const std = @import("std"); const SDL = @import("sdl2"); const config = @import("../config.zig"); const Scheduler = @import("scheduler.zig").Scheduler; const Arm7tdmi = @import("cpu.zig").Arm7tdmi; const FpsTracker = @import("../util.zig").FpsTracker; const Timer = std.time.Timer; const Atomic = std.atomic.Atomic; /// 4 Cycles in 1 dot const cycles_per_dot = 4; /// The GBA draws 228 Horizontal which each consist 308 dots /// (note: not all lines are visible) const cycles_per_frame = 228 * (308 * cycles_per_dot); //280896 /// The GBA ARM7TDMI runs at 2^24 Hz const clock_rate = 1 << 24; // 16.78MHz /// The # of nanoseconds a frame should take const frame_period = (std.time.ns_per_s * cycles_per_frame) / clock_rate; /// Exact Value: 59.7275005696Hz /// The inverse of the frame period pub const frame_rate: f64 = @intToFloat(f64, clock_rate) / cycles_per_frame; const log = std.log.scoped(.Emulation); const RunKind = enum { Unlimited, UnlimitedFPS, Limited, LimitedFPS, }; pub fn run(quit: *Atomic(bool), scheduler: *Scheduler, cpu: *Arm7tdmi, tracker: *FpsTracker) void { const audio_sync = config.config().guest.audio_sync and !config.config().host.mute; if (audio_sync) log.info("Audio sync enabled", .{}); if (config.config().guest.video_sync) { inner(.LimitedFPS, audio_sync, quit, scheduler, cpu, tracker); } else { inner(.UnlimitedFPS, audio_sync, quit, scheduler, cpu, tracker); } } fn inner(comptime kind: RunKind, audio_sync: bool, quit: *Atomic(bool), scheduler: *Scheduler, cpu: *Arm7tdmi, tracker: ?*FpsTracker) void { if (kind == .UnlimitedFPS or kind == .LimitedFPS) { std.debug.assert(tracker != null); log.info("FPS tracking enabled", .{}); } switch (kind) { .Unlimited, .UnlimitedFPS => { log.info("Emulation w/out video sync", .{}); while (!quit.load(.SeqCst)) { runFrame(scheduler, cpu); audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); if (kind == .UnlimitedFPS) tracker.?.tick(); } }, .Limited, .LimitedFPS => { log.info("Emulation w/ video sync", .{}); var timer = Timer.start() catch @panic("failed to initalize std.timer.Timer"); var wake_time: u64 = frame_period; while (!quit.load(.SeqCst)) { runFrame(scheduler, cpu); const new_wake_time = videoSync(&timer, wake_time); // Spin to make up the difference of OS scheduler innacuracies // If we happen to also be syncing to audio, we choose to spin on // the amount of time needed for audio to catch up rather than // our expected wake-up time audioSync(audio_sync, cpu.bus.apu.stream, &cpu.bus.apu.is_buffer_full); if (!audio_sync) spinLoop(&timer, wake_time); wake_time = new_wake_time; if (kind == .LimitedFPS) tracker.?.tick(); } }, } } pub fn runFrame(sched: *Scheduler, cpu: *Arm7tdmi) void { const frame_end = sched.tick + cycles_per_frame; while (sched.tick < frame_end) { if (!cpu.stepDmaTransfer()) { if (cpu.isHalted()) { // Fast-forward to next Event sched.tick = sched.queue.peek().?.tick; } else { cpu.step(); } } if (sched.tick >= sched.nextTimestamp()) sched.handleEvent(cpu); } } fn audioSync(audio_sync: bool, stream: *SDL.SDL_AudioStream, is_buffer_full: *bool) void { const sample_size = 2 * @sizeOf(u16); const max_buf_size: c_int = 0x400; // Determine whether the APU is busy right at this moment var still_full: bool = SDL.SDL_AudioStreamAvailable(stream) > sample_size * if (is_buffer_full.*) max_buf_size >> 1 else max_buf_size; defer is_buffer_full.* = still_full; // Update APU Busy status right before exiting scope // If Busy is false, there's no need to sync here if (!still_full) return; while (true) { still_full = SDL.SDL_AudioStreamAvailable(stream) > sample_size * max_buf_size >> 1; if (!audio_sync or !still_full) break; } } fn videoSync(timer: *Timer, wake_time: u64) u64 { // Use the OS scheduler to put the emulation thread to sleep const recalculated = sleep(timer, wake_time); // If sleep() determined we need to adjust our wake up time, do so // otherwise predict our next wake up time according to the frame period return recalculated orelse wake_time + frame_period; } // TODO: Better sleep impl? fn sleep(timer: *Timer, wake_time: u64) ?u64 { const timestamp = timer.read(); // ns_late is non zero if we are late. var ns_late = timestamp -| wake_time; // If we're more than a frame late, skip the rest of this loop // Recalculate what our new wake time should be so that we can // get "back on track" if (ns_late > frame_period) return timestamp + frame_period; const sleep_for = frame_period - ns_late; const step = 2 * std.time.ns_per_ms; // Granularity of 2ms const times = sleep_for / step; var i: usize = 0; while (i < times) : (i += 1) { std.time.sleep(step); // Upon wakeup, check to see if this particular sleep was longer than expected // if so we should exit early, but probably not skip a whole frame period ns_late = timer.read() -| wake_time; if (ns_late > frame_period) return null; } return null; } fn spinLoop(timer: *Timer, wake_time: u64) void { while (true) if (timer.read() > wake_time) break; }