // // more consistent // const loop_count = sleep_for / step; // How many groups of 10ms // var i: usize = 0; // while (i < loop_count) : (i += 1) std.time.sleep(step); std.time.sleep(sleep_for); // Spin to make up the difference if there is a need // Make sure that we're using the old wake time and not the onne we recalculated spinLoop(timer, wake_time.*); } fn spinLoop(timer: *Timer, wake_time: u64) void { while (true) if (timer.read() > wake_time) break; } inline fn emuFps(left: u64) u64 { @setRuntimeSafety(false); return @floatToInt(u64, @intToFloat(f64, std.time.ns_per_s) / @intToFloat(f64, left)); }