const std = @import("std"); const DmaControl = @import("io.zig").DmaControl; const Bus = @import("../Bus.zig"); const log = std.log.scoped(.DmaTransfer); pub const DmaControllers = struct { const Self = @This(); _0: DmaController(0), _1: DmaController(1), _2: DmaController(2), _3: DmaController(3), pub fn init() Self { return .{ ._0 = DmaController(0).init(), ._1 = DmaController(1).init(), ._2 = DmaController(2).init(), ._3 = DmaController(3).init(), }; } }; /// Function that creates a DMAController. Determines unique DMA Controller behaiour at compile-time fn DmaController(comptime id: u2) type { return struct { const Self = @This(); const sad_mask: u32 = if (id == 0) 0x07FF_FFFF else 0x0FFF_FFFF; const dad_mask: u32 = if (id != 3) 0x07FF_FFFF else 0x0FFF_FFFF; /// Determines whether DMAController is for DMA0, DMA1, DMA2 or DMA3 /// Note: Determined at comptime id: u2, /// Write-only. The first address in a DMA transfer. (DMASAD) /// Note: use writeSrc instead of manipulating src_addr directly sad: u32, /// Write-only. The final address in a DMA transffer. (DMADAD) /// Note: Use writeDst instead of manipulatig dst_addr directly dad: u32, /// Write-only. The Word Count for the DMA Transfer (DMACNT_L) word_count: if (id == 3) u16 else u14, /// Read / Write. DMACNT_H /// Note: Use writeControl instead of manipulating cnt directly. cnt: DmaControl, /// Internal. Currrent Source Address _sad: u32, /// Internal. Current Destination Address _dad: u32, /// Internal. Word Count _word_count: if (id == 3) u16 else u14, /// Some DMA Transfers are enabled during Hblank / VBlank and / or /// have delays. Thefore bit 15 of DMACNT isn't actually something /// we can use to control when we do or do not execute a step in a DMA Transfer enabled: bool, pub fn init() Self { return .{ .id = id, .sad = 0, .dad = 0, .word_count = 0, .cnt = .{ .raw = 0x000 }, // Internals ._sad = 0, ._dad = 0, ._word_count = 0, .enabled = false, }; } pub fn writeSad(self: *Self, addr: u32) void { self.sad = addr & sad_mask; } pub fn writeDad(self: *Self, addr: u32) void { self.dad = addr & dad_mask; } pub fn writeWordCount(self: *Self, halfword: u16) void { self.word_count = @truncate(@TypeOf(self.word_count), halfword); } pub fn writeCntHigh(self: *Self, halfword: u16) void { const new = DmaControl{ .raw = halfword }; if (!self.cnt.enabled.read() and new.enabled.read()) { // Reload Internals on Rising Edge. self._sad = self.sad; self._dad = self.dad; self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count; // Only a Start Timing of 00 has a DMA Transfer immediately begin self.enabled = new.start_timing.read() == 0b00; } self.cnt.raw = halfword; } pub fn writeCnt(self: *Self, word: u32) void { self.word_count = @truncate(@TypeOf(self.word_count), word); self.writeCntHigh(@truncate(u16, word >> 16)); } pub inline fn check(self: *Self, bus: *Bus) bool { if (!self.enabled) return false; // FIXME: Check CNT register? self.step(bus); return true; } pub fn step(self: *Self, bus: *Bus) void { @setCold(true); const sad_adj = std.meta.intToEnum(Adjustment, self.cnt.sad_adj.read()) catch unreachable; const dad_adj = std.meta.intToEnum(Adjustment, self.cnt.dad_adj.read()) catch unreachable; var offset: u32 = 0; if (self.cnt.transfer_type.read()) { offset = @sizeOf(u32); // 32-bit Transfer const word = bus.read32(self._sad); bus.write32(self._dad, word); } else { offset = @sizeOf(u16); // 16-bit Transfer const halfword = bus.read16(self._sad); bus.write16(self._dad, halfword); } switch (sad_adj) { .Increment => self._sad +%= offset, .Decrement => self._sad -%= offset, .Fixed => {}, // TODO: Figure out correct behaviour on Illegal Source Addr Control Type .IncrementReload => std.debug.panic("panic(DmaTransfer): {} is an illegal src addr adjustment type", .{sad_adj}), } switch (dad_adj) { .Increment, .IncrementReload => self._dad +%= offset, .Decrement => self._dad -%= offset, .Fixed => {}, } self._word_count -= 1; if (self._word_count == 0) { if (!self.cnt.repeat.read()) { // If we're not repeating, Fire the IRQs and disable the DMA if (self.cnt.irq.read()) { switch (id) { 0 => bus.io.irq.dma0.set(), 1 => bus.io.irq.dma0.set(), 2 => bus.io.irq.dma0.set(), 3 => bus.io.irq.dma0.set(), } } self.cnt.enabled.unset(); } // We want to disable our internal enabled flag regardless of repeat // because we only want to step A DMA that repeats during it's specific // timing window self.enabled = false; } } pub fn isBlocking(self: *const Self) bool { // A DMA Transfer is Blocking if it is Immediate return self.cnt.start_timing.read() == 0b00; } pub fn pollBlankingDma(self: *Self, comptime kind: DmaKind) void { if (self.enabled) return; switch (kind) { .HBlank => self.enabled = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b10, .VBlank => self.enabled = self.cnt.enabled.read() and self.cnt.start_timing.read() == 0b01, .Immediate, .Special => {}, } if (self.cnt.repeat.read() and self.enabled) { self._word_count = if (self.word_count == 0) std.math.maxInt(@TypeOf(self._word_count)) else self.word_count; const dad_adj = std.meta.intToEnum(Adjustment, self.cnt.dad_adj.read()) catch unreachable; if (dad_adj == .IncrementReload) self._dad = self.dad; } } }; } pub fn pollBlankingDma(bus: *Bus, comptime kind: DmaKind) void { bus.dma._0.pollBlankingDma(kind); bus.dma._1.pollBlankingDma(kind); bus.dma._2.pollBlankingDma(kind); bus.dma._3.pollBlankingDma(kind); } const Adjustment = enum(u2) { Increment = 0, Decrement = 1, Fixed = 2, IncrementReload = 3, }; const DmaKind = enum(u2) { Immediate = 0, HBlank, VBlank, Special, };